Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress

Authors: Nurhanani Razali, Sarni Mat Junit, Azhar Ariffin, Nur Siti Fatimah Ramli, Azlina Abdul Aziz

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Tamarindus indica L. (T. indica) or locally known as “asam jawa” belongs to the family Leguminosae. T. indica seeds as by-products from the fruits were previously reported to contain high polyphenolic content. However, identification of their bioactive polyphenols using recent technologies is less well researched but nonetheless important. Hence, it was the aim of this study to provide further information on the polyphenolic content and antioxidant activities as well as to identify and quantify its bioactive polyphenols.

Methods

T. indica seeds were extracted with methanol and were then fractionated with different compositions of hexane, ethyl acetate and methanol. Polyphenolic contents were measured using Folin-Ciocalteu assay while antioxidant activities were measured using DPPH radical scavenging and ferric reducing (FRAP) activities. The cytotoxic activities of the crude extract and the active fraction were evaluated in HepG2 cells using MTT assay. The cells were then pre-treated with the IC20 concentrations and induced with H2O2 before measuring their cellular antioxidant activities including FRAP, DPPH, lipid peroxidation, ROS generation and antioxidant enzymes, SOD, GPx and CAT. Analyses of polyphenols in the crude extract and its active fraction were done using UHPLC and NMR.

Results

Amongst the 7 isolated fractions, fraction F3 showed the highest polyphenolic content and antioxidant activities. When HepG2 cells were treated with fraction F3 or the crude extract, the former demonstrated higher antioxidant activities. F3 also showed stronger inhibition of lipid peroxidation and ROS generation, and enhanced activities of SOD, GPx and CAT of HepG2 cells following H2O2-induced oxidative damage. UHPLC analyses revealed the presence of catechin, procyanidin B2, caffeic acid, ferulic acid, chloramphenicol, myricetin, morin, quercetin, apigenin and kaempferol, in the crude seed extract of T. indica. UHPLC and NMR analyses identified the presence of caffeic acid in fraction F3. Our studies were the first to report caffeic acid as the active polyphenol isolated from T. indica seeds which likely contributed to the potent antioxidant defense system of HepG2 cells.

