Skip to main content
Top
Published in: Malaria Journal 1/2023

Open Access 01-12-2023 | Plasmodium Vivax | Research

Development of a Plasmodium vivax biobank for functional ex vivo assays

Authors: Rashmi Dash, Kristen M. Skillman, Ligia Pereira, Anjali Mascarenhas, Sheena Dass, Jayashri Walke, Anvily Almeida, Mezia Fernandes, Edwin Gomes, John White, Laura Chery-Karschney, Anar Khandeparkar, Pradipsinh K. Rathod, Manoj T. Duraisingh, Usheer Kanjee

Published in: Malaria Journal | Issue 1/2023

Login to get access

Abstract

Background

Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning.

Methods

In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either − 80 °C or liquid nitrogen were also compared.

Results

Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7–10 years) storage at − 80 °C on parasite recovery, enrichment or viability was observed.

Conclusions

Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2022. Geneva: World Health Organization; 2022. WHO. World malaria report 2022. Geneva: World Health Organization; 2022.
2.
go back to reference Thomson-Luque R, Adams JH, Kocken CHM, Pasini EM. From marginal to essential: the golden thread between nutrient sensing, medium composition and Plasmodium vivax maturation in in vitro culture. Malar J. 2019;18:344.PubMedPubMedCentral Thomson-Luque R, Adams JH, Kocken CHM, Pasini EM. From marginal to essential: the golden thread between nutrient sensing, medium composition and Plasmodium vivax maturation in in vitro culture. Malar J. 2019;18:344.PubMedPubMedCentral
3.
go back to reference Rangel GW, Clark MA, Kanjee U, Shaw-Saliba K, Lim C, Mascarenhas A, et al. Enhanced ex vivo Plasmodium vivax intraerythrocytic enrichment and maturation for rapid and sensitive parasite growth assays. Antimicrob Agents Chemother. 2018;62:e02519-e2617.PubMedPubMedCentral Rangel GW, Clark MA, Kanjee U, Shaw-Saliba K, Lim C, Mascarenhas A, et al. Enhanced ex vivo Plasmodium vivax intraerythrocytic enrichment and maturation for rapid and sensitive parasite growth assays. Antimicrob Agents Chemother. 2018;62:e02519-e2617.PubMedPubMedCentral
4.
go back to reference Russell B, Suwanarusk R, Malleret B, Costa FT, Snounou G, Kevin Baird J, et al. Human ex vivo studies on asexual Plasmodium vivax: the best way forward. Int J Parasitol. 2012;42:1063–70.PubMed Russell B, Suwanarusk R, Malleret B, Costa FT, Snounou G, Kevin Baird J, et al. Human ex vivo studies on asexual Plasmodium vivax: the best way forward. Int J Parasitol. 2012;42:1063–70.PubMed
5.
go back to reference Borlon C, Russell B, Sriprawat K, Suwanarusk R, Erhart A, Renia L, et al. Cryopreserved Plasmodium vivax and cord blood reticulocytes can be used for invasion and short term culture. Int J Parasitol. 2012;42:155–60.PubMed Borlon C, Russell B, Sriprawat K, Suwanarusk R, Erhart A, Renia L, et al. Cryopreserved Plasmodium vivax and cord blood reticulocytes can be used for invasion and short term culture. Int J Parasitol. 2012;42:155–60.PubMed
6.
go back to reference Golenda CF, Li J, Rosenberg R. Continuous in vitro propagation of the malaria parasite Plasmodium vivax. Proc Natl Acad Sci USA. 1997;94:6786–91.PubMedPubMedCentral Golenda CF, Li J, Rosenberg R. Continuous in vitro propagation of the malaria parasite Plasmodium vivax. Proc Natl Acad Sci USA. 1997;94:6786–91.PubMedPubMedCentral
7.
go back to reference Kosaisavee V, Suwanarusk R, Nosten F, Kyle DE, Barrends M, Jones J, et al. Plasmodium vivax: isotopic, PicoGreen, and microscopic assays for measuring chloroquine sensitivity in fresh and cryopreserved isolates. Exp Parasitol. 2006;114:34–9.PubMed Kosaisavee V, Suwanarusk R, Nosten F, Kyle DE, Barrends M, Jones J, et al. Plasmodium vivax: isotopic, PicoGreen, and microscopic assays for measuring chloroquine sensitivity in fresh and cryopreserved isolates. Exp Parasitol. 2006;114:34–9.PubMed
