Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2018

Open Access 01-12-2018 | Research article

Polygenic analysis of inflammatory disease variants and effects on microglia in the aging brain

Authors: Daniel Felsky, Ellis Patrick, Julie A. Schneider, Sara Mostafavi, Chris Gaiteri, Nikolaos Patsopoulos, David A. Bennett, Philip L. De Jager

Published in: Molecular Neurodegeneration | Issue 1/2018

Login to get access

Abstract

Background

The role of the innate immune system in Alzheimer’s disease (AD) and neurodegenerative disease susceptibility has recently been highlighted in genetic studies. However, we do not know whether risk for inflammatory disease predisposes unaffected individuals to late-life cognitive deficits or AD-related neuropathology. We investigated whether genetic risk scores for seven immune diseases and central nervous system traits were related to cognitive decline (nmax = 1601), classical AD neuropathology (nmax = 985), or microglial density (nmax = 184).

Methods

Longitudinal cognitive decline, postmortem amyloid and tau neuropathology, microglial density, and gene module expression from bulk brain tissue were all measured in participants from two large cohorts (the Rush Religious Orders Study and Memory and Aging Project; ROS/MAP) of elderly subjects (mean age at entry 78 +/− 8.7 years). We analyzed data primarily using robust regression methods. Neuropathologists were blind to clinical data.

Results

The AD genetic risk scores, including and excluding APOE effects, were strongly associated with cognitive decline in all domains (min Puncor = 3.2 × 10− 29). Multiple sclerosis (MS), Parkinson’s disease, and schizophrenia risk did not influence cognitive decline in older age, but the rheumatoid arthritis (RA) risk score alone was significantly associated with microglial density after correction (t146 = − 3.88, Puncor = 1.6 × 10− 4). Post-hoc tests found significant effects of the RA genetic risk score in multiple regions and stages of microglial activation (min Puncor = 1.5 × 10− 6). However, these associations were driven by only one or two variants, rather than cumulative polygenicity. Further, individual MS (Pone-sided < 8.4 × 10− 4) and RA (Pone-sided = 3 × 10− 4) variants associated with higher microglial density were also associated with increased expression of brain immune gene modules.

Conclusions

Our results demonstrate that global risk of inflammatory disease does not strongly influence aging-related cognitive decline but that susceptibility variants that influence peripheral immune function also alter microglial density and immune gene expression in the aging brain, opening a new perspective on the control of microglial and immune responses within the central nervous system. Further study on the molecular mechanisms of peripheral immune disease risk influencing glial cell activation will be required to identify key regulators of these pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661–73.CrossRefPubMed Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661–73.CrossRefPubMed
2.
go back to reference Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science. 2014;344:519–23.CrossRefPubMedPubMedCentral Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science. 2014;344:519–23.CrossRefPubMedPubMedCentral
3.
go back to reference Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50.CrossRefPubMedPubMedCentral Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50.CrossRefPubMedPubMedCentral
4.
go back to reference Huang K, Marcora E, Pimenova A, Narzo AD, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci. 2017;8;1052-61.CrossRef Huang K, Marcora E, Pimenova A, Narzo AD, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci. 2017;8;1052-61.CrossRef
5.
go back to reference Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al. Genome-wide association meta-analysis of Neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 2014;10:e1004606.CrossRefPubMedPubMedCentral Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al. Genome-wide association meta-analysis of Neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 2014;10:e1004606.CrossRefPubMedPubMedCentral
6.
go back to reference De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, et al. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging. 2012;33:1017.e1–15.CrossRef De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, et al. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol Aging. 2012;33:1017.e1–15.CrossRef
7.
go back to reference Chibnik LB, White CC, Mukherjee S, Raj T, Yu L, Larson EB, et al. Susceptibility to neurofibrillary tangles: role of the PTPRD locus and limited pleiotropy with other neuropathologies. Mol Psychiatry. 2017;23(6):1521–9.CrossRefPubMedPubMedCentral Chibnik LB, White CC, Mukherjee S, Raj T, Yu L, Larson EB, et al. Susceptibility to neurofibrillary tangles: role of the PTPRD locus and limited pleiotropy with other neuropathologies. Mol Psychiatry. 2017;23(6):1521–9.CrossRefPubMedPubMedCentral
8.
go back to reference Chou RC, Kane M, Ghimire S, Gautam S, Gui J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs. 2016;30:1111–20.CrossRefPubMedPubMedCentral Chou RC, Kane M, Ghimire S, Gautam S, Gui J. Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs. 2016;30:1111–20.CrossRefPubMedPubMedCentral
9.
go back to reference Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, Lassmann H. Multiple sclerosis and Alzheimer’s disease. Ann Neurol. 2008;63:174–83.CrossRefPubMed Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, Lassmann H. Multiple sclerosis and Alzheimer’s disease. Ann Neurol. 2008;63:174–83.CrossRefPubMed
10.
go back to reference Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefPubMedCentral Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.CrossRefPubMedCentral
11.
12.
go back to reference Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the rush memory and aging project. Curr Alzheimer Res. 2012;9:646–63.CrossRefPubMedPubMedCentral Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS. Overview and findings from the rush memory and aging project. Curr Alzheimer Res. 2012;9:646–63.CrossRefPubMedPubMedCentral
13.
go back to reference Bennett DA, Yu L, De Jager PL. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem Pharmacol. 2014;88:617–30.CrossRefPubMedPubMedCentral Bennett DA, Yu L, De Jager PL. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem Pharmacol. 2014;88:617–30.CrossRefPubMedPubMedCentral
14.
go back to reference Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84:210–23.CrossRefPubMedPubMedCentral Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009;84:210–23.CrossRefPubMedPubMedCentral
15.
go back to reference Jia X, Han B, Onengut-Gumuscu S, Chen W-M, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8:e64683.CrossRefPubMedPubMedCentral Jia X, Han B, Onengut-Gumuscu S, Chen W-M, Concannon PJ, Rich SS, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One. 2013;8:e64683.CrossRefPubMedPubMedCentral
16.
go back to reference Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA. Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol. 2012;72:599–609.CrossRefPubMedPubMedCentral Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA. Relation of neuropathology to cognition in persons without cognitive impairment. Ann Neurol. 2012;72:599–609.CrossRefPubMedPubMedCentral
17.
go back to reference Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, et al. Natural history of mild cognitive impairment in older persons. Neurology. 2002;59:198–205.CrossRefPubMed Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, et al. Natural history of mild cognitive impairment in older persons. Neurology. 2002;59:198–205.CrossRefPubMed
18.
go back to reference Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat Oxf Engl. 2007;8:118–27.CrossRef Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat Oxf Engl. 2007;8:118–27.CrossRef
19.
go back to reference Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E, et al. Brain xQTL Map: Integrating The Genetic Architecture Of The Human Brain Transcriptome And Epigenome. bioRxiv. 2017;142927 Ng B, White CC, Klein HU, Sieberts SK, McCabe C, Patrick E, et al. Brain xQTL Map: Integrating The Genetic Architecture Of The Human Brain Transcriptome And Epigenome. bioRxiv. 2017;142927
20.
go back to reference Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.CrossRef Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.CrossRef
21.
go back to reference The GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.CrossRef The GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.CrossRef
22.
go back to reference Gaiteri C, Chen M, Szymanski B, Kuzmin K, Xie J, Lee C, et al. Identifying robust communities and multi-community nodes by combining top-down and bottom-up approaches to clustering. ArXiv150104709 Phys Q-Bio [Internet]. 2015 [cited 2015 Sep 13]; Available from: http://arxiv.org/abs/1501.04709 Gaiteri C, Chen M, Szymanski B, Kuzmin K, Xie J, Lee C, et al. Identifying robust communities and multi-community nodes by combining top-down and bottom-up approaches to clustering. ArXiv150104709 Phys Q-Bio [Internet]. 2015 [cited 2015 Sep 13]; Available from: http://​arxiv.​org/​abs/​1501.​04709
23.
go back to reference Mostafavi S, Gaiteri C, Sullivan S, White C, Takasi S, Xu J, et al. A molecular network of the aging brain implicates INPPL1 and PLXNB1 in Alzheimer’s disease. bioRxiv. 2017;205807 Mostafavi S, Gaiteri C, Sullivan S, White C, Takasi S, Xu J, et al. A molecular network of the aging brain implicates INPPL1 and PLXNB1 in Alzheimer’s disease. bioRxiv. 2017;205807
25.
go back to reference Patrick E, Olah M, Taga M, Klein H-U, Xu J, White CC, et al. A cortical immune network map identifies a subset of human microglia involved in Tau pathology. bioRxiv. 2017;234351 Patrick E, Olah M, Taga M, Klein H-U, Xu J, White CC, et al. A cortical immune network map identifies a subset of human microglia involved in Tau pathology. bioRxiv. 2017;234351
26.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral
27.
go back to reference R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: Vienna, Austria: R Foundation For Statistical Computing; 2014. Available from: http://www.r-project.org/ R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: Vienna, Austria: R Foundation For Statistical Computing; 2014. Available from: http://​www.​r-project.​org/​
29.
go back to reference Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMed Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.CrossRefPubMed
30.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
31.
go back to reference Mormino EC, Sperling RA, Holmes AJ, Buckner RL, De Jager PL, Smoller JW, et al. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology. 2016;87:481–8.CrossRefPubMedPubMedCentral Mormino EC, Sperling RA, Holmes AJ, Buckner RL, De Jager PL, Smoller JW, et al. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology. 2016;87:481–8.CrossRefPubMedPubMedCentral
32.
go back to reference Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.CrossRefPubMed Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.CrossRefPubMed
33.
go back to reference Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.CrossRefPubMedPubMedCentral Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.CrossRefPubMedPubMedCentral
34.
go back to reference Fehrmann RSN, Jansen RC, Veldink JH, Westra H-J, Arends D, Bonder MJ, et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 2011;7:e1002197.CrossRefPubMedPubMedCentral Fehrmann RSN, Jansen RC, Veldink JH, Westra H-J, Arends D, Bonder MJ, et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 2011;7:e1002197.CrossRefPubMedPubMedCentral
35.
go back to reference Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67:122–31.CrossRefPubMedPubMedCentral Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67:122–31.CrossRefPubMedPubMedCentral
36.
go back to reference Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45:24–36.CrossRefPubMed Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S, et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45:24–36.CrossRefPubMed
37.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–59.CrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–59.CrossRef
38.
go back to reference Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR Immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59:137–50.CrossRefPubMed Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR Immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59:137–50.CrossRefPubMed
39.
go back to reference Forero DA, González-Giraldo Y, López-Quintero C, Castro-Vega LJ, Barreto GE, Perry G. Meta-analysis of telomere length in Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2016;71:1069–73.CrossRefPubMedPubMedCentral Forero DA, González-Giraldo Y, López-Quintero C, Castro-Vega LJ, Barreto GE, Perry G. Meta-analysis of telomere length in Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2016;71:1069–73.CrossRefPubMedPubMedCentral
40.
go back to reference Zhan Y, Song C, Karlsson R, Tillander A, Reynolds CA, Pedersen NL, et al. Telomere length shortening and Alzheimer disease—a Mendelian randomization study. JAMA Neurol. 2015;72:1202–3.CrossRefPubMed Zhan Y, Song C, Karlsson R, Tillander A, Reynolds CA, Pedersen NL, et al. Telomere length shortening and Alzheimer disease—a Mendelian randomization study. JAMA Neurol. 2015;72:1202–3.CrossRefPubMed
41.
go back to reference Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54:15–39.CrossRefPubMed Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54:15–39.CrossRefPubMed
42.
go back to reference Boche D, Perry VH, Nicoll J. a. R. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:3–18.CrossRefPubMed Boche D, Perry VH, Nicoll J. a. R. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:3–18.CrossRefPubMed
43.
go back to reference Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–427e2.CrossRefPubMedPubMedCentral Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–427e2.CrossRefPubMedPubMedCentral
Metadata
Title
Polygenic analysis of inflammatory disease variants and effects on microglia in the aging brain
Authors
Daniel Felsky
Ellis Patrick
Julie A. Schneider
Sara Mostafavi
Chris Gaiteri
Nikolaos Patsopoulos
David A. Bennett
Philip L. De Jager
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2018
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-018-0272-6

Other articles of this Issue 1/2018

Molecular Neurodegeneration 1/2018 Go to the issue