Skip to main content
Top
Published in:

Open Access 09-07-2022 | Molecular Imaging | Review Article

Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation

Authors: Dimitris Visvikis, Philippe Lambin, Kim Beuschau Mauridsen, Roland Hustinx, Michael Lassmann, Christoph Rischpler, Kuangyu Shi, Jan Pruim

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 13/2022

Login to get access

Abstract

Artificial intelligence (AI) will change the face of nuclear medicine and molecular imaging as it will in everyday life. In this review, we focus on the potential applications of AI in the field, both from a physical (radiomics, underlying statistics, image reconstruction and data analysis) and a clinical (neurology, cardiology, oncology) perspective. Challenges for transferability from research to clinical practice are being discussed as is the concept of explainable AI. Finally, we focus on the fields where challenges should be set out to introduce AI in the field of nuclear medicine and molecular imaging in a reliable manner.
Literature
1.
go back to reference Visvikis D, Rest CCL, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging. 2019;46:2630–7.PubMedCrossRef Visvikis D, Rest CCL, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging. 2019;46:2630–7.PubMedCrossRef
2.
go back to reference Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE Inst Electr Electron Eng. 2021;86:2278–324. CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE Inst Electr Electron Eng. 2021;86:2278–324. CrossRef
3.
go back to reference Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.PubMedCrossRef Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.PubMedCrossRef
4.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun Acm. 2017;60:84–90.CrossRef Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun Acm. 2017;60:84–90.CrossRef
5.
go back to reference Torres-Velazquez M, Chen W-J, Li X, McMillan AB. Application and construction of deep learning networks in medical imaging. IEEE Trans Radiat Plasma Med Sci. 2021;5:137–59. Torres-Velazquez M, Chen W-J, Li X, McMillan AB. Application and construction of deep learning networks in medical imaging. IEEE Trans Radiat Plasma Med Sci. 2021;5:137–59.
6.
go back to reference McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.PubMedCrossRef McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.PubMedCrossRef
7.
go back to reference Haibe-Kains B, Adam GA, Hosny A, Khodakarami F, Shraddha T, Kusko R, et al. Transparency and reproducibility in artificial intelligence. Nature. 2020;586:E14–6.PubMedPubMedCentralCrossRef Haibe-Kains B, Adam GA, Hosny A, Khodakarami F, Shraddha T, Kusko R, et al. Transparency and reproducibility in artificial intelligence. Nature. 2020;586:E14–6.PubMedPubMedCentralCrossRef
8.
go back to reference Curtis C, Liu C, Bollerman TJ, Pianykh OS. Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol. 2018;15:1310–6.PubMedCrossRef Curtis C, Liu C, Bollerman TJ, Pianykh OS. Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol. 2018;15:1310–6.PubMedCrossRef
9.
go back to reference Hatt M, Rest CCL, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: data are also images. J Nucl Med. 2019;60:38S-44S.PubMedCrossRef Hatt M, Rest CCL, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: data are also images. J Nucl Med. 2019;60:38S-44S.PubMedCrossRef
10.
go back to reference Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-Neto P, Bénard F, et al. Machine learning in nuclear medicine: part 1-introduction. J Nucl Med. 2019;60:451–8.PubMedCrossRef Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-Neto P, Bénard F, et al. Machine learning in nuclear medicine: part 1-introduction. J Nucl Med. 2019;60:451–8.PubMedCrossRef
11.
go back to reference Zukotynski K, Gaudet V, Uribe CF, Mathotaarachchi S, Smith KC, Rosa-Neto P, et al. Machine learning in nuclear medicine: part 2-neural networks and clinical aspects. J Nucl Med. 2021;1:22–9.CrossRef Zukotynski K, Gaudet V, Uribe CF, Mathotaarachchi S, Smith KC, Rosa-Neto P, et al. Machine learning in nuclear medicine: part 2-neural networks and clinical aspects. J Nucl Med. 2021;1:22–9.CrossRef
12.
go back to reference Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60:29S-37S.PubMedCrossRef Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60:29S-37S.PubMedCrossRef
13.
go back to reference Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for PET image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2021;5:1–25.CrossRef Reader AJ, Corda G, Mehranian A, da Costa-Luis C, Ellis S, Schnabel JA. Deep learning for PET image reconstruction. IEEE Trans Radiat Plasma Med Sci. 2021;5:1–25.CrossRef
14.
go back to reference Lee JS. A review of deep learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;5:160–84. Lee JS. A review of deep learning-based approaches for attenuation correction in positron emission tomography. IEEE Trans Radiat Plasma Med Sci. 2021;5:160–84.
15.
go back to reference Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol. 2019;I(46):2656–72.CrossRef Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol. 2019;I(46):2656–72.CrossRef
16.
go back to reference Castiglioni I, Rundo L, Codari M, Leo GD, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys Medica. 2021;83:9–24.CrossRef Castiglioni I, Rundo L, Codari M, Leo GD, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys Medica. 2021;83:9–24.CrossRef
17.
go back to reference Currie G, Rohren E. Intelligent imaging in nuclear medicine: the principles of artificial intelligence, machine learning and deep learning. Semin Nucl Med. 2020;51:102–11.PubMedCrossRef Currie G, Rohren E. Intelligent imaging in nuclear medicine: the principles of artificial intelligence, machine learning and deep learning. Semin Nucl Med. 2020;51:102–11.PubMedCrossRef
18.
go back to reference European Commission. White paper: On artificial intelligence – A European approach to excellence and trust. Brussels, 19-2-2020. COM(2020) 65 final. European Commission. White paper: On artificial intelligence – A European approach to excellence and trust. Brussels, 19-2-2020. COM(2020) 65 final.
19.
20.
22.
go back to reference Wei L, Osman S, Hatt M, ElNaqa I. Machine learning for radiomics-based multi-modality and multi-parametric modeling. Q J Nucl Med Mol Imaging. 2019;63:323–38.PubMedCrossRef Wei L, Osman S, Hatt M, ElNaqa I. Machine learning for radiomics-based multi-modality and multi-parametric modeling. Q J Nucl Med Mol Imaging. 2019;63:323–38.PubMedCrossRef
23.
go back to reference Hatt M, Parmar C, Qi J, Naqa IE. Machine (Deep) Learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci. 2019;3:104–8.CrossRef Hatt M, Parmar C, Qi J, Naqa IE. Machine (Deep) Learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci. 2019;3:104–8.CrossRef
24.
go back to reference Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ. DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.PubMedPubMedCentralCrossRef Häggström I, Schmidtlein CR, Campanella G, Fuchs TJ. DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.PubMedPubMedCentralCrossRef
25.
go back to reference Kandarpa VSS, Bousse A, Benoit D, Visvikis D. DUG-RECON: a framework for direct image reconstruction using convolutional generative networks. IEEE Trans Radiat Plasma Med Sci. 2021;5:44–53.CrossRef Kandarpa VSS, Bousse A, Benoit D, Visvikis D. DUG-RECON: a framework for direct image reconstruction using convolutional generative networks. IEEE Trans Radiat Plasma Med Sci. 2021;5:44–53.CrossRef
26.
go back to reference Gong K, Guan J, Liu C-C, Qi J. PET image denoising using a deep neural network through fine tuninG. IEEE Trans Radiat Plasma Med Sci. 2019;3:153–61.PubMedCrossRef Gong K, Guan J, Liu C-C, Qi J. PET image denoising using a deep neural network through fine tuninG. IEEE Trans Radiat Plasma Med Sci. 2019;3:153–61.PubMedCrossRef
27.
go back to reference Mehranian A, Reader AJ. Model-based deep learning PET image reconstruction using forward-backward splitting expectation maximisation. IEEE Trans Radiat Plasma Med Sci. 2021;5:54–64.CrossRef Mehranian A, Reader AJ. Model-based deep learning PET image reconstruction using forward-backward splitting expectation maximisation. IEEE Trans Radiat Plasma Med Sci. 2021;5:54–64.CrossRef
28.
go back to reference Shao W, Pomper MG, Du Y. A learned reconstruction network for SPECT imaging. IEEE Trans Radiat Plasma Med Sci. 2021;5:26–34.PubMedCrossRef Shao W, Pomper MG, Du Y. A learned reconstruction network for SPECT imaging. IEEE Trans Radiat Plasma Med Sci. 2021;5:26–34.PubMedCrossRef
29.
go back to reference Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical note: deep learning based MRAC using rapid ultrashort echo time imaging. Med Phys. 2018;45:3697–704.CrossRef Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical note: deep learning based MRAC using rapid ultrashort echo time imaging. Med Phys. 2018;45:3697–704.CrossRef
30.
go back to reference Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.PubMedPubMedCentralCrossRef Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.PubMedPubMedCentralCrossRef
31.
go back to reference Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65:055011.PubMedPubMedCentralCrossRef Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, et al. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65:055011.PubMedPubMedCentralCrossRef
32.
go back to reference Visvikis D, Merlin T, Bousse A, Benoit D, Laurent B. Deep learning based scatter correction for PET imaging. Eur J Nucl Med Mol Imaging. 2020;47(Suppl 1):S484. Visvikis D, Merlin T, Bousse A, Benoit D, Laurent B. Deep learning based scatter correction for PET imaging. Eur J Nucl Med Mol Imaging. 2020;47(Suppl 1):S484.
33.
go back to reference Xiang H, Lim H, Fessler JA, Dewaraja YK. A deep neural network for fast and accurate scatter estimation in quantitative SPECT/CT under challenging scatter conditions. Eur J Nucl Med Mol Imaging. 2020;47:2956–67.PubMedPubMedCentralCrossRef Xiang H, Lim H, Fessler JA, Dewaraja YK. A deep neural network for fast and accurate scatter estimation in quantitative SPECT/CT under challenging scatter conditions. Eur J Nucl Med Mol Imaging. 2020;47:2956–67.PubMedPubMedCentralCrossRef
34.
go back to reference Yang J, Park D, Sohn JH, Wang ZJ, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18 F-FDG PET. Phys Med Biol. 2019;64:075019.PubMedPubMedCentralCrossRef Yang J, Park D, Sohn JH, Wang ZJ, Gullberg GT, Seo Y. Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18 F-FDG PET. Phys Med Biol. 2019;64:075019.PubMedPubMedCentralCrossRef
35.
go back to reference Wang Y, Zhou L, Wang L, Yu B, Zu C, Lalush DS, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part I. Lect Notes Comput Sc. 2018;11070:329–37.CrossRef Wang Y, Zhou L, Wang L, Yu B, Zu C, Lalush DS, et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part I. Lect Notes Comput Sc. 2018;11070:329–37.CrossRef
37.
go back to reference Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95.PubMedCrossRef Hatt M, Laurent B, Ouahabi A, Fayad H, Tan S, Li L, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95.PubMedCrossRef
38.
go back to reference Pinochet P, Eude F, Becker S, Shah V, Sibille L, Toledano MN, et al. Evaluation of an automatic classification algorithm using convolutional neural networks in oncological positron emission tomography. Front Med. 2021;8:628179.CrossRef Pinochet P, Eude F, Becker S, Shah V, Sibille L, Toledano MN, et al. Evaluation of an automatic classification algorithm using convolutional neural networks in oncological positron emission tomography. Front Med. 2021;8:628179.CrossRef
39.
go back to reference Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019;3:162–9.PubMedPubMedCentralCrossRef Guo Z, Li X, Huang H, Guo N, Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans Radiat Plasma Med Sci. 2019;3:162–9.PubMedPubMedCentralCrossRef
40.
go back to reference Wang G, Rahmim A, Gunn RN. PET parametric imaging: past, present, and future. IEEE Trans Radiat Plasma Medical Sci. 2020;4:663–75.CrossRef Wang G, Rahmim A, Gunn RN. PET parametric imaging: past, present, and future. IEEE Trans Radiat Plasma Medical Sci. 2020;4:663–75.CrossRef
41.
go back to reference Boellaard R, Delgado-Bolton R, Oyen W, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.PubMedCrossRef Boellaard R, Delgado-Bolton R, Oyen W, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.PubMedCrossRef
43.
go back to reference Kim DH, Wit H, Thurston M. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nuc Med Commun. 2018;10:887–93.CrossRef Kim DH, Wit H, Thurston M. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nuc Med Commun. 2018;10:887–93.CrossRef
44.
go back to reference Choi H, Kim YK, Yoon EJ, Lee J-Y, Lee DS, Initiative ADN. Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer’s disease to Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2020;47:403–12.PubMedCrossRef Choi H, Kim YK, Yoon EJ, Lee J-Y, Lee DS, Initiative ADN. Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer’s disease to Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2020;47:403–12.PubMedCrossRef
45.
go back to reference Son HJ, Oh JS, Oh M, Kim SJ, Lee J-H, Roh JH, et al. The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. Eur J Nucl Med Mol Imaging. 2020;47:332–41.PubMedCrossRef Son HJ, Oh JS, Oh M, Kim SJ, Lee J-H, Roh JH, et al. The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. Eur J Nucl Med Mol Imaging. 2020;47:332–41.PubMedCrossRef
46.
go back to reference Weehaeghe DV, Devrome M, Schramm G, Vocht JD, Deckers W, Baete K, et al. Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. Eur J Nucl Med Mol. 2020;I(47):2681–90.CrossRef Weehaeghe DV, Devrome M, Schramm G, Vocht JD, Deckers W, Baete K, et al. Combined brain and spinal FDG PET allows differentiation between ALS and ALS mimics. Eur J Nucl Med Mol. 2020;I(47):2681–90.CrossRef
47.
go back to reference Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusioN SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med. 2016;58:961–7.PubMedCrossRef Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusioN SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med. 2016;58:961–7.PubMedCrossRef
48.
go back to reference Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M, Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54:221–8.PubMedCrossRef Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M, Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med. 2013;54:221–8.PubMedCrossRef
49.
go back to reference Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22:877–84.PubMedCrossRef Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22:877–84.PubMedCrossRef
50.
go back to reference Hu L-H, Betancur J, Sharir T, Einstein AJ, Bokhari S, Fish MB, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging. 2019;21:549–59.PubMedCentralCrossRef Hu L-H, Betancur J, Sharir T, Einstein AJ, Bokhari S, Fish MB, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging. 2019;21:549–59.PubMedCentralCrossRef
51.
go back to reference Betancur J, Hu L-H, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med: Off Publ Soc Nucl Med. 2019;60:664–70.CrossRef Betancur J, Hu L-H, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med: Off Publ Soc Nucl Med. 2019;60:664–70.CrossRef
52.
go back to reference Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11:1000–9.PubMedCrossRef Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11:1000–9.PubMedCrossRef
53.
go back to reference Slart RHJA, Williams MC, Juarez-Orozco LE, Rischpler C, Dweck MR, Glaudemans AWJM, et al. Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. Eur J Nucl Med Mol. 2021;I(48):1399–413.CrossRef Slart RHJA, Williams MC, Juarez-Orozco LE, Rischpler C, Dweck MR, Glaudemans AWJM, et al. Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. Eur J Nucl Med Mol. 2021;I(48):1399–413.CrossRef
54.
go back to reference Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep-uk. 2020;10:17046.CrossRef Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep-uk. 2020;10:17046.CrossRef
55.
go back to reference Ntakolia C, Diamantis DE, Papandrianos N, Moustakidis S, Papageorgiou EI. A lightweight convolutional neural network architecture applied for bone metastasis classification in nuclear medicine: a case study on prostate cancer patients. Healthc. 2020;8:493.CrossRef Ntakolia C, Diamantis DE, Papandrianos N, Moustakidis S, Papageorgiou EI. A lightweight convolutional neural network architecture applied for bone metastasis classification in nuclear medicine: a case study on prostate cancer patients. Healthc. 2020;8:493.CrossRef
56.
57.
go back to reference Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.PubMedCrossRef Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.PubMedCrossRef
58.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.PubMedPubMedCentralCrossRef Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.PubMedPubMedCentralCrossRef
59.
go back to reference O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.PubMedCrossRef O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.PubMedCrossRef
60.
go back to reference Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep-uk. 2015;5:13087.CrossRef Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning methods for quantitative radiomic biomarkers. Sci Rep-uk. 2015;5:13087.CrossRef
61.
go back to reference Deist TM, Dankers FJWM, Valdes G, Wijsman R, Hsu I, Oberije C, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45:3449–59.PubMedCrossRef Deist TM, Dankers FJWM, Valdes G, Wijsman R, Hsu I, Oberije C, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45:3449–59.PubMedCrossRef
62.
go back to reference Amyar A, Ruan S, Gardin I, Chatelain C, Decazes P, Modzelewski R. 3-D RPET-NET: development of a 3-D PET imaging convolutional neural network for radiomics analysis and outcome prediction. IEEE Trans Radiat Plasma Med Sci. 2019;3:225–31.CrossRef Amyar A, Ruan S, Gardin I, Chatelain C, Decazes P, Modzelewski R. 3-D RPET-NET: development of a 3-D PET imaging convolutional neural network for radiomics analysis and outcome prediction. IEEE Trans Radiat Plasma Med Sci. 2019;3:225–31.CrossRef
63.
go back to reference Hansen L, Salamon P. Neural network ensembles. IEEE Trans Pattern Anal Mach Intell. 1990;12:993–1001. Hansen L, Salamon P. Neural network ensembles. IEEE Trans Pattern Anal Mach Intell. 1990;12:993–1001.
64.
go back to reference Hatt M, Rest CCL, Antonorsi N, Tixier F, Tankyevych O, Jaouen V, et al. Radiomics in PET/CT: current status and future AI-based evolutions. Semin Nucl Med. 2020;51:126–33.PubMedCrossRef Hatt M, Rest CCL, Antonorsi N, Tixier F, Tankyevych O, Jaouen V, et al. Radiomics in PET/CT: current status and future AI-based evolutions. Semin Nucl Med. 2020;51:126–33.PubMedCrossRef
65.
go back to reference Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, Benali H. From handcrafted to deep-learning-based cancer radiomics. IEEE Signal Proc Mag. 2019;36:132–60.CrossRef Afshar P, Mohammadi A, Plataniotis KN, Oikonomou A, Benali H. From handcrafted to deep-learning-based cancer radiomics. IEEE Signal Proc Mag. 2019;36:132–60.CrossRef
66.
go back to reference Tixier F, Jaouen V, Hognon C, Gallinato O, Colin T, Visvikis D. Evaluation of conventional and deep learning based image harmonization methods in radiomics studies. Phys Med Biol. 2021;66:245009.CrossRef Tixier F, Jaouen V, Hognon C, Gallinato O, Colin T, Visvikis D. Evaluation of conventional and deep learning based image harmonization methods in radiomics studies. Phys Med Biol. 2021;66:245009.CrossRef
67.
go back to reference Wang Y-R (Joyce), Baratto L, Hawk KE, Theruvath AJ, Pribnow A 1 , Thakor AS, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol I. 2021;48:2771–81. Wang Y-R (Joyce), Baratto L, Hawk KE, Theruvath AJ, Pribnow A 1 , Thakor AS, et al. Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure. Eur J Nucl Med Mol I. 2021;48:2771–81.
68.
go back to reference Ljungberg M, Gleisner KS. 3-D Image-based dosimetry in radionuclide therapy. IEEE Trans Radiat Plasma Med Sci. 2018;2:527–40.CrossRef Ljungberg M, Gleisner KS. 3-D Image-based dosimetry in radionuclide therapy. IEEE Trans Radiat Plasma Med Sci. 2018;2:527–40.CrossRef
69.
go back to reference Flux GD, Gleisner KS, Chiesa C, Lassmann M, Chouin N, Gear J, et al. From fixed activities to personalized treatments in radionuclide therapy: lost in translation? Eur J Nucl Med Mol Imaging. 2018;45:152–4.PubMedCrossRef Flux GD, Gleisner KS, Chiesa C, Lassmann M, Chouin N, Gear J, et al. From fixed activities to personalized treatments in radionuclide therapy: lost in translation? Eur J Nucl Med Mol Imaging. 2018;45:152–4.PubMedCrossRef
70.
go back to reference Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol. 2020;I(47):603–13.CrossRef Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol. 2020;I(47):603–13.CrossRef
71.
go back to reference Xue S, Gafita A, Afshar-Oromieh A, Eiber M, Rominger A, Shi K. Voxel-wise prediction of post-therapy dosimetry for 177Lu-PSMA I&T therapy using deep learning. J Nucl Med. 2020;61:1424. Xue S, Gafita A, Afshar-Oromieh A, Eiber M, Rominger A, Shi K. Voxel-wise prediction of post-therapy dosimetry for 177Lu-PSMA I&T therapy using deep learning. J Nucl Med. 2020;61:1424.
72.
go back to reference Lee MS, Hwang D, Kim JH, Lee JS. Deep-dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci Rep-uk. 2019;9:10308.CrossRef Lee MS, Hwang D, Kim JH, Lee JS. Deep-dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci Rep-uk. 2019;9:10308.CrossRef
73.
go back to reference Ataeinia B, Heidari P. Artificial intelligence and the future of diagnostic and therapeutic radiopharmaceutical development: in silico smart molecular design. Pet Clin. 2021;16:513–23.PubMedPubMedCentralCrossRef Ataeinia B, Heidari P. Artificial intelligence and the future of diagnostic and therapeutic radiopharmaceutical development: in silico smart molecular design. Pet Clin. 2021;16:513–23.PubMedPubMedCentralCrossRef
74.
go back to reference Kletting P, Thieme A, Eberhardt N, Rinscheid A, D’Alessandria C, Allmann J, et al. Modeling and predicting tumor response in radioligand therapy. J Nucl Med. 2019;60:65–70.PubMedCrossRef Kletting P, Thieme A, Eberhardt N, Rinscheid A, D’Alessandria C, Allmann J, et al. Modeling and predicting tumor response in radioligand therapy. J Nucl Med. 2019;60:65–70.PubMedCrossRef
75.
go back to reference Guo R, Hu X, Song H, Xu P, Xu H, Rominger A, et al. Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type. Eur J Nucl Med Mol. 2021;I:1–11. Guo R, Hu X, Song H, Xu P, Xu H, Rominger A, et al. Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type. Eur J Nucl Med Mol. 2021;I:1–11.
76.
go back to reference Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6:60.CrossRef Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6:60.CrossRef
77.
go back to reference Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57.PubMedPubMedCentralCrossRef Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57.PubMedPubMedCentralCrossRef
78.
go back to reference Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neurology. 2010;74:201–9.PubMedPubMedCentralCrossRef Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neurology. 2010;74:201–9.PubMedPubMedCentralCrossRef
79.
go back to reference Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017;39:178–93.PubMedCrossRef Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017;39:178–93.PubMedCrossRef
81.
go back to reference O’Neil C. Weapons of math destruction. How big data increases inequality and threatens democracy. New York: Crown Publishing Group; 2016. O’Neil C. Weapons of math destruction. How big data increases inequality and threatens democracy. New York: Crown Publishing Group; 2016.
82.
go back to reference Bradshaw TJ, Boellaard R, Dutta J, Jha AK, Jacobs P, Li Q, et al. Nuclear medicine and artificial intelligence: best practices for algorithm development. J Nucl Med. 2022;63:500–10.PubMedCrossRef Bradshaw TJ, Boellaard R, Dutta J, Jha AK, Jacobs P, Li Q, et al. Nuclear medicine and artificial intelligence: best practices for algorithm development. J Nucl Med. 2022;63:500–10.PubMedCrossRef
Metadata
Title
Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation
Authors
Dimitris Visvikis
Philippe Lambin
Kim Beuschau Mauridsen
Roland Hustinx
Michael Lassmann
Christoph Rischpler
Kuangyu Shi
Jan Pruim
Publication date
09-07-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 13/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05891-w