Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Podosomes in migrating microglia: components and matrix degradation

Authors: Catherine Vincent, Tamjeed A Siddiqui, Lyanne C Schlichter

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

To perform their functions during development and after central nervous system injury, the brain’s immune cells (microglia) must migrate through dense neuropil and extracellular matrix (ECM), but it is not known how they degrade the ECM. In several cancer cell lines and peripheral cells, small multi-molecular complexes (invadopodia in cancer cells, podosomes in nontumor cells) can both adhere to and dissolve the ECM. Podosomes are tiny multi-molecular structures (0.4 to 1 μm) with a core, rich in F-actin and its regulatory molecules, surrounded by a ring containing adhesion and structural proteins.

Methods

Using rat microglia, we performed several functional assays: live cell imaging for chemokinesis, degradation of the ECM component, fibronectin, and chemotactic invasion through Matrigel™, a basement membrane type of ECM. Fluorescent markers were used with high-resolution microscopy to identify podosomes and their components.

Results

The fan-shaped lamella at the leading edge of migrating microglia contained a large F-actin-rich superstructure composed of many tiny (<1 μm) punctae that were adjacent to the substrate, as expected for cell–matrix contact points. This superstructure (which we call a podonut) was restricted to cells with lamellae, and conversely almost every lamella contained a podonut. Each podonut comprised hundreds of podosomes, which could also be seen individually adjacent to the podonut. Microglial podosomes contained hallmark components of these structures previously seen in several cell types: the plaque protein talin in the ring, and F-actin and actin-related protein (Arp) 2 in the core. In microglia, podosomes were also enriched in phosphotyrosine residues and three tyrosine-kinase-regulated proteins: tyrosine kinase substrate with five Src homology 3 domains (Tks5), phosphorylated caveolin-1, and Nox1 (nicotinamide adenine dinucleotide phosphate oxidase 1). When microglia expressed podonuts, they were able to degrade the ECM components, fibronectin, and Matrigel™.

Conclusion

The discovery of functional podosomes in microglia has broad implications, because migration of these innate immune cells is crucial in the developing brain, after damage, and in disease states involving inflammation and matrix remodeling. Based on the roles of invadosomes in peripheral tissues, we propose that microglia use these complex structures to adhere to and degrade the ECM for efficient migration.
Literature
1.
go back to reference Alberts B, Wilson JH, Hunt T: Molecular Biology of the Cell. 5th edition. Garland Science, New York; 2008. Alberts B, Wilson JH, Hunt T: Molecular Biology of the Cell. 5th edition. Garland Science, New York; 2008.
2.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845.CrossRefPubMedPubMedCentral Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841–845.CrossRefPubMedPubMedCentral
3.
go back to reference Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193–201.CrossRefPubMed Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193–201.CrossRefPubMed
4.
go back to reference Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM: A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007, 4:571–579.CrossRefPubMedPubMedCentral Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM: A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007, 4:571–579.CrossRefPubMedPubMedCentral
5.
go back to reference Davoust N, Vuaillat C, Androdias G, Nataf S: From bone marrow to microglia: barriers and avenues. Trends Immunol 2008, 29:227–234.CrossRefPubMed Davoust N, Vuaillat C, Androdias G, Nataf S: From bone marrow to microglia: barriers and avenues. Trends Immunol 2008, 29:227–234.CrossRefPubMed
6.
7.
go back to reference Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461–553.CrossRefPubMed Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461–553.CrossRefPubMed
8.
go back to reference Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006, 1:127–137.CrossRefPubMed Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006, 1:127–137.CrossRefPubMed
9.
go back to reference Koeberle PD, Schlichter LC: Targeting KV channels rescues retinal ganglion cells in vivo directly and by reducing inflammation. Channels (Austin) 2010, 4:337–346.CrossRef Koeberle PD, Schlichter LC: Targeting KV channels rescues retinal ganglion cells in vivo directly and by reducing inflammation. Channels (Austin) 2010, 4:337–346.CrossRef
10.
go back to reference Moxon-Emre I, Schlichter LC: Neutrophil depletion reduces blood–brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 2011, 70:218–235.CrossRefPubMed Moxon-Emre I, Schlichter LC: Neutrophil depletion reduces blood–brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 2011, 70:218–235.CrossRefPubMed
11.
