Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 13/2022

13-07-2022 | Positron Emission Tomography | Original Article

Pilot study of a novel nanobody 68 Ga-NODAGA-SNA006 for instant PET imaging of CD8+ T cells

Authors: Yan Wang, Chao Wang, Minzhou Huang, Songbing Qin, Jun Zhao, Shibiao Sang, Meng Zheng, Yicong Bian, Chenrong Huang, Hua Zhang, Lingchuan Guo, Jiwei Jiang, Chun Xu, Na Dai, Yushuang Zheng, Jiajun Han, Min Yang, Tao Xu, Liyan Miao

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 13/2022

Login to get access

Abstract

Purpose

Positron emission tomography (PET) with specific diagnostic probes for quantifying CD8+ T cells has emerged as a powerful technique for monitoring the immune response. However, most CD8+ T cell radiotracers are based on antibodies or antibody fragments, which are slowly cleared from circulation. Herein, we aimed to develop and assess 68 Ga-NODAGA-SNA006 for instant PET (iPET) imaging of CD8+ T cells.

Methods

A novel nanobody without a hexahistidine (His6) tag, SNA006-GSC, was designed, site-specifically conjugated with NODAGA-maleimide and radiolabelled with 68 Ga. The PET imaging profiles of 68 Ga-NODAGA-SNA006 were evaluated in BALB/c MC38-CD8+/CD8 tumour models and cynomolgus monkeys. Three volunteers with lung cancer underwent whole-body PET/CT imaging after 68 Ga-NODAGA-SNA006 administration. The biodistribution, pharmacokinetics and dosimetry of patients were also investigated. In addition, combined with immunohistochemistry (IHC), the quantitative performance of the tracer for monitoring CD8 expression was evaluated in BALB/c MC38-CD8+/CD8 and human subjects.

Results

68 Ga-NODAGA-SNA006 was prepared with RCP > 98% and SA > 100 GBq/μmol. 68 Ga-NODAGA-SNA006 exhibited specific uptake in MC38-CD8+ xenografts tumours, CD8-rich tissues (such as the spleen) in monkeys and CD8+ tumour lesions in patients within 1 h. Fast washout from circulation was observed in three volunteers (t1/2 < 20 min). A preliminary quantitative linear relationship (R2 = 0.9668, p < 0.0001 for xenografts and R2 = 0.7924, p = 0.0013 for lung patients) appeared between 68 Ga-NODAGA-SNA006 uptake and CD8 expression. 68 Ga-NODAGA-SNA006 was well tolerated by all patients.

Conclusion

68 Ga-NODAGA-SNA006 PET imaging can instantly quantify CD8 expression with an ideal safety profile and is expected to be important for dynamically tracking CD8+ T cells and monitoring immune responses for individualised cancer immunotherapy.

Trial registration

NCT05126927 (19 November 2021, retrospectively registered).
Appendix
Available only for authorised users
Literature
1.
go back to reference Niemeijer AL, Hoekstra OS, Smit EF, de Langen AJ. Imaging responses to immunotherapy with novel PET tracers. J Nucl Med. 2020;61:641–2.CrossRef Niemeijer AL, Hoekstra OS, Smit EF, de Langen AJ. Imaging responses to immunotherapy with novel PET tracers. J Nucl Med. 2020;61:641–2.CrossRef
2.
go back to reference Lee MS, Ryoo B-Y, Hsu C-H, Numata K, Stein S, Verret W, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21:808–20.CrossRef Lee MS, Ryoo B-Y, Hsu C-H, Numata K, Stein S, Verret W, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21:808–20.CrossRef
3.
go back to reference Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.CrossRef Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.CrossRef
4.
go back to reference Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, et al. An immune atlas of clear cell renal cell carcinoma. Cell. 2017;169(736–49):e18. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, et al. An immune atlas of clear cell renal cell carcinoma. Cell. 2017;169(736–49):e18.
5.
go back to reference Topalian SL, Wolchok JD, Chan TA, Mellman I, Palucka K, Banchereau J, et al. Immunotherapy: the path to win the war on cancer? Cell. 2015;161:185–6.CrossRef Topalian SL, Wolchok JD, Chan TA, Mellman I, Palucka K, Banchereau J, et al. Immunotherapy: the path to win the war on cancer? Cell. 2015;161:185–6.CrossRef
6.
go back to reference Raskov H, Orhan A, Christensen JP, Gogenur I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67.CrossRef Raskov H, Orhan A, Christensen JP, Gogenur I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124:359–67.CrossRef
7.
go back to reference van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20:218–32.CrossRef van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20:218–32.CrossRef
8.
go back to reference Zhao H, Wang C, Yang Y, Sun Y, Wei W, Wang C, et al. ImmunoPET imaging of human CD8(+) T cells with novel 68Ga-labeled nanobody companion diagnostic agents. J Nanobiotechnology. 2021;19:42.CrossRef Zhao H, Wang C, Yang Y, Sun Y, Wei W, Wang C, et al. ImmunoPET imaging of human CD8(+) T cells with novel 68Ga-labeled nanobody companion diagnostic agents. J Nanobiotechnology. 2021;19:42.CrossRef
9.
go back to reference Iravani A, Hicks RJ. Imaging the cancer immune environment and its response to pharmacologic intervention, part 2: the role of novel PET agents. J Nucl Med. 2020;61:1553–9.CrossRef Iravani A, Hicks RJ. Imaging the cancer immune environment and its response to pharmacologic intervention, part 2: the role of novel PET agents. J Nucl Med. 2020;61:1553–9.CrossRef
10.
go back to reference Buggert M, Vella LA, Nguyen S, Wu VH, Chen Z, Sekine T, et al. The identity of human tissue-emigrant CD8(+) T cells. Cell. 2020;183(7):1946-1961.e15.CrossRef Buggert M, Vella LA, Nguyen S, Wu VH, Chen Z, Sekine T, et al. The identity of human tissue-emigrant CD8(+) T cells. Cell. 2020;183(7):1946-1961.e15.CrossRef
11.
go back to reference Nagle VL, Henry KE, Hertz CAJ, Graham MS, Campos C, Parada LF, et al. Imaging tumor-infiltrating lymphocytes in brain tumors with [64Cu]Cu-NOTA-anti-CD8 PET. Clin Cancer Res. 2021;27:1958–66.CrossRef Nagle VL, Henry KE, Hertz CAJ, Graham MS, Campos C, Parada LF, et al. Imaging tumor-infiltrating lymphocytes in brain tumors with [64Cu]Cu-NOTA-anti-CD8 PET. Clin Cancer Res. 2021;27:1958–66.CrossRef
12.
go back to reference Seo JW, Tavare R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, et al. CD8(+) T-cell density imaging with 64Cu-labeled Cys-diabody informs immunotherapy protocols. Clin Cancer Res. 2018;24:4976–87.CrossRef Seo JW, Tavare R, Mahakian LM, Silvestrini MT, Tam S, Ingham ES, et al. CD8(+) T-cell density imaging with 64Cu-labeled Cys-diabody informs immunotherapy protocols. Clin Cancer Res. 2018;24:4976–87.CrossRef
13.
go back to reference Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. AAPS J. 2020;22:22.CrossRef Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. AAPS J. 2020;22:22.CrossRef
14.
go back to reference Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive imaging of cancer immunotherapy. Nanotheranostics. 2021;5:90–112.CrossRef Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive imaging of cancer immunotherapy. Nanotheranostics. 2021;5:90–112.CrossRef
15.
go back to reference Levi J, Goth S, Huynh L, Lam T, Huynh TL, Schulte B, et al. 18F-FAraG PET for CD8 profiling of tumors and assessment of immunomodulation by chemotherapy. J Nucl Med. 2021;62(6):802–7.CrossRef Levi J, Goth S, Huynh L, Lam T, Huynh TL, Schulte B, et al. 18F-FAraG PET for CD8 profiling of tumors and assessment of immunomodulation by chemotherapy. J Nucl Med. 2021;62(6):802–7.CrossRef
16.
go back to reference Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9.CrossRef Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-humans imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9.CrossRef
17.
go back to reference Simonetta F, Alam IS, Lohmeyer JK, Sahaf B, Good Z, Chen W, et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-immunoPET. Clin Cancer Res. 2021;27:1058–68.CrossRef Simonetta F, Alam IS, Lohmeyer JK, Sahaf B, Good Z, Chen W, et al. Molecular imaging of chimeric antigen receptor T cells by ICOS-immunoPET. Clin Cancer Res. 2021;27:1058–68.CrossRef
18.
go back to reference Griessinger CM, Olafsen T, Mascioni A, Jiang ZK, Zamilpa C, Jia F, et al. The PET-tracer 89Zr-Df-IAB22M2C enables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after T-cell bispecific antibody treatment. Cancer Res. 2020;80:2903–13.CrossRef Griessinger CM, Olafsen T, Mascioni A, Jiang ZK, Zamilpa C, Jia F, et al. The PET-tracer 89Zr-Df-IAB22M2C enables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after T-cell bispecific antibody treatment. Cancer Res. 2020;80:2903–13.CrossRef
19.
go back to reference Woodham AW, Zeigler SH, Zeyang EL, Kolifrath SC, Cheloha RW, Rashidian M, et al. In vivo detection of antigen-specific CD8(+) T cells by immuno-positron emission tomography. Nat Methods. 2020;17:1025–32.CrossRef Woodham AW, Zeigler SH, Zeyang EL, Kolifrath SC, Cheloha RW, Rashidian M, et al. In vivo detection of antigen-specific CD8(+) T cells by immuno-positron emission tomography. Nat Methods. 2020;17:1025–32.CrossRef
20.
go back to reference Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24:2276–82.CrossRef Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24:2276–82.CrossRef
21.
go back to reference Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87:586–92.CrossRef Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87:586–92.CrossRef
22.
go back to reference Villani ME, Morea V, Consalvi V, Chiaraluce R, Desiderio A, Benvenuto E, et al. Humanization of a highly stable single-chain antibody by structure-based antigen-binding site grafting. Mol Immunol. 2008;45:2474–85.CrossRef Villani ME, Morea V, Consalvi V, Chiaraluce R, Desiderio A, Benvenuto E, et al. Humanization of a highly stable single-chain antibody by structure-based antigen-binding site grafting. Mol Immunol. 2008;45:2474–85.CrossRef
23.
go back to reference Kubetzko S, Balic E, Waibel R, Zangemeister-Wittke U, Pluckthun A. PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem. 2006;281:35186–201.CrossRef Kubetzko S, Balic E, Waibel R, Zangemeister-Wittke U, Pluckthun A. PEGylation and multimerization of the anti-p185HER-2 single chain Fv fragment 4D5: effects on tumor targeting. J Biol Chem. 2006;281:35186–201.CrossRef
24.
go back to reference Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, et al. Nanobodies for medical imaging: about ready for prime time? Biomolecules. 2021;11(5):637.CrossRef Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, et al. Nanobodies for medical imaging: about ready for prime time? Biomolecules. 2021;11(5):637.CrossRef
25.
go back to reference Erreni M, Schorn T, D’Autilia F, Doni A. Nanobodies as versatile tool for multiscale imaging modalities. Biomolecules. 2020;10(12):1695.CrossRef Erreni M, Schorn T, D’Autilia F, Doni A. Nanobodies as versatile tool for multiscale imaging modalities. Biomolecules. 2020;10(12):1695.CrossRef
26.
go back to reference Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q, et al. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med. 2020;61:117–22.CrossRef Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q, et al. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med. 2020;61:117–22.CrossRef
27.
go back to reference von Witting E, Garousi J, Lindbo S, Vorobyeva A, Altai M, Oroujeni M, et al. Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. Eur J Pharm Biopharm. 2019;140:109–20.CrossRef von Witting E, Garousi J, Lindbo S, Vorobyeva A, Altai M, Oroujeni M, et al. Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. Eur J Pharm Biopharm. 2019;140:109–20.CrossRef
28.
go back to reference Zhu W, Cheng Y, Jia R, Zhao H, Bai C, Xu J, et al. A prospective, randomized, double-blind study to evaluate the safety, biodistribution, and dosimetry of 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3 in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2021;62:1398–405.CrossRef Zhu W, Cheng Y, Jia R, Zhao H, Bai C, Xu J, et al. A prospective, randomized, double-blind study to evaluate the safety, biodistribution, and dosimetry of 68Ga-NODAGA-LM3 and 68Ga-DOTA-LM3 in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2021;62:1398–405.CrossRef
29.
go back to reference Olafsen T, Jiang ZK, Romero J, Zamilpa C, Marchioni F, Zhang G, et al. Sensitivity of Zr-89-labeled anti-CD8 minibody for PET imaging of infiltrating CD8+T cells. Cancer Research. 2016;76 Olafsen T, Jiang ZK, Romero J, Zamilpa C, Marchioni F, Zhang G, et al. Sensitivity of Zr-89-labeled anti-CD8 minibody for PET imaging of infiltrating CD8+T cells. Cancer Research. 2016;76
30.
go back to reference Heskamp S, Raave R, Boerman O, Rijpkema M, Goncalves V, Denat F. (89)Zr-immuno-positron emission tomography in oncology: state-of-the-art (89)Zr radiochemistry. Bioconjug Chem. 2017;28:2211–23.CrossRef Heskamp S, Raave R, Boerman O, Rijpkema M, Goncalves V, Denat F. (89)Zr-immuno-positron emission tomography in oncology: state-of-the-art (89)Zr radiochemistry. Bioconjug Chem. 2017;28:2211–23.CrossRef
31.
go back to reference Chigoho DM, Lecocq Q, Awad RM, Breckpot K, Devoogdt N, Keyaerts M, et al. Site-specific radiolabeling of a human PD-L1 nanobody via maleimide-cysteine chemistry. Pharmaceuticals (Basel). 2021;14(6):550.CrossRef Chigoho DM, Lecocq Q, Awad RM, Breckpot K, Devoogdt N, Keyaerts M, et al. Site-specific radiolabeling of a human PD-L1 nanobody via maleimide-cysteine chemistry. Pharmaceuticals (Basel). 2021;14(6):550.CrossRef
32.
go back to reference Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58.CrossRef Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58.CrossRef
33.
go back to reference Xavier C, Vaneycken I, D’Huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84.CrossRef Xavier C, Vaneycken I, D’Huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84.CrossRef
34.
go back to reference Nagle VL, Henry KE, Hertz CAJ, Graham MS, Campos C, Parada LF, et al. Imaging tumor-infiltrating lymphocytes in brain tumors with [64Cu]Cu-NOTA-anti-CD8-positron emission tomography. Clin Cancer Res. 2021;27(7):1958–66.CrossRef Nagle VL, Henry KE, Hertz CAJ, Graham MS, Campos C, Parada LF, et al. Imaging tumor-infiltrating lymphocytes in brain tumors with [64Cu]Cu-NOTA-anti-CD8-positron emission tomography. Clin Cancer Res. 2021;27(7):1958–66.CrossRef
Metadata
Title
Pilot study of a novel nanobody 68 Ga-NODAGA-SNA006 for instant PET imaging of CD8+ T cells
Authors
Yan Wang
Chao Wang
Minzhou Huang
Songbing Qin
Jun Zhao
Shibiao Sang
Meng Zheng
Yicong Bian
Chenrong Huang
Hua Zhang
Lingchuan Guo
Jiwei Jiang
Chun Xu
Na Dai
Yushuang Zheng
Jiajun Han
Min Yang
Tao Xu
Liyan Miao
Publication date
13-07-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 13/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05903-9

Other articles of this Issue 13/2022

European Journal of Nuclear Medicine and Molecular Imaging 13/2022 Go to the issue