Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2022

13-01-2022 | Positron Emission Tomography | Original Article

First-in-human in vivo imaging and quantification of monoacylglycerol lipase in the brain: a PET study with 18F-T-401

Authors: Keisuke Takahata, Chie Seki, Yasuyuki Kimura, Manabu Kubota, Masanori Ichise, Yasunori Sano, Yasuharu Yamamoto, Kenji Tagai, Hitoshi Shimada, Soichiro Kitamura, Kiwamu Matsuoka, Hironobu Endo, Hitoshi Shinotoh, Kazunori Kawamura, Ming-Rong Zhang, Yuhei Takado, Makoto Higuchi

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2022

Login to get access

Abstract

Purpose

Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401.

Methods

Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test–retest reproducibility of 18F-T-401-PET were also evaluated.

Results

18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test–retest reliability was also excellent with the use of MA1.

Conclusions

Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test–retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.
Appendix
Available only for authorised users
Literature
1.
go back to reference Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76:70–81.CrossRef Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76:70–81.CrossRef
2.
go back to reference Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.CrossRef Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.CrossRef
3.
go back to reference Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, et al. Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem. 1996;240:53–62.CrossRef Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, et al. Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem. 1996;240:53–62.CrossRef
4.
go back to reference Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 2001;29:729–38.CrossRef Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 2001;29:729–38.CrossRef
5.
go back to reference Pan B, Wang W, Long JZ, Sun D, Hillard CJ, Cravatt BF, et al. Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d ][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (jzl184) enhances retrograde endocannabinoid signaling. J Pharmacol Exp Ther. 2009;331:591–7.CrossRef Pan B, Wang W, Long JZ, Sun D, Hillard CJ, Cravatt BF, et al. Blockade of 2-arachidonoylglycerol hydrolysis by selective monoacylglycerol lipase inhibitor 4-nitrophenyl 4-(dibenzo[d ][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (jzl184) enhances retrograde endocannabinoid signaling. J Pharmacol Exp Ther. 2009;331:591–7.CrossRef
6.
go back to reference Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14:1347–56.CrossRef Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14:1347–56.CrossRef
7.
go back to reference Ogawa S, Kunugi H. Inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase: new targets for future antidepressants. Curr Neuropharmacol. 2015;13:760–75.CrossRef Ogawa S, Kunugi H. Inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase: new targets for future antidepressants. Curr Neuropharmacol. 2015;13:760–75.CrossRef
8.
go back to reference Zhong P, Wang W, Pan B, Liu X, Zhang Z, Long JZ, et al. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology. 2014;39:1763–76.CrossRef Zhong P, Wang W, Pan B, Liu X, Zhang Z, Long JZ, et al. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology. 2014;39:1763–76.CrossRef
9.
go back to reference Nomura DK, Hudak CSS, Ward AM, Burston JJ, Issa RS, Fisher KJ, et al. Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorg Med Chem Lett. 2008;18:5875–8.CrossRef Nomura DK, Hudak CSS, Ward AM, Burston JJ, Issa RS, Fisher KJ, et al. Monoacylglycerol lipase regulates 2-arachidonoylglycerol action and arachidonic acid levels. Bioorg Med Chem Lett. 2008;18:5875–8.CrossRef
10.
go back to reference Chen R, Zhang J, Wu Y, Wang D, Feng G, Tang Y-P, et al. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep. 2012;2:1329–39.CrossRef Chen R, Zhang J, Wu Y, Wang D, Feng G, Tang Y-P, et al. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep. 2012;2:1329–39.CrossRef
11.
go back to reference Pasquarelli N, Porazik C, Bayer H, Buck E, Schildknecht S, Weydt P, et al. Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson’s disease. Neurochem Int. 2017;110:14–24.CrossRef Pasquarelli N, Porazik C, Bayer H, Buck E, Schildknecht S, Weydt P, et al. Contrasting effects of selective MAGL and FAAH inhibition on dopamine depletion and GDNF expression in a chronic MPTP mouse model of Parkinson’s disease. Neurochem Int. 2017;110:14–24.CrossRef
12.
go back to reference Wang C, Placzek MS, Van de Bittner GC, Schroeder FA, Hooker JM. A novel radiotracer for imaging monoacylglycerol lipase in the brain using positron emission tomography. ACS Chem Neurosci. 2016;7:484–9.CrossRef Wang C, Placzek MS, Van de Bittner GC, Schroeder FA, Hooker JM. A novel radiotracer for imaging monoacylglycerol lipase in the brain using positron emission tomography. ACS Chem Neurosci. 2016;7:484–9.CrossRef
13.
go back to reference Wang L, Mori W, Cheng R, Yui J, Hatori A, Ma L, et al. Synthesis and preclinical evaluation of sulfonamido-based [(11)C-carbonyl]-carbamates and ureas for imaging monoacylglycerol lipase. Theranostics. 2016;6:1145–59.CrossRef Wang L, Mori W, Cheng R, Yui J, Hatori A, Ma L, et al. Synthesis and preclinical evaluation of sulfonamido-based [(11)C-carbonyl]-carbamates and ureas for imaging monoacylglycerol lipase. Theranostics. 2016;6:1145–59.CrossRef
14.
go back to reference Ahamed M, Attili B, van Veghel D, Ooms M, Berben P, Celen S, et al. Synthesis and preclinical evaluation of [11C]MA-PB-1 for in vivo imaging of brain monoacylglycerol lipase (MAGL). Eur J Med Chem. 2017;136:104–13.CrossRef Ahamed M, Attili B, van Veghel D, Ooms M, Berben P, Celen S, et al. Synthesis and preclinical evaluation of [11C]MA-PB-1 for in vivo imaging of brain monoacylglycerol lipase (MAGL). Eur J Med Chem. 2017;136:104–13.CrossRef
15.
go back to reference Hattori Y, Aoyama K, Maeda J, Arimura N, Takahashi Y, Sasaki M, et al. Design, synthesis, and evaluation of (4 R)-1-{3-[2-(18F)fluoro-4-methylpyridin-3-yl]phenyl}-4-[4-(1,3-thiazol-2-ylcarbonyl)piperazin-1-yl]pyrrolidin-2-one ([18F]T-401) as a novel positron-emission tomography imaging agent for monoacylglycerol lipase. J Med Chem. 2019;62:2362–75.CrossRef Hattori Y, Aoyama K, Maeda J, Arimura N, Takahashi Y, Sasaki M, et al. Design, synthesis, and evaluation of (4 R)-1-{3-[2-(18F)fluoro-4-methylpyridin-3-yl]phenyl}-4-[4-(1,3-thiazol-2-ylcarbonyl)piperazin-1-yl]pyrrolidin-2-one ([18F]T-401) as a novel positron-emission tomography imaging agent for monoacylglycerol lipase. J Med Chem. 2019;62:2362–75.CrossRef
16.
go back to reference Hattori Y, Seki C, Maeda J, Nagai Y, Aoyama K, Zhang M-R, et al. Quantification of monoacylglycerol lipase and its occupancy by an exogenous ligand in rhesus monkey brains using [18F]T-401 and PET. J Cereb Blood Flow Metab. 2021;271678X211058285. Hattori Y, Seki C, Maeda J, Nagai Y, Aoyama K, Zhang M-R, et al. Quantification of monoacylglycerol lipase and its occupancy by an exogenous ligand in rhesus monkey brains using [18F]T-401 and PET. J Cereb Blood Flow Metab. 2021;271678X211058285.
17.
go back to reference Takahata K, Kimura Y, Seki C, Tokunaga M, Ichise M, Kawamura K, et al. A human PET study of [11C]HMS011, a potential radioligand for AMPA receptors. EJNMMI Res. 2017;7:63.CrossRef Takahata K, Kimura Y, Seki C, Tokunaga M, Ichise M, Kawamura K, et al. A human PET study of [11C]HMS011, a potential radioligand for AMPA receptors. EJNMMI Res. 2017;7:63.CrossRef
18.
go back to reference Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci. 2012;6:171.CrossRef Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci. 2012;6:171.CrossRef
19.
go back to reference Iglesias JE, Van Leemput K, Bhatt P, Casillas C, Dutt S, Schuff N, et al. Bayesian segmentation of brainstem structures in MRI. Neuroimage. 2015;113:184–95.CrossRef Iglesias JE, Van Leemput K, Bhatt P, Casillas C, Dutt S, Schuff N, et al. Bayesian segmentation of brainstem structures in MRI. Neuroimage. 2015;113:184–95.CrossRef
20.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: Neurotechnique automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: Neurotechnique automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRef
21.
go back to reference Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRef
22.
go back to reference Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time—activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. SAGE Publications Ltd STM; 1990;10:740–7. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time—activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. SAGE Publications Ltd STM; 1990;10:740–7.
23.
go back to reference Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–81.CrossRef Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271–81.CrossRef
24.
go back to reference Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRef Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRef
25.
go back to reference Schwarz G. Estimating the dimension of a model. Ann Statist. 1978;6:461–4.CrossRef Schwarz G. Estimating the dimension of a model. Ann Statist. 1978;6:461–4.CrossRef
26.
go back to reference Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors. Synapse. 1999;34:290–304.CrossRef Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, et al. Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors. Synapse. 1999;34:290–304.CrossRef
27.
go back to reference Hawkins RA, Phelps ME, Huang S-C. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab. 1986;6:170–83.CrossRef Hawkins RA, Phelps ME, Huang S-C. Effects of temporal sampling, glucose metabolic rates, and disruptions of the blood-brain barrier on the FDG model with and without a vascular compartment: studies in human brain tumors with PET. J Cereb Blood Flow Metab. 1986;6:170–83.CrossRef
28.
go back to reference Yamasaki T, Mori W, Zhang Y, Hatori A, Fujinaga M, Wakizaka H, et al. First demonstration of in vivo mapping for regional brain monoacylglycerol lipase using PET with [11C]SAR127303. Neuroimage. 2018;176:313–20.CrossRef Yamasaki T, Mori W, Zhang Y, Hatori A, Fujinaga M, Wakizaka H, et al. First demonstration of in vivo mapping for regional brain monoacylglycerol lipase using PET with [11C]SAR127303. Neuroimage. 2018;176:313–20.CrossRef
29.
go back to reference Veronese M, Zanotti-Fregonara P, Rizzo G, Bertoldo A, Innis RB, Turkheimer FE. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot. Neuroimage. 2016;130:1–12.CrossRef Veronese M, Zanotti-Fregonara P, Rizzo G, Bertoldo A, Innis RB, Turkheimer FE. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot. Neuroimage. 2016;130:1–12.CrossRef
30.
go back to reference Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci. Springer Science and Business Media LLC; 2005;8:585–9. Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci. Springer Science and Business Media LLC; 2005;8:585–9.
31.
go back to reference Yoshida K, Kita Y, Tokuoka SM, Hamano F, Yamazaki M, Sakimura K, et al. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor-deficient mice. FASEB J. 2019;33:2484–97.CrossRef Yoshida K, Kita Y, Tokuoka SM, Hamano F, Yamazaki M, Sakimura K, et al. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor-deficient mice. FASEB J. 2019;33:2484–97.CrossRef
32.
go back to reference Santoro A, Mele E, Marino M, Viggiano A, Nori SL, Meccariello R. The complex interplay between endocannabinoid system and the estrogen system in central nervous system and periphery. Int J Mol Sci. 2021;22:972.CrossRef Santoro A, Mele E, Marino M, Viggiano A, Nori SL, Meccariello R. The complex interplay between endocannabinoid system and the estrogen system in central nervous system and periphery. Int J Mol Sci. 2021;22:972.CrossRef
33.
go back to reference Piyanova A, Lomazzo E, Bindila L, Lerner R, Albayram O, Ruhl T, et al. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech Ageing Dev. 2015;150:55–64.CrossRef Piyanova A, Lomazzo E, Bindila L, Lerner R, Albayram O, Ruhl T, et al. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech Ageing Dev. 2015;150:55–64.CrossRef
Metadata
Title
First-in-human in vivo imaging and quantification of monoacylglycerol lipase in the brain: a PET study with 18F-T-401
Authors
Keisuke Takahata
Chie Seki
Yasuyuki Kimura
Manabu Kubota
Masanori Ichise
Yasunori Sano
Yasuharu Yamamoto
Kenji Tagai
Hitoshi Shimada
Soichiro Kitamura
Kiwamu Matsuoka
Hironobu Endo
Hitoshi Shinotoh
Kazunori Kawamura
Ming-Rong Zhang
Yuhei Takado
Makoto Higuchi
Publication date
13-01-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05671-y

Other articles of this Issue 9/2022

European Journal of Nuclear Medicine and Molecular Imaging 9/2022 Go to the issue