Skip to main content
Top
Published in: Malaria Journal 1/2012

Open Access 01-10-2012 | Poster presentation

Plasmodium translationally repressed gene products are essential for parasite development and malaria transmission

Authors: Jorge M Santos, Pavitra N Rao, Ana Guerreiro, Leonor Pinho, Céline K Carret, Blandine MD Franke-Fayard, Thomas J Templeton, Chris J Janse, Gunnar R Mair

Published in: Malaria Journal | Special Issue 1/2012

Login to get access

Excerpt

The sexual and ookinete development of Plasmodium relies on the translation of mRNAs supplied maternally in the macro-gametocyte as translationally repressed transcripts [1]. Translational repression depends on the interaction of mRNAs and RNA binding proteins such as DOZI and CITH; their absence results in mRNA destabilisation and developmental arrest of the parasite in the mosquito midgut [2]. Among the repressed mRNAs ~40 encode for potential surface molecules or adhesins. While some are well-characterised (e.g. P25 and P28), most are putative with no known function or homology. pb25/pb28 gene disruption severely impairs parasite development [3] while the presence of anti-P25 and anti-P28 antibodies in a blood meal reduces mosquito infection [4, 5]. A P25-based transmission blocking vaccine (TBV) has reached human phase 1 clinical trials but results have not been fully satisfactory [6]. For this reason, novel antigens are being pursued as targets of malaria TBVs. …
Literature
1.
go back to reference Mair GR, Braks JAM, Garver LS, Wiegant JCAG, Hall N, Dirks RW, Khan SM, Dimopoulos G, Janse CJ, Waters AP: Regulation of sexual development of Plasmodium by translational repression. Science. 2006, 313: 667-669. 10.1126/science.1125129.PubMedCentralCrossRefPubMed Mair GR, Braks JAM, Garver LS, Wiegant JCAG, Hall N, Dirks RW, Khan SM, Dimopoulos G, Janse CJ, Waters AP: Regulation of sexual development of Plasmodium by translational repression. Science. 2006, 313: 667-669. 10.1126/science.1125129.PubMedCentralCrossRefPubMed
2.
go back to reference Mair GR, Lasonder E, Garver LS, Franke-Fayard BMD, Carret CK, Wiegant JCAG, Dirks RW, Dimopoulos G, Janse CJ, Waters AP: Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 6: e1000767- Mair GR, Lasonder E, Garver LS, Franke-Fayard BMD, Carret CK, Wiegant JCAG, Dirks RW, Dimopoulos G, Janse CJ, Waters AP: Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 6: e1000767-
3.
go back to reference Tomas AM, Margos G, Dimopoulos G, van Lin LH, de Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE: P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J. 2001, 20: 3975-3983. 10.1093/emboj/20.15.3975.PubMedCentralCrossRefPubMed Tomas AM, Margos G, Dimopoulos G, van Lin LH, de Koning-Ward TF, Sinha R, Lupetti P, Beetsma AL, Rodriguez MC, Karras M, Hager A, Mendoza J, Butcher GA, Kafatos F, Janse CJ, Waters AP, Sinden RE: P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions. EMBO J. 2001, 20: 3975-3983. 10.1093/emboj/20.15.3975.PubMedCentralCrossRefPubMed
4.
go back to reference Hisaeda H, Stowers AW, Tsuboi T, Collins WE, Sattabongkot JS, Suwanabun N, Torii M, Kaslow DC: Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect Immun. 2000, 68: 6618-6623. 10.1128/IAI.68.12.6618-6623.2000.PubMedCentralCrossRefPubMed Hisaeda H, Stowers AW, Tsuboi T, Collins WE, Sattabongkot JS, Suwanabun N, Torii M, Kaslow DC: Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect Immun. 2000, 68: 6618-6623. 10.1128/IAI.68.12.6618-6623.2000.PubMedCentralCrossRefPubMed
5.
go back to reference Gozar MMG, Price VL, Kaslow DC: Saccharomyces cerevisiae- secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice. Infect Immun. 1998, 66: 59-64.PubMedCentralPubMed Gozar MMG, Price VL, Kaslow DC: Saccharomyces cerevisiae- secreted fusion proteins Pfs25 and Pfs28 elicit potent Plasmodium falciparum transmission-blocking antibodies in mice. Infect Immun. 1998, 66: 59-64.PubMedCentralPubMed
6.
go back to reference Carter R: Transmission blocking malaria vaccines. Vaccine. 2001, 19: 2309-2314. 10.1016/S0264-410X(00)00521-1.CrossRefPubMed Carter R: Transmission blocking malaria vaccines. Vaccine. 2001, 19: 2309-2314. 10.1016/S0264-410X(00)00521-1.CrossRefPubMed
Metadata
Title
Plasmodium translationally repressed gene products are essential for parasite development and malaria transmission
Authors
Jorge M Santos
Pavitra N Rao
Ana Guerreiro
Leonor Pinho
Céline K Carret
Blandine MD Franke-Fayard
Thomas J Templeton
Chris J Janse
Gunnar R Mair
Publication date
01-10-2012
Publisher
BioMed Central
Published in
Malaria Journal / Issue Special Issue 1/2012
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-11-S1-P85

Other articles of this Special Issue 1/2012

Malaria Journal 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.