go back to reference Moxon-Emre I, Schlichter LC: Evolution of inflammation and white matter injury in a model of transient focal ischemia. J Neuropathol Exp Neurol 2010, 69:1–15.CrossRefPubMed Moxon-Emre I, Schlichter LC: Evolution of inflammation and white matter injury in a model of transient focal ischemia. J Neuropathol Exp Neurol 2010, 69:1–15.CrossRefPubMed
12.
go back to reference Dityatev A, Seidenbecher CI, Schachner M: Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2010, 33:503–512.CrossRefPubMed Dityatev A, Seidenbecher CI, Schachner M: Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2010, 33:503–512.CrossRefPubMed
14.
go back to reference Lauffenburger DA, Horwitz AF: Cell migration: a physically integrated molecular process. Cell 1996, 84:359–369.CrossRefPubMed Lauffenburger DA, Horwitz AF: Cell migration: a physically integrated molecular process. Cell 1996, 84:359–369.CrossRefPubMed
16.
go back to reference Murphy DA, Courtneidge SA: The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011, 12:413–426.CrossRefPubMedPubMedCentral Murphy DA, Courtneidge SA: The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011, 12:413–426.CrossRefPubMedPubMedCentral
17.
go back to reference David-Pfeuty T, Singer SJ: Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci U S A 1980, 77:6687–6691.CrossRefPubMedPubMedCentral David-Pfeuty T, Singer SJ: Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci U S A 1980, 77:6687–6691.CrossRefPubMedPubMedCentral
18.
go back to reference Tarone G, Cirillo D, Giancotti FG, Comoglio PM, Marchisio PC: Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp Cell Res 1985, 159:141–157.CrossRefPubMed Tarone G, Cirillo D, Giancotti FG, Comoglio PM, Marchisio PC: Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp Cell Res 1985, 159:141–157.CrossRefPubMed
19.
go back to reference Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A: Cell–substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 1984, 99:1696–1705.CrossRefPubMed Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A: Cell–substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 1984, 99:1696–1705.CrossRefPubMed
20.
go back to reference Gimona M, Buccione R, Courtneidge SA, Linder S: Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 2008, 20:235–241.CrossRefPubMed Gimona M, Buccione R, Courtneidge SA, Linder S: Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 2008, 20:235–241.CrossRefPubMed
21.
go back to reference Linder S: The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 2007, 17:107–117.CrossRefPubMed Linder S: The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 2007, 17:107–117.CrossRefPubMed
22.
go back to reference Kaushal V, Koeberle PD, Wang Y, Schlichter LC: The Ca2 + -activated K + channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 2007, 27:234–244.CrossRefPubMed Kaushal V, Koeberle PD, Wang Y, Schlichter LC: The Ca2 + -activated K + channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 2007, 27:234–244.CrossRefPubMed
23.
go back to reference Schlichter LC, Kaushal V, Moxon-Emre I, Sivagnanam V, Vincent C: The Ca2+ activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. J Neuroinflammation 2010, 7:4.CrossRefPubMedPubMedCentral Schlichter LC, Kaushal V, Moxon-Emre I, Sivagnanam V, Vincent C: The Ca2+ activated SK3 channel is expressed in microglia in the rat striatum and contributes to microglia-mediated neurotoxicity in vitro. J Neuroinflammation 2010, 7:4.CrossRefPubMedPubMedCentral
24.
go back to reference Sivagnanam V, Zhu X, Schlichter LC: Dominance of E. coli phagocytosis over LPS in the inflammatory response of microglia. J Neuroimmunol 2010, 227:111–119.CrossRefPubMed Sivagnanam V, Zhu X, Schlichter LC: Dominance of E. coli phagocytosis over LPS in the inflammatory response of microglia. J Neuroimmunol 2010, 227:111–119.CrossRefPubMed
27.
go back to reference Campisi P, Egiazarian K: Blind Image Deconvolution: Theory and Applications. CRC Press, Boca Raton, FL; 2007.CrossRef Campisi P, Egiazarian K: Blind Image Deconvolution: Theory and Applications. CRC Press, Boca Raton, FL; 2007.CrossRef
28.
go back to reference Linder S, Aepfelbacher M: Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 2003, 13:376–385.CrossRefPubMed Linder S, Aepfelbacher M: Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 2003, 13:376–385.CrossRefPubMed
29.
go back to reference Abram CL, Seals DF, Pass I, Salinsky D, Maurer L, Roth TM, Courtneidge SA: The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem 2003, 278:16844–16851.CrossRefPubMed Abram CL, Seals DF, Pass I, Salinsky D, Maurer L, Roth TM, Courtneidge SA: The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem 2003, 278:16844–16851.CrossRefPubMed
30.
go back to reference Seals DF, Azucena EF, Pass I, Tesfay L, Gordon R, Woodrow M, Resau JH, Courtneidge SA: The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005, 7:155–165.CrossRefPubMed Seals DF, Azucena EF, Pass I, Tesfay L, Gordon R, Woodrow M, Resau JH, Courtneidge SA: The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 2005, 7:155–165.CrossRefPubMed
31.
go back to reference Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA: Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007, 177:683–694.CrossRefPubMedPubMedCentral Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA: Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol 2007, 177:683–694.CrossRefPubMedPubMedCentral
32.
go back to reference Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP: Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000, 14:1750–1775.CrossRefPubMed Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP: Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000, 14:1750–1775.CrossRefPubMed
33.
go back to reference Colonna C, Podesta EJ: ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells. Exp Cell Res 2005, 304:432–442.CrossRefPubMed Colonna C, Podesta EJ: ACTH-induced caveolin-1 tyrosine phosphorylation is related to podosome assembly in Y1 adrenal cells. Exp Cell Res 2005, 304:432–442.CrossRefPubMed
34.
go back to reference Gianni D, Bohl B, Courtneidge SA, Bokoch GM: The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell 2008, 19:2984–2994.CrossRefPubMedPubMedCentral Gianni D, Bohl B, Courtneidge SA, Bokoch GM: The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell 2008, 19:2984–2994.CrossRefPubMedPubMedCentral
35.
go back to reference Gianni D, Diaz B, Taulet N, Fowler B, Courtneidge SA, Bokoch GM: Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci Signal 2009, 2:ra54.CrossRefPubMedPubMedCentral Gianni D, Diaz B, Taulet N, Fowler B, Courtneidge SA, Bokoch GM: Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci Signal 2009, 2:ra54.CrossRefPubMedPubMedCentral
36.
go back to reference Burgstaller G, Gimona M: Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005, 288:H3001-H3005.CrossRefPubMed Burgstaller G, Gimona M: Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2005, 288:H3001-H3005.CrossRefPubMed
37.
go back to reference Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H: Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 2002, 168:3221–3226.CrossRefPubMed Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmann H: Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J Immunol 2002, 168:3221–3226.CrossRefPubMed
38.
go back to reference Cartier L, Hartley O, Dubois-Dauphin M, Krause KH: Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 2005, 48:16–42.CrossRefPubMed Cartier L, Hartley O, Dubois-Dauphin M, Krause KH: Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 2005, 48:16–42.CrossRefPubMed
39.
go back to reference Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S: Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001, 21:1975–1982.PubMed Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S: Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001, 21:1975–1982.PubMed
40.
go back to reference Novak U, Kaye AH: Extracellular matrix and the brain: components and function. J Clin Neurosci 2000, 7:280–290.CrossRefPubMed Novak U, Kaye AH: Extracellular matrix and the brain: components and function. J Clin Neurosci 2000, 7:280–290.CrossRefPubMed
41.
go back to reference Galtrey CM, Fawcett JW: The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 2007, 54:1–18.CrossRefPubMed Galtrey CM, Fawcett JW: The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 2007, 54:1–18.CrossRefPubMed
42.
go back to reference Bonneh-Barkay D, Wiley CA: Brain extracellular matrix in neurodegeneration. Brain Pathol 2009, 19:573–585.CrossRefPubMed Bonneh-Barkay D, Wiley CA: Brain extracellular matrix in neurodegeneration. Brain Pathol 2009, 19:573–585.CrossRefPubMed
43.
go back to reference Busch SA, Silver J: The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007, 17:120–127.CrossRefPubMed Busch SA, Silver J: The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007, 17:120–127.CrossRefPubMed
44.
go back to reference Morwood SR, Nicholson LB: Modulation of the immune response by extracellular matrix proteins. Arch Immunol Ther Exp (Warsz) 2006, 54:367–374.CrossRef Morwood SR, Nicholson LB: Modulation of the immune response by extracellular matrix proteins. Arch Immunol Ther Exp (Warsz) 2006, 54:367–374.CrossRef
45.
go back to reference Angelov DN, Walther M, Streppel M, Guntinas-Lichius O, Neiss WF, Probstmeier R, Pesheva P: Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. J Neurosci 1998, 18:6218–6229.PubMed Angelov DN, Walther M, Streppel M, Guntinas-Lichius O, Neiss WF, Probstmeier R, Pesheva P: Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. J Neurosci 1998, 18:6218–6229.PubMed
46.
go back to reference Lively S, Moxon-Emre I, Schlichter LC: SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. J Neuropathol Exp Neurol 2011, 70:913–929.CrossRefPubMed Lively S, Moxon-Emre I, Schlichter LC: SC1/hevin and reactive gliosis after transient ischemic stroke in young and aged rats. J Neuropathol Exp Neurol 2011, 70:913–929.CrossRefPubMed
47.
go back to reference del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA: Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007, 38:646–651.CrossRefPubMed del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA: Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007, 38:646–651.CrossRefPubMed
48.
go back to reference Saltel F, Daubon T, Juin A, Ganuza IE, Veillat V, Genot E: Invadosomes: intriguing structures with promise. Eur J Cell Biol 2011, 90:100–107.CrossRefPubMed Saltel F, Daubon T, Juin A, Ganuza IE, Veillat V, Genot E: Invadosomes: intriguing structures with promise. Eur J Cell Biol 2011, 90:100–107.CrossRefPubMed
49.
go back to reference Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G: Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell 2003, 14:2482–2491.CrossRefPubMedPubMedCentral Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G: Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell 2003, 14:2482–2491.CrossRefPubMedPubMedCentral
50.
go back to reference Messier JM, Shaw LM, Chafel M, Matsudaira P, Mercurio AM: Fimbrin localized to an insoluble cytoskeletal fraction is constitutively phosphorylated on its headpiece domain in adherent macrophages. Cell Motil Cytoskeleton 1993, 25:223–233.CrossRefPubMed Messier JM, Shaw LM, Chafel M, Matsudaira P, Mercurio AM: Fimbrin localized to an insoluble cytoskeletal fraction is constitutively phosphorylated on its headpiece domain in adherent macrophages. Cell Motil Cytoskeleton 1993, 25:223–233.CrossRefPubMed
51.
go back to reference Quintavalle M, Elia L, Condorelli G, Courtneidge SA: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 2010, 189:13–22.CrossRefPubMedPubMedCentral Quintavalle M, Elia L, Condorelli G, Courtneidge SA: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 2010, 189:13–22.CrossRefPubMedPubMedCentral
52.
go back to reference Osiak AE, Zenner G, Linder S: Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res 2005, 307:342–353.CrossRefPubMed Osiak AE, Zenner G, Linder S: Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res 2005, 307:342–353.CrossRefPubMed
53.
go back to reference Cougoule C, Le Cabec V, Poincloux R, Al Saati T, Mege JL, Tabouret G, Lowell CA, Laviolette-Malirat N, Maridonneau-Parini I: Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2010, 115:1444–1452.CrossRefPubMed Cougoule C, Le Cabec V, Poincloux R, Al Saati T, Mege JL, Tabouret G, Lowell CA, Laviolette-Malirat N, Maridonneau-Parini I: Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis. Blood 2010, 115:1444–1452.CrossRefPubMed
54.
go back to reference Rottiers P, Saltel F, Daubon T, Chaigne-Delalande B, Tridon V, Billottet C, Reuzeau E, Genot E: TGFβ-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J Cell Sci 2009, 122:4311–4318.CrossRefPubMed Rottiers P, Saltel F, Daubon T, Chaigne-Delalande B, Tridon V, Billottet C, Reuzeau E, Genot E: TGFβ-induced endothelial podosomes mediate basement membrane collagen degradation in arterial vessels. J Cell Sci 2009, 122:4311–4318.CrossRefPubMed
55.
go back to reference Soriano P, Montgomery C, Geske R, Bradley A: Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991, 64:693–702.CrossRefPubMed Soriano P, Montgomery C, Geske R, Bradley A: Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991, 64:693–702.CrossRefPubMed
56.
go back to reference Olivier A, Jeanson-Leh L, Bouma G, Compagno D, Blondeau J, Seye K, Charrier S, Burns S, Thrasher AJ, Danos O, Vainchenker W, Galy A: A partial down-regulation of WASP is sufficient to inhibit podosome formation in dendritic cells. Mol Ther 2006, 13:729–737.CrossRefPubMed Olivier A, Jeanson-Leh L, Bouma G, Compagno D, Blondeau J, Seye K, Charrier S, Burns S, Thrasher AJ, Danos O, Vainchenker W, Galy A: A partial down-regulation of WASP is sufficient to inhibit podosome formation in dendritic cells. Mol Ther 2006, 13:729–737.CrossRefPubMed
57.
go back to reference Isaac BM, Ishihara D, Nusblat LM, Gevrey JC, Dovas A, Condeelis J, Cox D: N-WASP has the ability to compensate for the loss of WASP in macrophage podosome formation and chemotaxis. Exp Cell Res 2010, 316:3406–3416.CrossRefPubMedPubMedCentral Isaac BM, Ishihara D, Nusblat LM, Gevrey JC, Dovas A, Condeelis J, Cox D: N-WASP has the ability to compensate for the loss of WASP in macrophage podosome formation and chemotaxis. Exp Cell Res 2010, 316:3406–3416.CrossRefPubMedPubMedCentral
58.
go back to reference Zicha D, Allen WE, Brickell PM, Kinnon C, Dunn GA, Jones GE, Thrasher AJ: Chemotaxis of macrophages is abolished in the Wiskott–Aldrich syndrome. Br J Haematol 1998, 101:659–665.CrossRefPubMed Zicha D, Allen WE, Brickell PM, Kinnon C, Dunn GA, Jones GE, Thrasher AJ: Chemotaxis of macrophages is abolished in the Wiskott–Aldrich syndrome. Br J Haematol 1998, 101:659–665.CrossRefPubMed
60.
go back to reference Linder S, Higgs H, Hufner K, Schwarz K, Pannicke U, Aepfelbacher M: The polarization defect of Wiskott–Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J Immunol 2000, 165:221–225.CrossRefPubMed Linder S, Higgs H, Hufner K, Schwarz K, Pannicke U, Aepfelbacher M: The polarization defect of Wiskott–Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J Immunol 2000, 165:221–225.CrossRefPubMed
61.
go back to reference Tanaka S, Takahashi N, Udagawa N, Murakami H, Nakamura I, Kurokawa T, Suda T: Possible involvement of focal adhesion kinase, p125FAK, in osteoclastic bone resorption. J Cell Biochem 1995, 58:424–435.CrossRefPubMed Tanaka S, Takahashi N, Udagawa N, Murakami H, Nakamura I, Kurokawa T, Suda T: Possible involvement of focal adhesion kinase, p125FAK, in osteoclastic bone resorption. J Cell Biochem 1995, 58:424–435.CrossRefPubMed
62.
go back to reference Cory GO, Garg R, Cramer R, Ridley AJ: Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation Wiskott–Aldrich syndrome protein. J Biol Chem 2002, 277:45115–45121.CrossRefPubMed Cory GO, Garg R, Cramer R, Ridley AJ: Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation Wiskott–Aldrich syndrome protein. J Biol Chem 2002, 277:45115–45121.CrossRefPubMed
63.
go back to reference Burns S, Thrasher AJ, Blundell MP, Machesky L, Jones GE: Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 2001, 98:1142–1149.CrossRefPubMed Burns S, Thrasher AJ, Blundell MP, Machesky L, Jones GE: Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood 2001, 98:1142–1149.CrossRefPubMed
64.
go back to reference Linder S, Nelson D, Weiss M, Aepfelbacher M: Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999, 96:9648–9653.CrossRefPubMedPubMedCentral Linder S, Nelson D, Weiss M, Aepfelbacher M: Wiskott–Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A 1999, 96:9648–9653.CrossRefPubMedPubMedCentral
65.
66.
go back to reference Calle Y, Burns S, Thrasher AJ, Jones GE: The leukocyte podosome. Eur J Cell Biol 2006, 85:151–157.CrossRefPubMed Calle Y, Burns S, Thrasher AJ, Jones GE: The leukocyte podosome. Eur J Cell Biol 2006, 85:151–157.CrossRefPubMed
67.
go back to reference Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin AP, Faurobert E, Gerber-Scokaert D, Planus E, Albiges-Rizo C: Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 2008, 87:491–506.CrossRefPubMed Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin AP, Faurobert E, Gerber-Scokaert D, Planus E, Albiges-Rizo C: Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 2008, 87:491–506.CrossRefPubMed
68.
go back to reference Jurdic P, Saltel F, Chabadel A, Destaing O: Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 2006, 85:195–202.CrossRefPubMed Jurdic P, Saltel F, Chabadel A, Destaing O: Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 2006, 85:195–202.CrossRefPubMed
69.
go back to reference Ory S, Brazier H, Pawlak G, Blangy A: Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 2008, 87:469–477.CrossRefPubMed Ory S, Brazier H, Pawlak G, Blangy A: Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 2008, 87:469–477.CrossRefPubMed
70.
go back to reference Burger KL, Davis AL, Isom S, Mishra N, Seals DF: The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 2011, 68:694–711.CrossRef Burger KL, Davis AL, Isom S, Mishra N, Seals DF: The podosome marker protein Tks5 regulates macrophage invasive behavior. Cytoskeleton (Hoboken) 2011, 68:694–711.CrossRef
71.
go back to reference Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ: Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008, 3:e3638.CrossRefPubMedPubMedCentral Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ: Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008, 3:e3638.CrossRefPubMedPubMedCentral
72.
go back to reference Crimaldi L, Courtneidge SA, Gimona M: Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation. Exp Cell Res 2009, 315:2581–2592.CrossRefPubMed Crimaldi L, Courtneidge SA, Gimona M: Tks5 recruits AFAP-110, p190RhoGAP, and cortactin for podosome formation. Exp Cell Res 2009, 315:2581–2592.CrossRefPubMed
73.
go back to reference Courtneidge SA, Azucena EF, Pass I, Seals DF, Tesfay L: The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. Cold Spring Harb Symp Quant Biol 2005, 70:167–171.CrossRefPubMed Courtneidge SA, Azucena EF, Pass I, Seals DF, Tesfay L: The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. Cold Spring Harb Symp Quant Biol 2005, 70:167–171.CrossRefPubMed
74.
go back to reference Cao H, Courchesne WE, Mastick CC: A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 2002, 277:8771–8774.CrossRefPubMed Cao H, Courchesne WE, Mastick CC: A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 2002, 277:8771–8774.CrossRefPubMed
75.
go back to reference Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R: Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 2004, 279:52132–52140.CrossRefPubMed Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R: Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 2004, 279:52132–52140.CrossRefPubMed
76.
78.
go back to reference Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K: Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res 2009, 69:8594–8602.CrossRefPubMed Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K: Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res 2009, 69:8594–8602.CrossRefPubMed
79.
go back to reference Caldieri G, Giacchetti G, Beznoussenko G, Attanasio F, Ayala I, Buccione R: Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. J Cell Mol Med 2009, 13:1728–1740.CrossRefPubMed Caldieri G, Giacchetti G, Beznoussenko G, Attanasio F, Ayala I, Buccione R: Invadopodia biogenesis is regulated by caveolin-mediated modulation of membrane cholesterol levels. J Cell Mol Med 2009, 13:1728–1740.CrossRefPubMed
80.
go back to reference Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87:245–313.CrossRefPubMed Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87:245–313.CrossRefPubMed
81.
go back to reference Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H: A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 2010, 5:981–993.CrossRefPubMedPubMedCentral Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H: A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 2010, 5:981–993.CrossRefPubMedPubMedCentral
82.
go back to reference Gianni D, Taulet N, DerMardirossian C, Bokoch GM: c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol Biol Cell 2010, 21:4287–4298.CrossRefPubMedPubMedCentral Gianni D, Taulet N, DerMardirossian C, Bokoch GM: c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol Biol Cell 2010, 21:4287–4298.CrossRefPubMedPubMedCentral
83.
go back to reference Fordyce CB, Jagasia R, Zhu X, Schlichter LC: Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 2005, 25:7139–7149.CrossRefPubMed Fordyce CB, Jagasia R, Zhu X, Schlichter LC: Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 2005, 25:7139–7149.CrossRefPubMed
Metadata
Title
Podosomes in migrating microglia: components and matrix degradation
Authors
Catherine Vincent
Tamjeed A Siddiqui
Lyanne C Schlichter
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-190

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue