Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2022

28-01-2022 | Review Article

Molecular fluorophores for in vivo bioimaging in the second near-infrared window

Authors: Yanling Yang, Fan Zhang

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2022

Login to get access

Abstract

Purpose

This systematic review aims to summarize the current developments of fluorescence and chemi/bioluminescence imaging based on the molecular fluorophores for in vivo imaging in the second near-infrared window.

Methods and results

By investigating most of the relevant references on the web of science and some journals, this review firstly begins with an overview of the background of fluorescence and chemi/bioluminescence imaging. Secondly, the chemical and optical properties of NIR-II dyes are discussed, such as water solubility, chemostability and photo-stability, and brightness. Thirdly, the bioimaging based on NIR-II fluorescence emission is outlined, including the in vivo imaging of polymethine dyes, donor − acceptor − donor (D − A − D) chromophores, and lanthanide complexes. Fourthly, we demonstrate the chemi/bioluminescence in vivo imaging in the second near-infrared window. Fifthly, the clinical application and translation of near-infrared fluorescence imaging are presented. Finally, the current challenges, feasible strategies and potential prospects of the fluorophores and in vivo bioimaging are discussed.

Conclusions

Based on the above literature research on the applications of molecular fluorescent and chemi/bioluminescent probes in the second near-infrared window in recent years, this review weighs the advantages and disadvantages of fluorescence and chemi/bioluminescence imaging, and NIR-II fluorophores based on polymethine dyes, D − A − D chromophores, and lanthanide complexes. Besides, this review also provides a very important guidance for expanding the imaging applications of molecular fluorophores in the second near-infrared window.
Literature
1.
go back to reference Hong GS, Antaris AL, Dai HJ. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010.CrossRef Hong GS, Antaris AL, Dai HJ. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010.CrossRef
2.
go back to reference Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun. 2013;4:2199.PubMedCrossRef Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun. 2013;4:2199.PubMedCrossRef
3.
go back to reference Fan Y, Zhang F. A new generation of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing. Adv Opt Mater. 2019;7:1801417.CrossRef Fan Y, Zhang F. A new generation of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing. Adv Opt Mater. 2019;7:1801417.CrossRef
4.
go back to reference Wan H, Yue JY, Zhu SJ, Uno T, Zhang XD, Yang QL, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun. 2018;9:1171.PubMedPubMedCentralCrossRef Wan H, Yue JY, Zhu SJ, Uno T, Zhang XD, Yang QL, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun. 2018;9:1171.PubMedPubMedCentralCrossRef
5.
go back to reference Antaris AL, Chen H, Cheng K, Sun Y, Hong GS, Qu CR, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.PubMedCrossRef Antaris AL, Chen H, Cheng K, Sun Y, Hong GS, Qu CR, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.PubMedCrossRef
6.
go back to reference Hu ZH, Fang C, Li B, Zhang ZY, Cao CG, Cai MS, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4:259–71.PubMedCrossRef Hu ZH, Fang C, Li B, Zhang ZY, Cao CG, Cai MS, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4:259–71.PubMedCrossRef
7.
go back to reference Wang PY, Fan Y, Lu LF, Liu L, Fan LL, Zhao MY, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun. 2018;9:2898.PubMedPubMedCentralCrossRef Wang PY, Fan Y, Lu LF, Liu L, Fan LL, Zhao MY, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun. 2018;9:2898.PubMedPubMedCentralCrossRef
8.
go back to reference Wang R, Zhou L, Wang WX, Li XM, Zhang F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:17402. Wang R, Zhou L, Wang WX, Li XM, Zhang F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:17402.
9.
go back to reference Yang JY, He SQ, Hu ZH, Zhang ZY, Cao CG, Cheng Z, et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today. 2021;38:101120.CrossRef Yang JY, He SQ, Hu ZH, Zhang ZY, Cao CG, Cheng Z, et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today. 2021;38:101120.CrossRef
10.
go back to reference Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A. 2014;111:13948–53.PubMedPubMedCentralCrossRef Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A. 2014;111:13948–53.PubMedPubMedCentralCrossRef
11.
go back to reference Wong MH, Giraldo JP, Kwak S-Y, Koman VB, Sinclair R, Lew TTS, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater. 2017;16:264–72.PubMedCrossRef Wong MH, Giraldo JP, Kwak S-Y, Koman VB, Sinclair R, Lew TTS, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater. 2017;16:264–72.PubMedCrossRef
12.
go back to reference Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol. 2013;8:873–80.PubMedPubMedCentralCrossRef Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol. 2013;8:873–80.PubMedPubMedCentralCrossRef
14.
go back to reference Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:1–11. Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:1–11.
15.
go back to reference Park JH, Guo L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8:331–6.PubMedPubMedCentralCrossRef Park JH, Guo L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8:331–6.PubMedPubMedCentralCrossRef
16.
go back to reference Bruns OT, Bischof TS, Harris DK, Franke D, Shi YX, Riedemann L, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:0056.PubMedPubMedCentralCrossRef Bruns OT, Bischof TS, Harris DK, Franke D, Shi YX, Riedemann L, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:0056.PubMedPubMedCentralCrossRef
17.
go back to reference Wang M, Li H, Huang B, Chen S, Cui R, Sun Z-J, et al. An ultra-stable, oxygen-supply nanoprobe emitting in Near-Infrared-II window to guide and enhance radiotherapy by promoting anti-tumor immunity. Adv Healthcare Mater. 2021;10:2100090.CrossRef Wang M, Li H, Huang B, Chen S, Cui R, Sun Z-J, et al. An ultra-stable, oxygen-supply nanoprobe emitting in Near-Infrared-II window to guide and enhance radiotherapy by promoting anti-tumor immunity. Adv Healthcare Mater. 2021;10:2100090.CrossRef
18.
go back to reference Yang YL, Wang PY, Lu LF, Fan Y, Sun CX, Fan LL, et al. Small molecule lanthanide complexes probe for second near-infrared window bioimaging. Anal Chem. 2018;90:7946–52.PubMedCrossRef Yang YL, Wang PY, Lu LF, Fan Y, Sun CX, Fan LL, et al. Small molecule lanthanide complexes probe for second near-infrared window bioimaging. Anal Chem. 2018;90:7946–52.PubMedCrossRef
19.
go back to reference Li YB, Li XL, Xue ZL, Jiang MY, Zeng SJ, Hao JH, et al. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials. 2018;169:35–44.PubMedCrossRef Li YB, Li XL, Xue ZL, Jiang MY, Zeng SJ, Hao JH, et al. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials. 2018;169:35–44.PubMedCrossRef
21.
go back to reference Yi RX, Das P, Lin FR, Shen BL, Yang ZG, Zhao YH, et al. Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I&II bioimaging. Opt Express. 2019;27:12360–72.PubMedCrossRef Yi RX, Das P, Lin FR, Shen BL, Yang ZG, Zhao YH, et al. Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I&II bioimaging. Opt Express. 2019;27:12360–72.PubMedCrossRef
22.
go back to reference del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM. Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater. 2016;28:10188–93.PubMedCrossRef del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM. Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater. 2016;28:10188–93.PubMedCrossRef
24.
go back to reference Yang YL, Wang SF, Lu LF, Zhang QS, Yu P, Fan Y, et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew Chem Int Ed. 2020;59:18380–5.CrossRef Yang YL, Wang SF, Lu LF, Zhang QS, Yu P, Fan Y, et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew Chem Int Ed. 2020;59:18380–5.CrossRef
25.
go back to reference Lu LF, Li BH, Ding SW, Fan Y, Wang SF, Sun CX, et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat Commun. 2020;11:4192.PubMedPubMedCentralCrossRef Lu LF, Li BH, Ding SW, Fan Y, Wang SF, Sun CX, et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat Commun. 2020;11:4192.PubMedPubMedCentralCrossRef
26.
go back to reference Hong GS, Diao S, Chang JL, Antaris AL, Chen CX, Zhang B, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics. 2014;8:723–30.PubMedPubMedCentralCrossRef Hong GS, Diao S, Chang JL, Antaris AL, Chen CX, Zhang B, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics. 2014;8:723–30.PubMedPubMedCentralCrossRef
27.
go back to reference Welsher K, Sherlock SP, Dai HJ. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A. 2011;108:8943–8.PubMedPubMedCentralCrossRef Welsher K, Sherlock SP, Dai HJ. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A. 2011;108:8943–8.PubMedPubMedCentralCrossRef
28.
go back to reference Hong GS, Lee JC, Robinson JT, Raaz U, Xie LM, Huang NF, et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18:1841–6.PubMedPubMedCentralCrossRef Hong GS, Lee JC, Robinson JT, Raaz U, Xie LM, Huang NF, et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18:1841–6.PubMedPubMedCentralCrossRef
29.
go back to reference Del Bonis-O’Donnell JT, Page RH, Beyene AG, Tindall EG, McFarlane IR, Landry MP. Dual near-infrared two-photon microscopy for deep-tissue dopamine nanosensor imaging. Adv Funct Mater. 2017;27:1702112.CrossRef Del Bonis-O’Donnell JT, Page RH, Beyene AG, Tindall EG, McFarlane IR, Landry MP. Dual near-infrared two-photon microscopy for deep-tissue dopamine nanosensor imaging. Adv Funct Mater. 2017;27:1702112.CrossRef
30.
go back to reference Zhu SJ, Herraiz S, Yue JY, Zhang MX, Wan H, Yang QL, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv Mater. 2018;30:1705799.CrossRef Zhu SJ, Herraiz S, Yue JY, Zhang MX, Wan H, Yang QL, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv Mater. 2018;30:1705799.CrossRef
31.
go back to reference Fan Y, Wang PY, Lu YQ, Wang R, Zhou L, Zheng XL, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol. 2018;13:941–6.PubMedCrossRef Fan Y, Wang PY, Lu YQ, Wang R, Zhou L, Zheng XL, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol. 2018;13:941–6.PubMedCrossRef
32.
33.
go back to reference Suo YK, Wu FX, Xu PF, Shi H, Wang TZ, Liu HG, et al. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. Adv Healthcare Mater. 2019;8:1900974.CrossRef Suo YK, Wu FX, Xu PF, Shi H, Wang TZ, Liu HG, et al. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. Adv Healthcare Mater. 2019;8:1900974.CrossRef
34.
go back to reference Li BH, Lu LF, Zhao MY, Lei ZH, Zhang F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem In Ed. 2018;57:7483–7.CrossRef Li BH, Lu LF, Zhao MY, Lei ZH, Zhang F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem In Ed. 2018;57:7483–7.CrossRef
35.
go back to reference Li BH, Zhao MY, Feng LS, Dou CR, Ding SW, Zhou G, et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun. 2020;11:3102.PubMedPubMedCentralCrossRef Li BH, Zhao MY, Feng LS, Dou CR, Ding SW, Zhou G, et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun. 2020;11:3102.PubMedPubMedCentralCrossRef
37.
go back to reference Zhao MY, Wang JB, Lei ZH, Lu LF, Wang SF, Zhang HX, et al. NIR-II pH sensor with FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew Chem Int Ed. 2021;60:5091–5.CrossRef Zhao MY, Wang JB, Lei ZH, Lu LF, Wang SF, Zhang HX, et al. NIR-II pH sensor with FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew Chem Int Ed. 2021;60:5091–5.CrossRef
38.
go back to reference Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, et al. Band gap tunable, donor-acceptor-donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater. 2008;20:6208–16.CrossRef Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, et al. Band gap tunable, donor-acceptor-donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater. 2008;20:6208–16.CrossRef
39.
go back to reference Luo X, Li J, Zhao J, Gu LY, Qian XH, Yang YJ. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes. Chin Chem Lett. 2019;30:839–46.CrossRef Luo X, Li J, Zhao J, Gu LY, Qian XH, Yang YJ. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes. Chin Chem Lett. 2019;30:839–46.CrossRef
40.
go back to reference D’Aandrade BW, Datta S, Forrest SR, Djurovich P, Polikarpov E, Thompson ME. Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org Electron. 2005;6:11–20.CrossRef D’Aandrade BW, Datta S, Forrest SR, Djurovich P, Polikarpov E, Thompson ME. Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org Electron. 2005;6:11–20.CrossRef
41.
go back to reference Tian R, Ma HL, Zhu SJ, Lau J, Ma R, Liu YJ, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32:1907365.CrossRef Tian R, Ma HL, Zhu SJ, Lau J, Ma R, Liu YJ, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32:1907365.CrossRef
42.
go back to reference Ma HL, Liu CC, Hu ZB, Yu PP, Zhu XF, Ma R, et al. Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem Mater. 2020;32:2061–9.CrossRef Ma HL, Liu CC, Hu ZB, Yu PP, Zhu XF, Ma R, et al. Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem Mater. 2020;32:2061–9.CrossRef
43.
go back to reference Chitgupi U, Nyayapathi N, Kim J, Wang DP, Sun BY, Li CN, et al. Surfactant-stripped micelles for NIR-II photoacoustic imaging through 12 cm of breast tissue and whole human breasts. Adv Mater. 2019;31:1902279.CrossRef Chitgupi U, Nyayapathi N, Kim J, Wang DP, Sun BY, Li CN, et al. Surfactant-stripped micelles for NIR-II photoacoustic imaging through 12 cm of breast tissue and whole human breasts. Adv Mater. 2019;31:1902279.CrossRef
44.
go back to reference Tang CC, Song CH, Wei Z, Liang C, Ran JC, Cai Y, et al. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci Chi Chem. 2020;63:946–56.CrossRef Tang CC, Song CH, Wei Z, Liang C, Ran JC, Cai Y, et al. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci Chi Chem. 2020;63:946–56.CrossRef
45.
go back to reference Hoshi R, Suzuki K, Hasebe N, Yoshihara T, Tobita S. Absolute quantum yield measurements of near-infrared emission with correction for solvent absorption. Anal Chem. 2020;92:607–11.PubMedCrossRef Hoshi R, Suzuki K, Hasebe N, Yoshihara T, Tobita S. Absolute quantum yield measurements of near-infrared emission with correction for solvent absorption. Anal Chem. 2020;92:607–11.PubMedCrossRef
46.
go back to reference Antaris AL, Chen H, Diao S, Ma ZR, Zhang Z, Zhu SJ, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun. 2017;8:15269.PubMedPubMedCentralCrossRef Antaris AL, Chen H, Diao S, Ma ZR, Zhang Z, Zhu SJ, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun. 2017;8:15269.PubMedPubMedCentralCrossRef
47.
go back to reference Widengren J, Schwille P. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem A. 2000;104:6416–28.CrossRef Widengren J, Schwille P. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem A. 2000;104:6416–28.CrossRef
48.
go back to reference Holzer W, Mauerer M, Penzkofer A, Szeimies R-M, Abels C, Landthaler M, et al. Photostability and thermal stability of indocyanine green. J Photochem Photobiol B: Biol. 1998;47:155–64.CrossRef Holzer W, Mauerer M, Penzkofer A, Szeimies R-M, Abels C, Landthaler M, et al. Photostability and thermal stability of indocyanine green. J Photochem Photobiol B: Biol. 1998;47:155–64.CrossRef
49.
go back to reference Renikuntla BR, Rose HC, Eldo J, Waggoner AS, Armitage BA. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Org Lett. 2004;6:909–12.PubMedCrossRef Renikuntla BR, Rose HC, Eldo J, Waggoner AS, Armitage BA. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Org Lett. 2004;6:909–12.PubMedCrossRef
50.
go back to reference Redy-Keisar O, Huth K, Vogel U, Lepenies B, Seeberger PH, Haag R, et al. Enhancement of fluorescent properties of near-infrared dyes using clickable oligoglycerol dendrons. Org Biomol Chem. 2015;13:4727–32.PubMedCrossRef Redy-Keisar O, Huth K, Vogel U, Lepenies B, Seeberger PH, Haag R, et al. Enhancement of fluorescent properties of near-infrared dyes using clickable oligoglycerol dendrons. Org Biomol Chem. 2015;13:4727–32.PubMedCrossRef
51.
go back to reference Altman RB, Terry DS, Zhou Z, Zheng QS, Geggier P, Kolster RA, et al. Cyanine fluorophore derivatives with enhanced photostability. Nat Methods. 2012;9:68–71.CrossRef Altman RB, Terry DS, Zhou Z, Zheng QS, Geggier P, Kolster RA, et al. Cyanine fluorophore derivatives with enhanced photostability. Nat Methods. 2012;9:68–71.CrossRef
52.
go back to reference Zhu SJ, Tian R, Antaris AL, Chen XY, Dai HJ. Near-Infrared-II molecular dyes for cancer imaging and surgery. Adv Mater. 2019;31:1900321.CrossRef Zhu SJ, Tian R, Antaris AL, Chen XY, Dai HJ. Near-Infrared-II molecular dyes for cancer imaging and surgery. Adv Mater. 2019;31:1900321.CrossRef
53.
go back to reference Tian R, Ma HL, Yang QL, Wan H, Zhu SJ, Chandra S, et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci. 2019;10:326–32.PubMedCrossRef Tian R, Ma HL, Yang QL, Wan H, Zhu SJ, Chandra S, et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci. 2019;10:326–32.PubMedCrossRef
54.
go back to reference Yang QL, Hu ZB, Zhu SJ, Ma R, Ma HL, Ma ZR, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc. 2018;140:1715–24.PubMedCrossRef Yang QL, Hu ZB, Zhu SJ, Ma R, Ma HL, Ma ZR, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc. 2018;140:1715–24.PubMedCrossRef
55.
go back to reference Tao ZM, Hong GS, Shinji C, Chen CX, Diao S, Antaris AL, et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed. 2013;52:13002–6.CrossRef Tao ZM, Hong GS, Shinji C, Chen CX, Diao S, Antaris AL, et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed. 2013;52:13002–6.CrossRef
56.
go back to reference Cosco ED, Caram JR, Bruns OT, Franke D, Day RA, Farr EP, et al. Flavylium polymethine fluorophores for imaging in the near- and shortwave infrared. Angew Chem Int Ed. 2017;56:13126–9.CrossRef Cosco ED, Caram JR, Bruns OT, Franke D, Day RA, Farr EP, et al. Flavylium polymethine fluorophores for imaging in the near- and shortwave infrared. Angew Chem Int Ed. 2017;56:13126–9.CrossRef
57.
go back to reference Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018;115:4465–70.PubMedPubMedCentralCrossRef Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018;115:4465–70.PubMedPubMedCentralCrossRef
58.
go back to reference Tian R, Zeng Q, Zhu SJ, Lau J, Chandra S, Ertsey R, et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv. 2019;5:eaaw0672.PubMedPubMedCentralCrossRef Tian R, Zeng Q, Zhu SJ, Lau J, Chandra S, Ertsey R, et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv. 2019;5:eaaw0672.PubMedPubMedCentralCrossRef
59.
go back to reference Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One. 2017;12:e0187563.PubMedPubMedCentralCrossRef Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One. 2017;12:e0187563.PubMedPubMedCentralCrossRef
60.
go back to reference Zhu SJ, Hu ZB, Tian R, Yung BC, Yang QL, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater. 2018;30:1802546.CrossRef Zhu SJ, Hu ZB, Tian R, Yung BC, Yang QL, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater. 2018;30:1802546.CrossRef
61.
go back to reference Yang QL, Ma RZ, Wang HS, Zhou B, Zhu SJ, Zhong YT, et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater. 2017;29:1605497.CrossRef Yang QL, Ma RZ, Wang HS, Zhou B, Zhu SJ, Zhong YT, et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater. 2017;29:1605497.CrossRef
62.
go back to reference Sun W, Guo SG, Hu C, Fan JL, Peng XJ. Recent development of chemosensors based on cyanine platforms. Chem Rev. 2016;116:7768–817.PubMedCrossRef Sun W, Guo SG, Hu C, Fan JL, Peng XJ. Recent development of chemosensors based on cyanine platforms. Chem Rev. 2016;116:7768–817.PubMedCrossRef
63.
go back to reference Bricks JL, Kachkovskii AD, Slominskii YL, Gerasov AO, Popov SV. Molecular design of near infrared polymethine dyes: A review. Dyes Pigm. 2015;121:238–55.CrossRef Bricks JL, Kachkovskii AD, Slominskii YL, Gerasov AO, Popov SV. Molecular design of near infrared polymethine dyes: A review. Dyes Pigm. 2015;121:238–55.CrossRef
64.
go back to reference Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: A review. Chem Rev. 2000;100:1973–2012.PubMedCrossRef Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: A review. Chem Rev. 2000;100:1973–2012.PubMedCrossRef
65.
go back to reference Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Rosch JL, et al. Nonlinear absorption in a series of Donor–π–Acceptor cyanines with different conjugation lengths. J Mater Chem. 2009;19:7503–13.CrossRef Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Rosch JL, et al. Nonlinear absorption in a series of Donor–π–Acceptor cyanines with different conjugation lengths. J Mater Chem. 2009;19:7503–13.CrossRef
66.
go back to reference König W. Über den Begriff der polymethinfarbstoffe und eine davon ableitbare allgemeine Farbstoff-Formel als Grundlage einer neuen Systematik der Farbenchemie. J Prakt Chem. 1926;112:1–36.CrossRef König W. Über den Begriff der polymethinfarbstoffe und eine davon ableitbare allgemeine Farbstoff-Formel als Grundlage einer neuen Systematik der Farbenchemie. J Prakt Chem. 1926;112:1–36.CrossRef
67.
go back to reference Brooker LG. Absorption and resonance in dyes. Rev Mod Phys. 1942;4:275–93.CrossRef Brooker LG. Absorption and resonance in dyes. Rev Mod Phys. 1942;4:275–93.CrossRef
68.
go back to reference Gutzler R, Perepichka DF. π-Electron conjugation in two dimensions. J Am Chem Soc. 2013;135:16585–94.PubMedCrossRef Gutzler R, Perepichka DF. π-Electron conjugation in two dimensions. J Am Chem Soc. 2013;135:16585–94.PubMedCrossRef
69.
go back to reference Cai ZC, Zhu L, Wang MQ, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics. 2020;10:4265–76.PubMedPubMedCentralCrossRef Cai ZC, Zhu L, Wang MQ, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics. 2020;10:4265–76.PubMedPubMedCentralCrossRef
70.
go back to reference Meng XQ, Zhang JL, Sun ZH, Zhou LH, Deng GJ, Li SP, et al. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics. 2018;8:6025–34.PubMedPubMedCentralCrossRef Meng XQ, Zhang JL, Sun ZH, Zhou LH, Deng GJ, Li SP, et al. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics. 2018;8:6025–34.PubMedPubMedCentralCrossRef
71.
go back to reference Wang SF, Fan Y, Li DD, Sun CX, Lei ZH, Lu LF, et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun. 2019;10:1058.PubMedPubMedCentralCrossRef Wang SF, Fan Y, Li DD, Sun CX, Lei ZH, Lu LF, et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun. 2019;10:1058.PubMedPubMedCentralCrossRef
72.
go back to reference Feng WQ, Zhang YY, Li Z, Zhai SY, Lv WJ, Liu ZH. Lighting up NIR-II fluorescence in vivo: an activatable probe for noninvasive hydroxyl radical imaging. Anal Chem. 2019;91:15757–62.PubMedCrossRef Feng WQ, Zhang YY, Li Z, Zhai SY, Lv WJ, Liu ZH. Lighting up NIR-II fluorescence in vivo: an activatable probe for noninvasive hydroxyl radical imaging. Anal Chem. 2019;91:15757–62.PubMedCrossRef
73.
go back to reference Chen W, Cheng C-A, Cosco ED, Ramakrishnan S, Lingg JGP, Bruns OT, et al. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J Am Chem Soc. 2019;141:12475–80.PubMedPubMedCentralCrossRef Chen W, Cheng C-A, Cosco ED, Ramakrishnan S, Lingg JGP, Bruns OT, et al. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J Am Chem Soc. 2019;141:12475–80.PubMedPubMedCentralCrossRef
74.
go back to reference Ding BB, Xiao YL, Zhou H, Zhang X, Qu CR, Xu FC, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow. J Med Chem. 2019;62:2049–59.PubMedCrossRef Ding BB, Xiao YL, Zhou H, Zhang X, Qu CR, Xu FC, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow. J Med Chem. 2019;62:2049–59.PubMedCrossRef
75.
go back to reference Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett. 2010;1:2445–50.CrossRef Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett. 2010;1:2445–50.CrossRef
76.
go back to reference Lei ZH, Sun CX, Pei P, Wang SF, Li DD, Zhang X, et al. Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew Chem Int Ed. 2019;58:8166–71.CrossRef Lei ZH, Sun CX, Pei P, Wang SF, Li DD, Zhang X, et al. Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew Chem Int Ed. 2019;58:8166–71.CrossRef
77.
go back to reference Sun CX, Li BH, Zhao MY, Wang SF, Lei ZH, Lu LF, et al. J-Aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J Am Chem Soc. 2019;141:19221–5.PubMedCrossRef Sun CX, Li BH, Zhao MY, Wang SF, Lei ZH, Lu LF, et al. J-Aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J Am Chem Soc. 2019;141:19221–5.PubMedCrossRef
78.
go back to reference Ono K, Tanaka S, Yamashita Y. Benzobis(thiadiazole)s containing hypervalent sulfur atoms: novel heterocycles with high electron affinity and short intermolecular contacts between heteroatoms. Angew Chem Int Ed. 1994;33:1977–9.CrossRef Ono K, Tanaka S, Yamashita Y. Benzobis(thiadiazole)s containing hypervalent sulfur atoms: novel heterocycles with high electron affinity and short intermolecular contacts between heteroatoms. Angew Chem Int Ed. 1994;33:1977–9.CrossRef
79.
go back to reference Zhu SJ, Yang QL, Antaris AL, Yue JY, Ma ZR, et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A. 2017;114:962–7.PubMedPubMedCentralCrossRef Zhu SJ, Yang QL, Antaris AL, Yue JY, Ma ZR, et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A. 2017;114:962–7.PubMedPubMedCentralCrossRef
80.
go back to reference Li YY, Cai ZC, Liu SJ, Zhang HK, Wong STH, Lam JWY, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun. 2020;11:1255.PubMedPubMedCentralCrossRef Li YY, Cai ZC, Liu SJ, Zhang HK, Wong STH, Lam JWY, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun. 2020;11:1255.PubMedPubMedCentralCrossRef
81.
go back to reference Zhang X-D, Wang HS, Antaris AL, Li LL, Diao S, Ma R, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9.PubMedPubMedCentralCrossRef Zhang X-D, Wang HS, Antaris AL, Li LL, Diao S, Ma R, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9.PubMedPubMedCentralCrossRef
82.
go back to reference Sun Y, Ding F, Zhou ZX, Li CL, Pu MQ, Xu YL, et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc Natl Acad Sci U S A. 2019;116:1968–73.PubMedPubMedCentralCrossRef Sun Y, Ding F, Zhou ZX, Li CL, Pu MQ, Xu YL, et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc Natl Acad Sci U S A. 2019;116:1968–73.PubMedPubMedCentralCrossRef
83.
go back to reference Sun Y, Ding MM, Zeng XD, Xiao YL, Wu HP, Zhou H, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci. 2017;8:3489–93.PubMedPubMedCentralCrossRef Sun Y, Ding MM, Zeng XD, Xiao YL, Wu HP, Zhou H, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci. 2017;8:3489–93.PubMedPubMedCentralCrossRef
84.
go back to reference Lin JC, Zeng XD, Xiao YL, Tang L, Nong JX, Liu YF, et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem Sci. 2019;10:1219–26.PubMedCrossRef Lin JC, Zeng XD, Xiao YL, Tang L, Nong JX, Liu YF, et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem Sci. 2019;10:1219–26.PubMedCrossRef
85.
go back to reference Fang Y, Shang JZ, Liu DK, Shi W, Li XH, Ma HM. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm. J Am Chem Soc. 2020;142:15271–5.PubMedCrossRef Fang Y, Shang JZ, Liu DK, Shi W, Li XH, Ma HM. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm. J Am Chem Soc. 2020;142:15271–5.PubMedCrossRef
86.
go back to reference Sun Y, Qu CR, Chen H, He MM, Tang C, Shou KQ, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci. 2016;7:6203–7.PubMedPubMedCentralCrossRef Sun Y, Qu CR, Chen H, He MM, Tang C, Shou KQ, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci. 2016;7:6203–7.PubMedPubMedCentralCrossRef
87.
go back to reference Ma ZR, Wan H, Wang WZ, Zhang XD, Uno T, Yang QL, et al. A theranostic agent for cancer therapy and imaging in the second near infrared window. Nano Res. 2019;12:273–9.PubMedCrossRef Ma ZR, Wan H, Wang WZ, Zhang XD, Uno T, Yang QL, et al. A theranostic agent for cancer therapy and imaging in the second near infrared window. Nano Res. 2019;12:273–9.PubMedCrossRef
89.
go back to reference Zhang YR, Pang L, Ma C, Tu Q, Zhang R, Saeed E, et al. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal Chem. 2014;86:3092–9.PubMedCrossRef Zhang YR, Pang L, Ma C, Tu Q, Zhang R, Saeed E, et al. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal Chem. 2014;86:3092–9.PubMedCrossRef
90.
go back to reference Lee ES, Deepagan VG, You DG, Jeon J, Yi G-R, Lee JY, Lee DS, et al. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer. Chem Commun. 2016;52:4132–5.CrossRef Lee ES, Deepagan VG, You DG, Jeon J, Yi G-R, Lee JY, Lee DS, et al. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer. Chem Commun. 2016;52:4132–5.CrossRef
91.
go back to reference Li P, Liu L, Xiao HB, Zhang W, Wang LL, Tang B. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J Am Chem Soc. 2016;138:2893–6.PubMedCrossRef Li P, Liu L, Xiao HB, Zhang W, Wang LL, Tang B. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J Am Chem Soc. 2016;138:2893–6.PubMedCrossRef
92.
go back to reference Niu JY, Fan JL, Wang X, Xiao YS, Xie XL, Jiao XY, et al. Simultaneous fluorescence and chemiluminescence turned on by aggregation-induced emission for real-time monitoring of endogenous superoxide anion in live cells. Anal Chem. 2017;89:7210–5.PubMedCrossRef Niu JY, Fan JL, Wang X, Xiao YS, Xie XL, Jiao XY, et al. Simultaneous fluorescence and chemiluminescence turned on by aggregation-induced emission for real-time monitoring of endogenous superoxide anion in live cells. Anal Chem. 2017;89:7210–5.PubMedCrossRef
93.
go back to reference Singh A, Seo YH, Lim C-K, Koh J, Jang W-D, Kwon IC, et al. Biolighted nanotorch capable of systemic self-delivery and diagnostic imaging. ACS Nano. 2015;9:9906–11.PubMedCrossRef Singh A, Seo YH, Lim C-K, Koh J, Jang W-D, Kwon IC, et al. Biolighted nanotorch capable of systemic self-delivery and diagnostic imaging. ACS Nano. 2015;9:9906–11.PubMedCrossRef
94.
go back to reference Shuhendler AJ, Pu KY, Cui LN, Uetrecht JP, Rao JH. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol. 2014;32:373–80.PubMedPubMedCentralCrossRef Shuhendler AJ, Pu KY, Cui LN, Uetrecht JP, Rao JH. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol. 2014;32:373–80.PubMedPubMedCentralCrossRef
95.
go back to reference Mao D, Wu WB, Ji SL, Chen C, Hu F, Kong DL, et al. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem. 2017;3:991–1007.CrossRef Mao D, Wu WB, Ji SL, Chen C, Hu F, Kong DL, et al. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem. 2017;3:991–1007.CrossRef
96.
go back to reference Zhen X, Zhang CW, Xie C, Miao QQ, Lim KL, Pu KY. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano. 2016;10:6400–9.PubMedCrossRef Zhen X, Zhang CW, Xie C, Miao QQ, Lim KL, Pu KY. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano. 2016;10:6400–9.PubMedCrossRef
97.
go back to reference Huang JG, Li JC, Lyu Y, Miao QQ, Pu KY. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43.PubMedCrossRef Huang JG, Li JC, Lyu Y, Miao QQ, Pu KY. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43.PubMedCrossRef
98.
go back to reference Cheng PH, Miao QQ, Li JC, Huang JG, Xie C, Pu KY. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141:10581–4.PubMedCrossRef Cheng PH, Miao QQ, Li JC, Huang JG, Xie C, Pu KY. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141:10581–4.PubMedCrossRef
99.
go back to reference Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev. 2016;45:6048–77.PubMedCrossRef Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev. 2016;45:6048–77.PubMedCrossRef
100.
go back to reference Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.PubMedPubMedCentralCrossRef Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.PubMedPubMedCentralCrossRef
101.
go back to reference Guo B, Feng Z, Hu DH, Xu SD, Middha E, Pan YT, et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging. Adv Mater. 2019;31:1902504.CrossRef Guo B, Feng Z, Hu DH, Xu SD, Middha E, Pan YT, et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging. Adv Mater. 2019;31:1902504.CrossRef
102.
go back to reference Hoogstins CES, Tummers QRJG, Gaarenstroom KN, de Kroon CD, Trimbos JBMZ, Bosse T, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: A translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22:2929–38.PubMedCrossRef Hoogstins CES, Tummers QRJG, Gaarenstroom KN, de Kroon CD, Trimbos JBMZ, Bosse T, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: A translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22:2929–38.PubMedCrossRef
103.
go back to reference Van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9.PubMedCrossRef Van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9.PubMedCrossRef
104.
go back to reference Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol. 2001;19:327–31.PubMedCrossRef Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol. 2001;19:327–31.PubMedCrossRef
105.
go back to reference Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–8.PubMedCrossRef Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–8.PubMedCrossRef
106.
go back to reference Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.PubMedPubMedCentralCrossRef Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.PubMedPubMedCentralCrossRef
107.
go back to reference Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med. 2016;8:320ra4.PubMedPubMedCentralCrossRef Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med. 2016;8:320ra4.PubMedPubMedCentralCrossRef
Metadata
Title
Molecular fluorophores for in vivo bioimaging in the second near-infrared window
Authors
Yanling Yang
Fan Zhang
Publication date
28-01-2022
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2022
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05688-x

Other articles of this Issue 9/2022

European Journal of Nuclear Medicine and Molecular Imaging 9/2022 Go to the issue