Conclusion

Results from this study indicate that caffeic acid together with other polyphenols in T. indica seeds can enhance the antioxidant activities of treated HepG2 cells which can provide protection against oxidative damage.
Literature
1.
go back to reference Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721–4.PubMedCrossRef Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994;344(8924):721–4.PubMedCrossRef
2.
go back to reference Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46(10):4113–7.CrossRef Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46(10):4113–7.CrossRef
3.
go back to reference Covas MI, Nyyssonen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med. 2006;145(5):333–41.PubMedCrossRef Covas MI, Nyyssonen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med. 2006;145(5):333–41.PubMedCrossRef
4.
go back to reference Singh I, Mok M, Christensen AM, Turner AH, Hawley JA. The effects of polyphenols in olive leaves on platelet function. Nutr Metab Cardiovasc Dis. 2008;18(2):127–32.PubMedCrossRef Singh I, Mok M, Christensen AM, Turner AH, Hawley JA. The effects of polyphenols in olive leaves on platelet function. Nutr Metab Cardiovasc Dis. 2008;18(2):127–32.PubMedCrossRef
5.
go back to reference Morton J. Tamarind. In: Morton JF, editor. Fruits of warm climates. Miami, USA: Florida Flair Books; 1987. p. 115–21. Morton J. Tamarind. In: Morton JF, editor. Fruits of warm climates. Miami, USA: Florida Flair Books; 1987. p. 115–21.
6.
go back to reference El-Siddig K, Gunasena HPM, Prasa BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, et al. Tamarind – Tamarindus indica L. Fruits for the future 1. Southampton, UK: Southampton Centre for Underutilized Crops; 2006. El-Siddig K, Gunasena HPM, Prasa BA, Pushpakumara DKNG, Ramana KVR, Vijayanand P, et al. Tamarind – Tamarindus indica L. Fruits for the future 1. Southampton, UK: Southampton Centre for Underutilized Crops; 2006.
7.
go back to reference Van der Stege C, Prehsler S, Hartl A, Vogl CR. Tamarind (Tamarindus indica L.) in the traditional West African diet: not just a famine food. Fruits. 2011;66(03):171–85.CrossRef Van der Stege C, Prehsler S, Hartl A, Vogl CR. Tamarind (Tamarindus indica L.) in the traditional West African diet: not just a famine food. Fruits. 2011;66(03):171–85.CrossRef
8.
go back to reference Tsuda T, Makino Y, Kato H, Osawa T, Kawakishi S. Screening for antioxidative activity of edible pulses. Biosci Biotechnol Biochem. 1993;57(9):1606–8.CrossRef Tsuda T, Makino Y, Kato H, Osawa T, Kawakishi S. Screening for antioxidative activity of edible pulses. Biosci Biotechnol Biochem. 1993;57(9):1606–8.CrossRef
9.
go back to reference Mishra A, Malhotra AV. Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem. 2009;19(45):8528–36.CrossRef Mishra A, Malhotra AV. Tamarind xyloglucan: a polysaccharide with versatile application potential. J Mater Chem. 2009;19(45):8528–36.CrossRef
10.
go back to reference Semenzato A, Costantini A, Baratto G. Green polymers in personal care products: rheological properties of tamarind seed polysaccharide. Cosmetics. 2014;2(1):1.CrossRef Semenzato A, Costantini A, Baratto G. Green polymers in personal care products: rheological properties of tamarind seed polysaccharide. Cosmetics. 2014;2(1):1.CrossRef
11.
go back to reference Marathe R, Annapure U, Singhal R, Kulkarni P. Gelling behaviour of polyose from tamarind kernel polysaccharide. Food Hydrocolloids. 2002;16(5):423–6.CrossRef Marathe R, Annapure U, Singhal R, Kulkarni P. Gelling behaviour of polyose from tamarind kernel polysaccharide. Food Hydrocolloids. 2002;16(5):423–6.CrossRef
12.
go back to reference Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull. 2005;28(7):1172–6.PubMedCrossRef Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull. 2005;28(7):1172–6.PubMedCrossRef
13.
go back to reference Razali N, Mat-Junit S, Abdul-Muthalib AF, Subramaniam S, Abdul-Aziz A. Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of Tamarindus indica L. Food Chem. 2012;131(2):441–8.CrossRef Razali N, Mat-Junit S, Abdul-Muthalib AF, Subramaniam S, Abdul-Aziz A. Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of Tamarindus indica L. Food Chem. 2012;131(2):441–8.CrossRef
14.
go back to reference Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965;16(3):144–58. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965;16(3):144–58.
15.
go back to reference Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem. 1996;239(1):70–6.PubMedCrossRef Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal Biochem. 1996;239(1):70–6.PubMedCrossRef
16.
go back to reference Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant Principles from Bauhinia tarapotensis. J Nat Prod. 2001;64(7):892–5.PubMedCrossRef Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant Principles from Bauhinia tarapotensis. J Nat Prod. 2001;64(7):892–5.PubMedCrossRef
17.
go back to reference Hasiah A, Ghazali A, Weber J, Velu S, Thomas N, Inayat Hussain S. Cytotoxic and antioxidant effects of methoxylated stilbene analogues on HepG2 hepatoma and Chang liver cells: Implications for structure activity relationship. Hum Exp Toxicol. 2011;30(2):138–44.PubMedCrossRef Hasiah A, Ghazali A, Weber J, Velu S, Thomas N, Inayat Hussain S. Cytotoxic and antioxidant effects of methoxylated stilbene analogues on HepG2 hepatoma and Chang liver cells: Implications for structure activity relationship. Hum Exp Toxicol. 2011;30(2):138–44.PubMedCrossRef
18.
go back to reference Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305(1-2):75–80.PubMedCrossRef Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305(1-2):75–80.PubMedCrossRef
19.
go back to reference Razali N, Aziz AA, Lim CY, Junit SM. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells. Peer J. 2015;3, e1292.PubMedCentralPubMedCrossRef Razali N, Aziz AA, Lim CY, Junit SM. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells. Peer J. 2015;3, e1292.PubMedCentralPubMedCrossRef
20.
go back to reference Marabini L, Frigerio S, Chiesara E, Radice S. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells. Water Res. 2006;40(2):267–72.PubMedCrossRef Marabini L, Frigerio S, Chiesara E, Radice S. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells. Water Res. 2006;40(2):267–72.PubMedCrossRef
21.
go back to reference Aziz AA, Edwards CA, Lean ME, Crozier A. Absorption and excretion of conjugated flavonols, including quercetin-4′-O-beta-glucoside and isorhamnetin-4′-O-beta-glucoside by human volunteers after the consumption of onions. Free Radic Res. 1998;29(3):257–69.PubMedCrossRef Aziz AA, Edwards CA, Lean ME, Crozier A. Absorption and excretion of conjugated flavonols, including quercetin-4′-O-beta-glucoside and isorhamnetin-4′-O-beta-glucoside by human volunteers after the consumption of onions. Free Radic Res. 1998;29(3):257–69.PubMedCrossRef
22.
go back to reference Kwan EE, Huang SG. Structural elucidation with NMR spectroscopy: practical strategies for organic chemists. European J Org Chem. 2008;2008(16):2671–88.CrossRef Kwan EE, Huang SG. Structural elucidation with NMR spectroscopy: practical strategies for organic chemists. European J Org Chem. 2008;2008(16):2671–88.CrossRef
23.
go back to reference Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27(1):1–93.PubMedCrossRef Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27(1):1–93.PubMedCrossRef
24.
go back to reference Schramm DD, German JB. Potential effects of flavonoids on the etiology of vascular disease. J Nutr Biochem. 1998;9(10):560–6.CrossRef Schramm DD, German JB. Potential effects of flavonoids on the etiology of vascular disease. J Nutr Biochem. 1998;9(10):560–6.CrossRef
25.
go back to reference Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80.PubMedCrossRef Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80.PubMedCrossRef
26.
go back to reference Razali N, Razab R, Junit SM, Aziz AA. Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chem. 2008;111(1):38–44.CrossRef Razali N, Razab R, Junit SM, Aziz AA. Radical scavenging and reducing properties of extracts of cashew shoots (Anacardium occidentale). Food Chem. 2008;111(1):38–44.CrossRef
27.
go back to reference Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans. 1996;24(3):790–5.PubMedCrossRef Rice-Evans CA, Miller NJ. Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans. 1996;24(3):790–5.PubMedCrossRef
28.
go back to reference Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74(17):2157–84.PubMedCrossRef Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74(17):2157–84.PubMedCrossRef
29.
go back to reference Razab R, Abdul-Aziz A. Antioxidants from tropical herbs. Nat Prod Commun. 2010;5(3):441–5.PubMed Razab R, Abdul-Aziz A. Antioxidants from tropical herbs. Nat Prod Commun. 2010;5(3):441–5.PubMed
30.
go back to reference Holiman PCH, Hertog MGL, Katan MB. Analysis and health effects of flavonoids. Food Chem. 1996;57(1):43–6.CrossRef Holiman PCH, Hertog MGL, Katan MB. Analysis and health effects of flavonoids. Food Chem. 1996;57(1):43–6.CrossRef
31.
go back to reference Razali N, Aziz AA, Junit SM. Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp. Genes Nutr. 2010;5(4):331–41.PubMedCentralPubMedCrossRef Razali N, Aziz AA, Junit SM. Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp. Genes Nutr. 2010;5(4):331–41.PubMedCentralPubMedCrossRef
32.
go back to reference Niki E. Lipid peroxidation: Physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–84.PubMedCrossRef Niki E. Lipid peroxidation: Physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–84.PubMedCrossRef
33.
go back to reference Brattin WJ, Glende Jr EA, Recknagel RO. Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med. 1985;1(1):27–38.PubMedCrossRef Brattin WJ, Glende Jr EA, Recknagel RO. Pathological mechanisms in carbon tetrachloride hepatotoxicity. J Free Radic Biol Med. 1985;1(1):27–38.PubMedCrossRef
35.
go back to reference Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res. 1990;238(3):223–33.PubMedCrossRef Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res. 1990;238(3):223–33.PubMedCrossRef
36.
go back to reference Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol. 2015;4:193–9.PubMedCrossRef Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol. 2015;4:193–9.PubMedCrossRef
37.
go back to reference Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of ginsenoside Rg(3) against cyclophosphamide-induced DNA damage and cell apoptosis in mice. Arch Toxicol. 2008;82(2):117–23.PubMedCrossRef Zhang QH, Wu CF, Duan L, Yang JY. Protective effects of ginsenoside Rg(3) against cyclophosphamide-induced DNA damage and cell apoptosis in mice. Arch Toxicol. 2008;82(2):117–23.PubMedCrossRef
38.
go back to reference Aengwanich W, Suttajit M. Effect of polyphenols extracted from Tamarind (Tamarindus indica L.) seed coat on physiological changes, heterophil/lymphocyte ratio, oxidative stress and body weight of broilers (Gallus domesticus) under chronic heat stress. Anim Sci J. 2010;81(2):264–70.PubMedCrossRef Aengwanich W, Suttajit M. Effect of polyphenols extracted from Tamarind (Tamarindus indica L.) seed coat on physiological changes, heterophil/lymphocyte ratio, oxidative stress and body weight of broilers (Gallus domesticus) under chronic heat stress. Anim Sci J. 2010;81(2):264–70.PubMedCrossRef
39.
go back to reference Nakchat O, Nalinratana N, Meksuriyen D, Pongsamart S. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress. Asian Pac J Trop Biomed. 2014;4(5):379–85.PubMedCentralPubMedCrossRef Nakchat O, Nalinratana N, Meksuriyen D, Pongsamart S. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress. Asian Pac J Trop Biomed. 2014;4(5):379–85.PubMedCentralPubMedCrossRef
41.
go back to reference Yang S-Y, Hong C-O, Lee GP, Kim C-T, Lee K-W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem Toxicol. 2013;55:92–9.PubMedCrossRef Yang S-Y, Hong C-O, Lee GP, Kim C-T, Lee K-W. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem Toxicol. 2013;55:92–9.PubMedCrossRef
42.
go back to reference Alía M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol. 2006;212(2):110–8.PubMedCrossRef Alía M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol. 2006;212(2):110–8.PubMedCrossRef
44.
go back to reference Kim J-K, Jang H-D. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells. Int J Mol Sci. 2014;15(7):12149–65.PubMedCentralPubMedCrossRef Kim J-K, Jang H-D. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells. Int J Mol Sci. 2014;15(7):12149–65.PubMedCentralPubMedCrossRef
45.
go back to reference Siddhuraju P. Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat. LWT - Food Science and Technology. 2007;40(6):982–90.CrossRef Siddhuraju P. Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat. LWT - Food Science and Technology. 2007;40(6):982–90.CrossRef
46.
go back to reference Sudjaroen Y, Haubner R, Wurtele G, Hull WE, Erben G, Spiegelhalder B, et al. Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol. 2005;43(11):1673–82.PubMedCrossRef Sudjaroen Y, Haubner R, Wurtele G, Hull WE, Erben G, Spiegelhalder B, et al. Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol. 2005;43(11):1673–82.PubMedCrossRef
47.
go back to reference Baba S, Osakabe N, Natsume M, Terao J. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radic Biol Med. 2002;33(1):142–8.PubMedCrossRef Baba S, Osakabe N, Natsume M, Terao J. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radic Biol Med. 2002;33(1):142–8.PubMedCrossRef
48.
go back to reference Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, et al. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med. 2009;46(10):1319–27.PubMedCrossRef Cho ES, Jang YJ, Kang NJ, Hwang MK, Kim YT, Lee KW, et al. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med. 2009;46(10):1319–27.PubMedCrossRef
49.
go back to reference Gali HU, Perchellet EM, Gao XM, Karchesy JJ, Perchellet JP. Comparison of the inhibitory effects of monomeric, dimeric, and trimeric procyanidins on the biochemical markers of skin tumor promotion in mouse epidermis in vivo. Planta Med. 1994;60(3):235–9.PubMedCrossRef Gali HU, Perchellet EM, Gao XM, Karchesy JJ, Perchellet JP. Comparison of the inhibitory effects of monomeric, dimeric, and trimeric procyanidins on the biochemical markers of skin tumor promotion in mouse epidermis in vivo. Planta Med. 1994;60(3):235–9.PubMedCrossRef
50.
go back to reference Sakano K, Mizutani M, Murata M, Oikawa S, Hiraku Y, Kawanishi S. Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage. Free Radic Biol Med. 2005;39(8):1041–9.PubMedCrossRef Sakano K, Mizutani M, Murata M, Oikawa S, Hiraku Y, Kawanishi S. Procyanidin B2 has anti- and pro-oxidant effects on metal-mediated DNA damage. Free Radic Biol Med. 2005;39(8):1041–9.PubMedCrossRef
51.
go back to reference Reddy N, Navanesan S, Sinniah S, Wahab N, Sim K. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Complement Altern Med. 2012;12(1):128.PubMedCentralPubMedCrossRef Reddy N, Navanesan S, Sinniah S, Wahab N, Sim K. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Complement Altern Med. 2012;12(1):128.PubMedCentralPubMedCrossRef
52.
go back to reference da Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, et al. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res. 2004;38(11):1241–53.PubMedCrossRef da Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, et al. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res. 2004;38(11):1241–53.PubMedCrossRef
53.
go back to reference Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric. 2013;93(13):3205–8.PubMedCrossRef Stojković D, Petrović J, Soković M, Glamočlija J, Kukić-Marković J, Petrović S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric. 2013;93(13):3205–8.PubMedCrossRef
54.
go back to reference Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem. 2011;349(1-2):11–9.CrossRef Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem. 2011;349(1-2):11–9.CrossRef
55.
go back to reference Son S, Lewis BA. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure − activity relationship. J Agric Food Chem. 2002;50(3):468–72.PubMedCrossRef Son S, Lewis BA. Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure − activity relationship. J Agric Food Chem. 2002;50(3):468–72.PubMedCrossRef
56.
go back to reference Lucarini M, Pedulli GF, Cipollone M. Bond dissociation enthalpy of.alpha.-tocopherol and other phenolic antioxidants. J Org Chem. 1994;59(17):5063–70.CrossRef Lucarini M, Pedulli GF, Cipollone M. Bond dissociation enthalpy of.alpha.-tocopherol and other phenolic antioxidants. J Org Chem. 1994;59(17):5063–70.CrossRef
57.
go back to reference Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56.PubMedCrossRef Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56.PubMedCrossRef
Metadata
Title
Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress
Authors
Nurhanani Razali
Sarni Mat Junit
Azhar Ariffin
Nur Siti Fatimah Ramli
Azlina Abdul Aziz
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0963-2

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue