Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2021

Open Access 01-12-2021 | Positron Emission Tomography | Review Article

Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain

Authors: Catriona Wimberley, Sonia Lavisse, Ansel Hillmer, Rainer Hinz, Federico Turkheimer, Paolo Zanotti-Fregonara

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2021

Login to get access

Abstract

Purpose

Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model.

Methods

This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed.

Results and conclusions

Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.
Literature
1.
go back to reference DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of Neurochemistry. John Wiley & Sons, Ltd. 2016;139 Suppl 2:136–53.PubMedCrossRef DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. Journal of Neurochemistry. John Wiley & Sons, Ltd. 2016;139 Suppl 2:136–53.PubMedCrossRef
2.
go back to reference Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DRJ, et al. Cellular sources of TSPO expression in healthy and diseased brain. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg. 2021;194:44–18. Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DRJ, et al. Cellular sources of TSPO expression in healthy and diseased brain. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg. 2021;194:44–18.
3.
go back to reference Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol. 1989;26:752–8.PubMedCrossRef Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol. 1989;26:752–8.PubMedCrossRef
4.
go back to reference Banati RB, Myers R, Kreutzberg GW. PK (“peripheral benzodiazepine”) – binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H] PK 11195 binding to activated microglia. J Neurocytol. 1997;26:77–82.PubMedCrossRef Banati RB, Myers R, Kreutzberg GW. PK (“peripheral benzodiazepine”) – binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H] PK 11195 binding to activated microglia. J Neurocytol. 1997;26:77–82.PubMedCrossRef
5.
go back to reference Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer FE, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Brain. 2000;123:2321–37.PubMedCrossRef Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer FE, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Brain. 2000;123:2321–37.PubMedCrossRef
6.
go back to reference van der Laken CJ, Elzinga EH, Kropholler MA, Molthoff CFM, van der Heijden JW, Maruyama K, et al. Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum. 2008;58:3350–5.PubMedCrossRef van der Laken CJ, Elzinga EH, Kropholler MA, Molthoff CFM, van der Heijden JW, Maruyama K, et al. Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum. 2008;58:3350–5.PubMedCrossRef
7.
go back to reference Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, et al. Sifting through the surfeit of neuroinflammation tracers. J Cereb Blood Flow Metab. 2017;38:204–24.PubMedPubMedCentralCrossRef Cumming P, Burgher B, Patkar O, Breakspear M, Vasdev N, Thomas P, et al. Sifting through the surfeit of neuroinflammation tracers. J Cereb Blood Flow Metab. 2017;38:204–24.PubMedPubMedCentralCrossRef
8.
go back to reference Brown AK, Fujita M, Fujimura Y, Liow J-S, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J. Nucl. Med. Society of Nuclear Medicine. 2007;48:2072–9.CrossRef Brown AK, Fujita M, Fujimura Y, Liow J-S, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J. Nucl. Med. Society of Nuclear Medicine. 2007;48:2072–9.CrossRef
9.
go back to reference Arlicot N, Vercouillie J, Ribeiro M-J, Tauber C, Venel Y, Baulieu J-L, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol Elsevier. 2012;39:570–8.CrossRef Arlicot N, Vercouillie J, Ribeiro M-J, Tauber C, Venel Y, Baulieu J-L, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol Elsevier. 2012;39:570–8.CrossRef
10.
go back to reference Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci American Chemical Society. 2014;5:963–71.CrossRef Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci American Chemical Society. 2014;5:963–71.CrossRef
11.
go back to reference Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans Portland Press Limited. 2015;43:586–92.PubMedPubMedCentralCrossRef Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans Portland Press Limited. 2015;43:586–92.PubMedPubMedCentralCrossRef
12.
go back to reference Kanegawa N, Collste K, Forsberg A, Schain M, Arakawa R, Jucaite A, et al. In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects. Brain Behav Immun. 2016;54:149–57.PubMedCrossRef Kanegawa N, Collste K, Forsberg A, Schain M, Arakawa R, Jucaite A, et al. In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects. Brain Behav Immun. 2016;54:149–57.PubMedCrossRef
13.
go back to reference Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J. Cereb. Blood Flow Metab. SAGE PublicationsSage UK: London, England. 2013;33:53–8.PubMedCrossRef Kreisl WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL, et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J. Cereb. Blood Flow Metab. SAGE PublicationsSage UK: London, England. 2013;33:53–8.PubMedCrossRef
14.
go back to reference Owen DRJ, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.PubMedCrossRef Owen DRJ, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:1–5.PubMedCrossRef
15.
go back to reference Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 2014. Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 2014.
16.
go back to reference Kropholler MA, Boellaard R, Schuitemaker A, van Berckel BNM, Luurtsema G, Windhorst AD, et al. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J. Cereb. Blood Flow Metab. SAGE Publications. 2005;25:842–51.CrossRef Kropholler MA, Boellaard R, Schuitemaker A, van Berckel BNM, Luurtsema G, Windhorst AD, et al. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J. Cereb. Blood Flow Metab. SAGE Publications. 2005;25:842–51.CrossRef
17.
go back to reference Hannestad J, DellaGioia N, Gallezot J-D, Lim K, Nabulsi N, Esterlis I, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.PubMedPubMedCentralCrossRef Hannestad J, DellaGioia N, Gallezot J-D, Lim K, Nabulsi N, Esterlis I, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [11C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.PubMedPubMedCentralCrossRef
18.
go back to reference Fujimura Y, Zoghbi SS, Simèon FG, Taku A, Pike VW, Innis R, et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, (18)F-PBR06. J. Nucl. Med. Society of Nuclear Medicine. 2009;50:1047–53.CrossRef Fujimura Y, Zoghbi SS, Simèon FG, Taku A, Pike VW, Innis R, et al. Quantification of translocator protein (18 kDa) in the human brain with PET and a novel radioligand, (18)F-PBR06. J. Nucl. Med. Society of Nuclear Medicine. 2009;50:1047–53.CrossRef
19.
go back to reference Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, et al. Imaging striatal microglial activation in patients with Parkinson’s disease. Tansey MG, editor. PLoS ONE. Public Libr Sci. 2015;10:e0138721.PubMedPubMedCentralCrossRef Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, et al. Imaging striatal microglial activation in patients with Parkinson’s disease. Tansey MG, editor. PLoS ONE. Public Libr Sci. 2015;10:e0138721.PubMedPubMedCentralCrossRef
20.
go back to reference Suridjan I, Rusjan PM, Kenk M, Verhoeff NPLG, Voineskos AN, Rotenberg D, et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18F]-FEPPA. Synapse. John Wiley & Sons Ltd. 2014;68:536–47.PubMedPubMedCentralCrossRef Suridjan I, Rusjan PM, Kenk M, Verhoeff NPLG, Voineskos AN, Rotenberg D, et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18F]-FEPPA. Synapse. John Wiley & Sons Ltd. 2014;68:536–47.PubMedPubMedCentralCrossRef
21.
go back to reference Lavisse S, García-Lorenzo D, Peyronneau M-A, Bodini B, Thiriez C, Kuhnast B, et al. Optimized quantification of translocator protein radioligand 18F-DPA-714 uptake in the brain of genotyped healthy volunteers. J. Nucl. Med. Society of Nuclear Medicine. 2015;56:1048–54.CrossRef Lavisse S, García-Lorenzo D, Peyronneau M-A, Bodini B, Thiriez C, Kuhnast B, et al. Optimized quantification of translocator protein radioligand 18F-DPA-714 uptake in the brain of genotyped healthy volunteers. J. Nucl. Med. Society of Nuclear Medicine. 2015;56:1048–54.CrossRef
22.
go back to reference Guo Q, Colasanti A, Owen DRJ, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J. Nucl. Med. Society of Nuclear Medicine. 2013;54:1915–23.CrossRef Guo Q, Colasanti A, Owen DRJ, Onega M, Kamalakaran A, Bennacef I, et al. Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J. Nucl. Med. Society of Nuclear Medicine. 2013;54:1915–23.CrossRef
23.
go back to reference Golla SSV, Boellaard R, Oikonen V, Hoffmann A, van Berckel BNM, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab SAGE Publications. 2015;35:766–72.CrossRef Golla SSV, Boellaard R, Oikonen V, Hoffmann A, van Berckel BNM, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab SAGE Publications. 2015;35:766–72.CrossRef
24.
go back to reference Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and positron emission tomography. J. Cereb. Blood flow Metab. SAGE PublicationsSage UK: London, England. 2011;31:1807–16.PubMedPubMedCentralCrossRef Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, et al. Quantitation of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and positron emission tomography. J. Cereb. Blood flow Metab. SAGE PublicationsSage UK: London, England. 2011;31:1807–16.PubMedPubMedCentralCrossRef
25.
go back to reference Innis R, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef Innis R, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef
26.
go back to reference Tomasi G, Edison P, Bertoldo A, Roncaroli F, Singh P, Gerhard A, et al. Novel reference region model reveals increased microglial and reduced vascular binding of 11C-(R)-PK11195 in patients with Alzheimer’s disease. J Nucl Med Society of Nuclear Medicine. 2008;49:1249–56.CrossRef Tomasi G, Edison P, Bertoldo A, Roncaroli F, Singh P, Gerhard A, et al. Novel reference region model reveals increased microglial and reduced vascular binding of 11C-(R)-PK11195 in patients with Alzheimer’s disease. J Nucl Med Society of Nuclear Medicine. 2008;49:1249–56.CrossRef
27.
go back to reference Cosenza-Nashat M, Zhao M-L, Suh H-S, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol Blackwell Publishing Ltd. 2009;35:306–28.CrossRef Cosenza-Nashat M, Zhao M-L, Suh H-S, Morgan J, Natividad R, Morgello S, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol Blackwell Publishing Ltd. 2009;35:306–28.CrossRef
28.
go back to reference Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain. 2019;142:3440–55.PubMedPubMedCentralCrossRef Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain. 2019;142:3440–55.PubMedPubMedCentralCrossRef
29.
go back to reference Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, et al. Kinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: a validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab. 2018;38:1227–42.PubMedCrossRef Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, et al. Kinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: a validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab. 2018;38:1227–42.PubMedCrossRef
30.
go back to reference Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J. Nucl. Med. Society of Nuclear Medicine. 2007;48:158–67. Turkheimer FE, Edison P, Pavese N, Roncaroli F, Anderson AN, Hammers A, et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J. Nucl. Med. Society of Nuclear Medicine. 2007;48:158–67.
31.
go back to reference Tournier BB, Tsartsalis S, Ceyzériat K, Medina Z, Fraser BH, Gregoire M, et al. Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding. J. Cereb. Blood Flow Metab. 2019;64:271678X19860408. Tournier BB, Tsartsalis S, Ceyzériat K, Medina Z, Fraser BH, Gregoire M, et al. Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding. J. Cereb. Blood Flow Metab. 2019;64:271678X19860408.
32.
go back to reference Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature Nature Publishing Group. 2012;489:391–9. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature Nature Publishing Group. 2012;489:391–9.
33.
go back to reference Wimberley CJ, Lavisse S, Brulon V, Peyronneau M-A, Leroy C, Bodini B, et al. Impact of endothelial TSPO on the quantification of 18F-DPA-714. J. Nucl. Med. Society of Nuclear Medicine; 2017;:jnumed.117.195396. Wimberley CJ, Lavisse S, Brulon V, Peyronneau M-A, Leroy C, Bodini B, et al. Impact of endothelial TSPO on the quantification of 18F-DPA-714. J. Nucl. Med. Society of Nuclear Medicine; 2017;:jnumed.117.195396.
34.
go back to reference Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley CJ, et al. Generalization of endothelial modelling of TSPO PET imaging: considerations on tracer affinities. J. Cereb. Blood Flow Metab. 2017;8:271678X17742004. Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley CJ, et al. Generalization of endothelial modelling of TSPO PET imaging: considerations on tracer affinities. J. Cereb. Blood Flow Metab. 2017;8:271678X17742004.
35.
go back to reference Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M, et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [(11)C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry. 2016;6:e777.PubMedPubMedCentralCrossRef Coughlin JM, Wang Y, Ambinder EB, Ward RE, Minn I, Vranesic M, et al. In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using [(11)C]DPA-713 PET and analysis of CSF and plasma. Transl Psychiatry. 2016;6:e777.PubMedPubMedCentralCrossRef
36.
go back to reference Woodcock EA, Schain M, Cosgrove KP, Hillmer AT. Quantification of [11C]PBR28 data after systemic lipopolysaccharide challenge. EJNMMI Res SpringerOpen. 2020;10:19–6.CrossRef Woodcock EA, Schain M, Cosgrove KP, Hillmer AT. Quantification of [11C]PBR28 data after systemic lipopolysaccharide challenge. EJNMMI Res SpringerOpen. 2020;10:19–6.CrossRef
37.
go back to reference Hagens MHJ, Golla SV, Wijburg MT, Yaqub M, Heijtel D, Steenwijk MD, et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET. J Neuroinflammation BioMed Central. 2018;15:314–0.CrossRef Hagens MHJ, Golla SV, Wijburg MT, Yaqub M, Heijtel D, Steenwijk MD, et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET. J Neuroinflammation BioMed Central. 2018;15:314–0.CrossRef
38.
go back to reference Todd Ogden R, Zanderigo F, Parsey RV. Estimation of in vivo nonspecific binding in positron emission tomography studies without requiring a reference region. Neuroimage. 2015;108:234–42.PubMedCrossRef Todd Ogden R, Zanderigo F, Parsey RV. Estimation of in vivo nonspecific binding in positron emission tomography studies without requiring a reference region. Neuroimage. 2015;108:234–42.PubMedCrossRef
39.
go back to reference Owen DRJ, Howell OW, Tang S-P, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab. 2010;30:1608–18.PubMedPubMedCentralCrossRef Owen DRJ, Howell OW, Tang S-P, Wells LA, Bennacef I, Bergstrom M, et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J Cereb Blood Flow Metab. 2010;30:1608–18.PubMedPubMedCentralCrossRef
40.
go back to reference Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK, et al. Benzodiazepine receptor quantification in vivo in humans using [11C] flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab. 1995;15:152–65.PubMedCrossRef Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK, et al. Benzodiazepine receptor quantification in vivo in humans using [11C] flumazenil and PET: application of the steady-state principle. J Cereb Blood Flow Metab. 1995;15:152–65.PubMedCrossRef
41.
go back to reference Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30:46–50.PubMedCrossRef Cunningham VJ, Rabiner EA, Slifstein M, Laruelle M, Gunn RN. Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited. J Cereb Blood Flow Metab. 2010;30:46–50.PubMedCrossRef
42.
go back to reference Ikawa M, Lohith TG, Shrestha S, Telu S, Zoghbi SS, Castellano S, et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med. 2017;58:320–5.PubMedPubMedCentralCrossRef Ikawa M, Lohith TG, Shrestha S, Telu S, Zoghbi SS, Castellano S, et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med. 2017;58:320–5.PubMedPubMedCentralCrossRef
43.
go back to reference Zanotti-Fregonara P, Pascual B, Veronese M, Yu M, Beers D, Appel SH, et al. Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg. 2019;46:1822–9.CrossRef Zanotti-Fregonara P, Pascual B, Veronese M, Yu M, Beers D, Appel SH, et al. Head-to-head comparison of 11C-PBR28 and 11C-ER176 for quantification of the translocator protein in the human brain. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg. 2019;46:1822–9.CrossRef
44.
go back to reference Schain M, Zanderigo F, Ogden RT, Kreisl WC. Non-invasive estimation of [11C]PBR28 binding potential. Neuroimage. 2018;169:278–85.PubMedCrossRef Schain M, Zanderigo F, Ogden RT, Kreisl WC. Non-invasive estimation of [11C]PBR28 binding potential. Neuroimage. 2018;169:278–85.PubMedCrossRef
45.
go back to reference Plavén-Sigray P, Schain M, Zanderigo F, Karolinska, Rabiner EA, Gunn RN, et al. Accuracy and reliability of [11C]PBR28 specific binding estimated without the use of a reference region. Neuroimage. 2019;188:102–10.PubMedCrossRef Plavén-Sigray P, Schain M, Zanderigo F, Karolinska, Rabiner EA, Gunn RN, et al. Accuracy and reliability of [11C]PBR28 specific binding estimated without the use of a reference region. Neuroimage. 2019;188:102–10.PubMedCrossRef
46.
go back to reference Schain M, Zanderigo F, Todd Ogden R. Likelihood estimation of drug occupancy for brain PET studies. Neuroimage. 2018;178:255–65.PubMedCrossRef Schain M, Zanderigo F, Todd Ogden R. Likelihood estimation of drug occupancy for brain PET studies. Neuroimage. 2018;178:255–65.PubMedCrossRef
47.
go back to reference Everett BA, Oquendo MA, Abi-Dargham A, Nobler MS, Devanand DP, Lisanby SH, et al. Safety of radial arterial catheterization in PET research subjects. J. Nucl. Med. Society of Nuclear Medicine. 2009;50:1742.CrossRef Everett BA, Oquendo MA, Abi-Dargham A, Nobler MS, Devanand DP, Lisanby SH, et al. Safety of radial arterial catheterization in PET research subjects. J. Nucl. Med. Society of Nuclear Medicine. 2009;50:1742.CrossRef
48.
go back to reference Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis R. Image-derived input function for brain PET studies: many challenges and few opportunities. J. Cereb. Blood Flow Metab. SAGE PublicationsSage UK: London, England. 2011;31:1986–98.PubMedPubMedCentralCrossRef Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis R. Image-derived input function for brain PET studies: many challenges and few opportunities. J. Cereb. Blood Flow Metab. SAGE PublicationsSage UK: London, England. 2011;31:1986–98.PubMedPubMedCentralCrossRef
49.
go back to reference Mabrouk R, Rusjan PM, Mizrahi R, Jacobs MF, Koshimori Y, Houle S, et al. Image derived input function for [18F]-FEPPA: application to quantify translocator protein (18 kDa) in the human brain. Herholz K, editor. PLoS ONE. Public Libr Sci. 2014;9:e115768.CrossRef Mabrouk R, Rusjan PM, Mizrahi R, Jacobs MF, Koshimori Y, Houle S, et al. Image derived input function for [18F]-FEPPA: application to quantify translocator protein (18 kDa) in the human brain. Herholz K, editor. PLoS ONE. Public Libr Sci. 2014;9:e115768.CrossRef
50.
go back to reference Zanotti-Fregonara P, Liow J-S, Fujita M, Dusch E, Zoghbi SS, Luong E, et al. Image-derived input function for human brain using high resolution PET imaging with [C](R)-rolipram and [C]PBR28. Gelovani J, editor. PLoS ONE. Public Libr Sci. 2011;6:e17056.CrossRef Zanotti-Fregonara P, Liow J-S, Fujita M, Dusch E, Zoghbi SS, Luong E, et al. Image-derived input function for human brain using high resolution PET imaging with [C](R)-rolipram and [C]PBR28. Gelovani J, editor. PLoS ONE. Public Libr Sci. 2011;6:e17056.CrossRef
51.
go back to reference Zanotti-Fregonara P, Hines CS, Zoghbi SS, Liow J-S, Zhang Y, Pike VW, et al. Population-based input function and image-derived input function for [11C](R)-rolipram PET imaging: methodology, validation and application to the study of major depressive disorder. Neuroimage. 2012;63:1532–41.PubMedCrossRef Zanotti-Fregonara P, Hines CS, Zoghbi SS, Liow J-S, Zhang Y, Pike VW, et al. Population-based input function and image-derived input function for [11C](R)-rolipram PET imaging: methodology, validation and application to the study of major depressive disorder. Neuroimage. 2012;63:1532–41.PubMedCrossRef
52.
go back to reference Mabrouk R, Strafella AP, Knezevic D, Ghadery C, Mizrahi R, Gharehgazlou A, et al. Feasibility study of TSPO quantification with [18F] FEPPA using population-based input function. Garg P, editor. PLoS ONE. Public Libr Sci. 2017;12:e0177785.CrossRef Mabrouk R, Strafella AP, Knezevic D, Ghadery C, Mizrahi R, Gharehgazlou A, et al. Feasibility study of TSPO quantification with [18F] FEPPA using population-based input function. Garg P, editor. PLoS ONE. Public Libr Sci. 2017;12:e0177785.CrossRef
53.
go back to reference Lyoo CH, Ikawa M, Liow J-S, Zoghbi SS, Morse CL, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J. Nucl. Med. Society of Nuclear Medicine. 2015;56:701–6.CrossRef Lyoo CH, Ikawa M, Liow J-S, Zoghbi SS, Morse CL, Pike VW, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J. Nucl. Med. Society of Nuclear Medicine. 2015;56:701–6.CrossRef
54.
go back to reference Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, van Berckel BNM, Lammertsma AA. Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies. J. Cereb. Blood Flow Metab. SAGE Publications. 2006;26:1431–41.CrossRef Kropholler MA, Boellaard R, Schuitemaker A, Folkersma H, van Berckel BNM, Lammertsma AA. Evaluation of reference tissue models for the analysis of [11C](R)-PK11195 studies. J. Cereb. Blood Flow Metab. SAGE Publications. 2006;26:1431–41.CrossRef
55.
go back to reference Kropholler MA, Boellaard R, van Berckel BN, Schuitemaker A, Kloet RW, Lubberink MJ, et al. Evaluation of reference regions for (R)-[11C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. Journal of Cerebral Blood Flow & Metabolism. SAGE PublicationsSage UK: London, England. 2007;27:1965–74.CrossRef Kropholler MA, Boellaard R, van Berckel BN, Schuitemaker A, Kloet RW, Lubberink MJ, et al. Evaluation of reference regions for (R)-[11C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. Journal of Cerebral Blood Flow & Metabolism. SAGE PublicationsSage UK: London, England. 2007;27:1965–74.CrossRef
56.
go back to reference Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66:60–7.PubMedPubMedCentralCrossRef Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol. 2009;66:60–7.PubMedPubMedCentralCrossRef
57.
go back to reference Terada T, Yokokura M, Yoshikawa E, Futatsubashi M, Kono S, Konishi T, et al. Extrastriatal spreading of microglial activation in Parkinson’s disease: a positron emission tomography study. Ann Nucl Med Springer Japan. 2016;30:579–87.CrossRef Terada T, Yokokura M, Yoshikawa E, Futatsubashi M, Kono S, Konishi T, et al. Extrastriatal spreading of microglial activation in Parkinson’s disease: a positron emission tomography study. Ann Nucl Med Springer Japan. 2016;30:579–87.CrossRef
58.
go back to reference Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. Guillemin GJ, editor. PLoS ONE. Public Libr Sci. 2012;7:e52941.CrossRef Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular imaging of microglial activation in amyotrophic lateral sclerosis. Guillemin GJ, editor. PLoS ONE. Public Libr Sci. 2012;7:e52941.CrossRef
59.
go back to reference Di Biase MA, Zalesky A, O’keefe G, Laskaris L, Baune BT, Weickert CS, et al. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry Nature Publishing Group. 2017;7:e1225.CrossRef Di Biase MA, Zalesky A, O’keefe G, Laskaris L, Baune BT, Weickert CS, et al. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry Nature Publishing Group. 2017;7:e1225.CrossRef
60.
go back to reference Su Z, Herholz K, Gerhard A, Roncaroli F, Plessis Du D, Jackson A, et al. [11C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg. 2013;40:1406–19.CrossRef Su Z, Herholz K, Gerhard A, Roncaroli F, Plessis Du D, Jackson A, et al. [11C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur. J. Nucl. Med. Mol. Imaging. Springer Berlin Heidelberg. 2013;40:1406–19.CrossRef
61.
go back to reference Schuitemaker A, van der Doef TF, Boellaard R, van der Flier WM, Yaqub M, Windhorst AD, et al. Microglial activation in healthy aging. Neurobiol Aging Elsevier. 2012;33:1067–72.CrossRef Schuitemaker A, van der Doef TF, Boellaard R, van der Flier WM, Yaqub M, Windhorst AD, et al. Microglial activation in healthy aging. Neurobiol Aging Elsevier. 2012;33:1067–72.CrossRef
62.
go back to reference Plavén-Sigray P, Matheson GJ, Cselényi Z, Jucaite A, Farde L, Cervenka S. Test-retest reliability and convergent validity of (R)-[11C]PK11195 outcome measures without arterial input function. EJNMMI Res. 3rd ed. SpringerOpen. 2018;8:102–10.PubMedPubMedCentralCrossRef Plavén-Sigray P, Matheson GJ, Cselényi Z, Jucaite A, Farde L, Cervenka S. Test-retest reliability and convergent validity of (R)-[11C]PK11195 outcome measures without arterial input function. EJNMMI Res. 3rd ed. SpringerOpen. 2018;8:102–10.PubMedPubMedCentralCrossRef
63.
go back to reference Kumar A, Muzik O, Shandal V, Chugani D, Chakraborty P, Chugani HT. Evaluation of age-related changes in translocator protein (TSPO) in human brain using (11)C-[R]-PK11195 PET. J Neuroinflammation. BioMed Central. 2012;9:232–11.CrossRef Kumar A, Muzik O, Shandal V, Chugani D, Chakraborty P, Chugani HT. Evaluation of age-related changes in translocator protein (TSPO) in human brain using (11)C-[R]-PK11195 PET. J Neuroinflammation. BioMed Central. 2012;9:232–11.CrossRef
64.
go back to reference Albrecht DS, Normandin MD, Shcherbinin S, Wooten DW, Schwarz AJ, Zürcher NR, et al. Pseudoreference regions for glial imaging with 11C-PBR28: investigation in 2 clinical cohorts. J. Nucl. Med. Society of Nuclear Medicine. 2018;59:107–14.CrossRef Albrecht DS, Normandin MD, Shcherbinin S, Wooten DW, Schwarz AJ, Zürcher NR, et al. Pseudoreference regions for glial imaging with 11C-PBR28: investigation in 2 clinical cohorts. J. Nucl. Med. Society of Nuclear Medicine. 2018;59:107–14.CrossRef
65.
go back to reference Albrecht DS, Forsberg A, Sandström A, Bergan C, Kadetoff D, Protsenko E, et al. Brain glial activation in fibromyalgia - a multi-site positron emission tomography investigation. Brain Behav Immun. 2019;75:72–83.PubMedCrossRef Albrecht DS, Forsberg A, Sandström A, Bergan C, Kadetoff D, Protsenko E, et al. Brain glial activation in fibromyalgia - a multi-site positron emission tomography investigation. Brain Behav Immun. 2019;75:72–83.PubMedCrossRef
66.
go back to reference Zürcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-Garcia D, Yasek JE, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 2015;7:409–14.PubMedPubMedCentralCrossRef Zürcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-Garcia D, Yasek JE, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin. 2015;7:409–14.PubMedPubMedCentralCrossRef
67.
go back to reference Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, et al. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138:604–15.PubMedPubMedCentralCrossRef Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, et al. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138:604–15.PubMedPubMedCentralCrossRef
68.
go back to reference Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry Nature Publishing Group. 2017;22:1759–66.CrossRef Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry Nature Publishing Group. 2017;22:1759–66.CrossRef
69.
go back to reference Sandiego CM, Gallezot J-D, Pittman B, Nabulsi N, Lim K, Lin S-F, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A. 2015;112:12468–73.PubMedPubMedCentralCrossRef Sandiego CM, Gallezot J-D, Pittman B, Nabulsi N, Lim K, Lin S-F, et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A. 2015;112:12468–73.PubMedPubMedCentralCrossRef
70.
go back to reference Matheson GJ, Plavén-Sigray P, Forsberg A, Varrone A, Farde L, Cervenka S. Assessment of simplified ratio-based approaches for quantification of PET [11C]PBR28 data. EJNMMI Res. SpringerOpen. 2017;7:58–6.CrossRef Matheson GJ, Plavén-Sigray P, Forsberg A, Varrone A, Farde L, Cervenka S. Assessment of simplified ratio-based approaches for quantification of PET [11C]PBR28 data. EJNMMI Res. SpringerOpen. 2017;7:58–6.CrossRef
71.
go back to reference Yaqub M, van Berckel BNM, Schuitemaker A, Hinz R, Turkheimer FE, Tomasi G, et al. Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[(11)C]PK11195 brain PET studies. J Cereb Blood Flow Metab. 2012;32:1600–8.PubMedPubMedCentralCrossRef Yaqub M, van Berckel BNM, Schuitemaker A, Hinz R, Turkheimer FE, Tomasi G, et al. Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[(11)C]PK11195 brain PET studies. J Cereb Blood Flow Metab. 2012;32:1600–8.PubMedPubMedCentralCrossRef
72.
go back to reference Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2012;79:523–30.PubMedPubMedCentralCrossRef Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2012;79:523–30.PubMedPubMedCentralCrossRef
73.
go back to reference Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, et al. [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1999;53:2199.PubMedCrossRef Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kreutzberg GW, et al. [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1999;53:2199.PubMedCrossRef
74.
go back to reference Hinz R, Boellaard R. Challenges of quantification of TSPO in the human brain. Clin Transl Imaging Springer Milan. 2015;3:403–16.CrossRef Hinz R, Boellaard R. Challenges of quantification of TSPO in the human brain. Clin Transl Imaging Springer Milan. 2015;3:403–16.CrossRef
75.
go back to reference García-Lorenzo D, Lavisse S, Leroy C, Wimberley CJ, Bodini B, Remy P, et al. Validation of an automatic reference region extraction for the quantification of [18F]DPA-714 in dynamic brain PET studies. J. Cereb. Blood Flow Metab. SAGE PublicationsSage UK: London, England. 2017;266:271678X17692599. García-Lorenzo D, Lavisse S, Leroy C, Wimberley CJ, Bodini B, Remy P, et al. Validation of an automatic reference region extraction for the quantification of [18F]DPA-714 in dynamic brain PET studies. J. Cereb. Blood Flow Metab. SAGE PublicationsSage UK: London, England. 2017;266:271678X17692599.
76.
go back to reference Zanotti-Fregonara P, Kreisl WC, Innis R, Lyoo CH. Automatic extraction of a reference region for the noninvasive quantification of translocator protein in brain using 11C-PBR28. J. Nucl. Med. Society of Nuclear Medicine. 2019;60:978–84.CrossRef Zanotti-Fregonara P, Kreisl WC, Innis R, Lyoo CH. Automatic extraction of a reference region for the noninvasive quantification of translocator protein in brain using 11C-PBR28. J. Nucl. Med. Society of Nuclear Medicine. 2019;60:978–84.CrossRef
77.
go back to reference Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, et al. Head-to-head comparison of 11C-PBR28 and 18F-GE180 for quantification of the translocator protein in the human brain. J Nucl Med. 2018;59:1260–6.PubMedCrossRef Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, et al. Head-to-head comparison of 11C-PBR28 and 18F-GE180 for quantification of the translocator protein in the human brain. J Nucl Med. 2018;59:1260–6.PubMedCrossRef
Metadata
Title
Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain
Authors
Catriona Wimberley
Sonia Lavisse
Ansel Hillmer
Rainer Hinz
Federico Turkheimer
Paolo Zanotti-Fregonara
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2021
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05248-9

Other articles of this Issue 1/2021

European Journal of Nuclear Medicine and Molecular Imaging 1/2021 Go to the issue