8.
go back to reference Cho JS, Russell B, Kosasaivee V, Zhang R, Colin Y, Bertrand O, et al. Unambiguous determination of Plasmodium vivax reticulocyte invasion by flow cytometry. Int J Parasitol. 2016;46:31–9.PubMed Cho JS, Russell B, Kosasaivee V, Zhang R, Colin Y, Bertrand O, et al. Unambiguous determination of Plasmodium vivax reticulocyte invasion by flow cytometry. Int J Parasitol. 2016;46:31–9.PubMed
9.
go back to reference Grimberg BT, Udomsangpetch R, Xainli J, McHenry A, Panichakul T, Sattabongkot J, et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med. 2007;4:e337.PubMedPubMedCentral Grimberg BT, Udomsangpetch R, Xainli J, McHenry A, Panichakul T, Sattabongkot J, et al. Plasmodium vivax invasion of human erythrocytes inhibited by antibodies directed against the Duffy binding protein. PLoS Med. 2007;4:e337.PubMedPubMedCentral
10.
go back to reference Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, Sriprawat K, et al. A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood. 2011;118:e74-81.PubMedPubMedCentral Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, Sriprawat K, et al. A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood. 2011;118:e74-81.PubMedPubMedCentral
11.
go back to reference Prajapati SK, Borlon C, Rovira-Vallbona E, Gruszczyk J, Menant S, Tham WH, et al. Complement Receptor 1 availability on red blood cell surface modulates Plasmodium vivax invasion of human reticulocytes. Sci Rep. 2019;9:8943.PubMedPubMedCentral Prajapati SK, Borlon C, Rovira-Vallbona E, Gruszczyk J, Menant S, Tham WH, et al. Complement Receptor 1 availability on red blood cell surface modulates Plasmodium vivax invasion of human reticulocytes. Sci Rep. 2019;9:8943.PubMedPubMedCentral
12.
go back to reference Rawlinson TA, Barber NM, Mohring F, Cho JS, Kosaisavee V, Gerard SF, et al. Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat Microbiol. 2019;4:1497–507.PubMedPubMedCentral Rawlinson TA, Barber NM, Mohring F, Cho JS, Kosaisavee V, Gerard SF, et al. Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat Microbiol. 2019;4:1497–507.PubMedPubMedCentral
13.
go back to reference Urusova D, Carias L, Huang Y, Nicolete VC, Popovici J, Roesch C, et al. Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat Microbiol. 2019;4:1486–96.PubMedPubMedCentral Urusova D, Carias L, Huang Y, Nicolete VC, Popovici J, Roesch C, et al. Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nat Microbiol. 2019;4:1486–96.PubMedPubMedCentral
14.
go back to reference Popovici J, Roesch C, Carias LL, Khim N, Kim S, Vantaux A, et al. Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun. 2020;11:953.PubMedPubMedCentral Popovici J, Roesch C, Carias LL, Khim N, Kim S, Vantaux A, et al. Amplification of Duffy binding protein-encoding gene allows Plasmodium vivax to evade host anti-DBP humoral immunity. Nat Commun. 2020;11:953.PubMedPubMedCentral
15.
go back to reference Malleret B, El Sahili A, Tay MZ, Carissimo G, Ong ASM, Novera W, et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol. 2021;6:991–9.PubMed Malleret B, El Sahili A, Tay MZ, Carissimo G, Ong ASM, Novera W, et al. Plasmodium vivax binds host CD98hc (SLC3A2) to enter immature red blood cells. Nat Microbiol. 2021;6:991–9.PubMed
16.
go back to reference De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, et al. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol. 2022;12:1011692.PubMedPubMedCentral De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, et al. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol. 2022;12:1011692.PubMedPubMedCentral
17.
go back to reference Scully EJ, Shabani E, Rangel GW, Gruring C, Kanjee U, Clark MA, et al. Generation of an immortalized erythroid progenitor cell line from peripheral blood: a model system for the functional analysis of Plasmodium spp. invasion. Am J Hematol. 2019;94:963–74.PubMedPubMedCentral Scully EJ, Shabani E, Rangel GW, Gruring C, Kanjee U, Clark MA, et al. Generation of an immortalized erythroid progenitor cell line from peripheral blood: a model system for the functional analysis of Plasmodium spp. invasion. Am J Hematol. 2019;94:963–74.PubMedPubMedCentral
18.
go back to reference Gruszczyk J, Kanjee U, Chan LJ, Menant S, Malleret B, Lim NTY, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359:48–55.PubMedPubMedCentral Gruszczyk J, Kanjee U, Chan LJ, Menant S, Malleret B, Lim NTY, et al. Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science. 2018;359:48–55.PubMedPubMedCentral
19.
go back to reference Matharoo-Ball B, Diop M, Kozlakidis Z. Harmonizing the COVID-19 sample biobanks: barriers and opportunities for standards, best practices and networks. Biosaf Health. 2022;4:280–2.PubMedPubMedCentral Matharoo-Ball B, Diop M, Kozlakidis Z. Harmonizing the COVID-19 sample biobanks: barriers and opportunities for standards, best practices and networks. Biosaf Health. 2022;4:280–2.PubMedPubMedCentral
20.
go back to reference Betsou F, Parida SK, Guillerm M. Infectious diseases biobanking as a catalyst towards personalized medicine: Mycobacterium tuberculosis paradigm. Tuberculosis (Edinb). 2011;91:524–32.PubMed Betsou F, Parida SK, Guillerm M. Infectious diseases biobanking as a catalyst towards personalized medicine: Mycobacterium tuberculosis paradigm. Tuberculosis (Edinb). 2011;91:524–32.PubMed
21.
go back to reference Ezzat S, Biga R, Kozlakidis Z. Biobanking in LMIC settings for infectious diseases: challenges and enablers. Biosaf Health. 2022;4:290–2.PubMedPubMedCentral Ezzat S, Biga R, Kozlakidis Z. Biobanking in LMIC settings for infectious diseases: challenges and enablers. Biosaf Health. 2022;4:290–2.PubMedPubMedCentral
22.
go back to reference Echeverry DF, Nair S, Osorio L, Menon S, Murillo C, Anderson TJ. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region. BMC Genet. 2013;14:2.PubMedPubMedCentral Echeverry DF, Nair S, Osorio L, Menon S, Murillo C, Anderson TJ. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region. BMC Genet. 2013;14:2.PubMedPubMedCentral
23.
go back to reference Musasia FK, Nkumama IN, Frank R, Kipkemboi V, Schneider M, Mwai K, et al. Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria. Nat Commun. 2022;13:4098.PubMedPubMedCentral Musasia FK, Nkumama IN, Frank R, Kipkemboi V, Schneider M, Mwai K, et al. Phagocytosis of Plasmodium falciparum ring-stage parasites predicts protection against malaria. Nat Commun. 2022;13:4098.PubMedPubMedCentral
24.
go back to reference Kimenyi KM, Wamae K, Ngoi JM, de Laurent ZR, Ndwiga L, Osoti V, et al. Maintenance of high temporal Plasmodium falciparum genetic diversity and complexity of infection in asymptomatic and symptomatic infections in Kilifi, Kenya from 2007 to 2018. Malar J. 2022;21:192.PubMedPubMedCentral Kimenyi KM, Wamae K, Ngoi JM, de Laurent ZR, Ndwiga L, Osoti V, et al. Maintenance of high temporal Plasmodium falciparum genetic diversity and complexity of infection in asymptomatic and symptomatic infections in Kilifi, Kenya from 2007 to 2018. Malar J. 2022;21:192.PubMedPubMedCentral
25.
go back to reference Coggeshall LT. Preservation of viable malaria parasites in the frozen state. Proc Soc Exp Biol Med. 1939;42:499–501. Coggeshall LT. Preservation of viable malaria parasites in the frozen state. Proc Soc Exp Biol Med. 1939;42:499–501.
26.
go back to reference Jeffery GM. Extended low-temperature preservation of human malaria parasites. J Parasitol. 1957;43:488.PubMed Jeffery GM. Extended low-temperature preservation of human malaria parasites. J Parasitol. 1957;43:488.PubMed
27.
go back to reference Mutetwa SM, James ER. Low temperature preservation of Plasmodium spp. Parasitology. 1985;90(Pt 3):589–603.PubMed Mutetwa SM, James ER. Low temperature preservation of Plasmodium spp. Parasitology. 1985;90(Pt 3):589–603.PubMed
28.
go back to reference Rowe AW, Eyster E, Kellner A. Liquid nitrogen preservation of red blood cells for transfusion; a low glycerol-rapid freeze procedure. Cryobiology. 1968;5:119–28.PubMed Rowe AW, Eyster E, Kellner A. Liquid nitrogen preservation of red blood cells for transfusion; a low glycerol-rapid freeze procedure. Cryobiology. 1968;5:119–28.PubMed
29.
go back to reference Diggs C, Joseph K, Flemmings B, Snodgrass R, Hines F. Protein synthesis in vitro by cryopreserved Plasmodium falciparum. Am J Trop Med Hyg. 1975;24:760–3.PubMed Diggs C, Joseph K, Flemmings B, Snodgrass R, Hines F. Protein synthesis in vitro by cryopreserved Plasmodium falciparum. Am J Trop Med Hyg. 1975;24:760–3.PubMed
30.
go back to reference Christofinis GJ, Miller H. A simplified method for cryopreservation of Plasmodium falciparum from continuous in vitro cultures. Ann Trop Med Parasitol. 1983;77:123–6.PubMed Christofinis GJ, Miller H. A simplified method for cryopreservation of Plasmodium falciparum from continuous in vitro cultures. Ann Trop Med Parasitol. 1983;77:123–6.PubMed
31.
go back to reference Mathai E, Singh B. A comparative study of two methods for the cryopreservation of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1989;83:469–70.PubMed Mathai E, Singh B. A comparative study of two methods for the cryopreservation of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1989;83:469–70.PubMed
32.
go back to reference Rossan RN. Cryopreservation of the blood stages of Plasmodium falciparum and Plasmodium vivax for in vivo studies. Am J Trop Med Hyg. 1985;34:207–8.PubMed Rossan RN. Cryopreservation of the blood stages of Plasmodium falciparum and Plasmodium vivax for in vivo studies. Am J Trop Med Hyg. 1985;34:207–8.PubMed
33.
go back to reference Noulin F, Borlon C, van den Eede P, Boel L, Verfaillie CM, D’Alessandro U, et al. Cryopreserved reticulocytes derived from hematopoietic stem cells can be invaded by cryopreserved Plasmodium vivax isolates. PLoS ONE. 2012;7:e40798.PubMedPubMedCentral Noulin F, Borlon C, van den Eede P, Boel L, Verfaillie CM, D’Alessandro U, et al. Cryopreserved reticulocytes derived from hematopoietic stem cells can be invaded by cryopreserved Plasmodium vivax isolates. PLoS ONE. 2012;7:e40798.PubMedPubMedCentral
34.
go back to reference Zeeman AM, der Wel AV, Kocken CH. Ex vivo culture of Plasmodium vivax and Plasmodium cynomolgi and in vitro culture of Plasmodium knowlesi blood stages. Methods Mol Biol. 2013;923:35–49.PubMed Zeeman AM, der Wel AV, Kocken CH. Ex vivo culture of Plasmodium vivax and Plasmodium cynomolgi and in vitro culture of Plasmodium knowlesi blood stages. Methods Mol Biol. 2013;923:35–49.PubMed
35.
go back to reference Mehlotra RK, Blankenship D, Howes RE, Rakotomanga TA, Ramiranirina B, Ramboarina S, et al. Long-term in vitro culture of Plasmodium vivax isolates from Madagascar maintained in Saimiri boliviensis blood. Malar J. 2017;16:442.PubMedPubMedCentral Mehlotra RK, Blankenship D, Howes RE, Rakotomanga TA, Ramiranirina B, Ramboarina S, et al. Long-term in vitro culture of Plasmodium vivax isolates from Madagascar maintained in Saimiri boliviensis blood. Malar J. 2017;16:442.PubMedPubMedCentral
36.
go back to reference de Oliveira TC, Rodrigues PT, Menezes MJ, Goncalves-Lopes RM, Bastos MS, Lima NF, et al. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis. 2017;11:e0005824.PubMedCentral de Oliveira TC, Rodrigues PT, Menezes MJ, Goncalves-Lopes RM, Bastos MS, Lima NF, et al. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis. 2017;11:e0005824.PubMedCentral
37.
go back to reference Roobsoong W, Tharinjaroen CS, Rachaphaew N, Chobson P, Schofield L, Cui L, et al. Improvement of culture conditions for long-term in vitro culture of Plasmodium vivax. Malar J. 2015;14:297.PubMedPubMedCentral Roobsoong W, Tharinjaroen CS, Rachaphaew N, Chobson P, Schofield L, Cui L, et al. Improvement of culture conditions for long-term in vitro culture of Plasmodium vivax. Malar J. 2015;14:297.PubMedPubMedCentral
38.
go back to reference Trang DT, Huy NT, Kariu T, Tajima K, Kamei K. One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar J. 2004;3:7.PubMedPubMedCentral Trang DT, Huy NT, Kariu T, Tajima K, Kamei K. One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar J. 2004;3:7.PubMedPubMedCentral
39.
go back to reference Moll K, Kaneko A, Scherf A, Wahlgren M. Methods in Malaria Research. Glasgow, UK & Manassas, VA, USA: Malaria Research and Reference Reagent Resource Center (MR4); 2013. Moll K, Kaneko A, Scherf A, Wahlgren M. Methods in Malaria Research. Glasgow, UK & Manassas, VA, USA: Malaria Research and Reference Reagent Resource Center (MR4); 2013.
40.
go back to reference Kanjee U, Gruring C, Babar P, Meyers A, Dash R, Pereira L, et al. Plasmodium vivax strains use alternative pathways for invasion. J Infect Dis. 2021;223:1817–21.PubMed Kanjee U, Gruring C, Babar P, Meyers A, Dash R, Pereira L, et al. Plasmodium vivax strains use alternative pathways for invasion. J Infect Dis. 2021;223:1817–21.PubMed
41.
go back to reference Lim C, Pereira L, Shardul P, Mascarenhas A, Maki J, Rixon J, et al. Improved light microscopy counting method for accurately counting Plasmodium parasitemia and reticulocytemia. Am J Hematol. 2016;91:852–5.PubMedPubMedCentral Lim C, Pereira L, Shardul P, Mascarenhas A, Maki J, Rixon J, et al. Improved light microscopy counting method for accurately counting Plasmodium parasitemia and reticulocytemia. Am J Hematol. 2016;91:852–5.PubMedPubMedCentral
42.
go back to reference Chery L, Maki JN, Mascarenhas A, Walke JT, Gawas P, Almeida A, et al. Demographic and clinical profiles of Plasmodium falciparum and Plasmodium vivax patients at a tertiary care centre in southwestern India. Malar J. 2016;15:569.PubMedPubMedCentral Chery L, Maki JN, Mascarenhas A, Walke JT, Gawas P, Almeida A, et al. Demographic and clinical profiles of Plasmodium falciparum and Plasmodium vivax patients at a tertiary care centre in southwestern India. Malar J. 2016;15:569.PubMedPubMedCentral
43.
go back to reference Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.PubMed Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193:673–5.PubMed
44.
go back to reference Kocken CH, Ozwara H, van der Wel A, Beetsma AL, Mwenda JM, Thomas AW. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect Immun. 2002;70:655–60.PubMedPubMedCentral Kocken CH, Ozwara H, van der Wel A, Beetsma AL, Mwenda JM, Thomas AW. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect Immun. 2002;70:655–60.PubMedPubMedCentral
45.
go back to reference Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci USA. 2013;110:531–6.PubMed Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci USA. 2013;110:531–6.PubMed
46.
go back to reference Lim C, Hansen E, DeSimone TM, Moreno Y, Junker K, Bei A, et al. Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun. 2013;4:1638.PubMed Lim C, Hansen E, DeSimone TM, Moreno Y, Junker K, Bei A, et al. Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun. 2013;4:1638.PubMed
47.
go back to reference Kumar AA, Lim C, Moreno Y, Mace CR, Syed A, Van Tyne D, et al. Enrichment of reticulocytes from whole blood using aqueous multiphase systems of polymers. Am J Hematol. 2015;90:31–6.PubMed Kumar AA, Lim C, Moreno Y, Mace CR, Syed A, Van Tyne D, et al. Enrichment of reticulocytes from whole blood using aqueous multiphase systems of polymers. Am J Hematol. 2015;90:31–6.PubMed
48.
go back to reference Clark MA, Kanjee U, Rangel GW, Chery L, Mascarenhas A, Gomes E, et al. Plasmodium vivax infection compromises reticulocyte stability. Nat Commun. 2021;12:1629.PubMedPubMedCentral Clark MA, Kanjee U, Rangel GW, Chery L, Mascarenhas A, Gomes E, et al. Plasmodium vivax infection compromises reticulocyte stability. Nat Commun. 2021;12:1629.PubMedPubMedCentral
49.
go back to reference Shaw-Saliba K, Clarke D, Santos JM, Menezes MJ, Lim C, Mascarenhas A, et al. Infection of laboratory colonies of Anopheles mosquitoes with Plasmodium vivax from cryopreserved clinical isolates. Int J Parasitol. 2016;46:679–83.PubMedPubMedCentral Shaw-Saliba K, Clarke D, Santos JM, Menezes MJ, Lim C, Mascarenhas A, et al. Infection of laboratory colonies of Anopheles mosquitoes with Plasmodium vivax from cryopreserved clinical isolates. Int J Parasitol. 2016;46:679–83.PubMedPubMedCentral
50.
go back to reference Ressurreicao M, Thomas JA, Nofal SD, Flueck C, Moon RW, Baker DA, et al. Use of a highly specific kinase inhibitor for rapid, simple and precise synchronization of Plasmodium falciparum and Plasmodium knowlesi asexual blood-stage parasites. PLoS ONE. 2020;15:e0235798.PubMedPubMedCentral Ressurreicao M, Thomas JA, Nofal SD, Flueck C, Moon RW, Baker DA, et al. Use of a highly specific kinase inhibitor for rapid, simple and precise synchronization of Plasmodium falciparum and Plasmodium knowlesi asexual blood-stage parasites. PLoS ONE. 2020;15:e0235798.PubMedPubMedCentral
51.
go back to reference Rangel GW, Clark MA, Kanjee U, Goldberg JM, MacInnis B, Jose Menezes M, et al. Plasmodium vivax transcriptional profiling of low input cryopreserved isolates through the intraerythrocytic development cycle. PLoS Negl Trop Dis. 2020;14:e0008104.PubMedPubMedCentral Rangel GW, Clark MA, Kanjee U, Goldberg JM, MacInnis B, Jose Menezes M, et al. Plasmodium vivax transcriptional profiling of low input cryopreserved isolates through the intraerythrocytic development cycle. PLoS Negl Trop Dis. 2020;14:e0008104.PubMedPubMedCentral
Metadata
Title
Development of a Plasmodium vivax biobank for functional ex vivo assays
Authors
Rashmi Dash
Kristen M. Skillman
Ligia Pereira
Anjali Mascarenhas
Sheena Dass
Jayashri Walke
Anvily Almeida
Mezia Fernandes
Edwin Gomes
John White
Laura Chery-Karschney
Anar Khandeparkar
Pradipsinh K. Rathod
Manoj T. Duraisingh
Usheer Kanjee
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2023
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-023-04668-2

Other articles of this Issue 1/2023

Malaria Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine