Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Plasmodium Falciparum | Methodology

MALBoost: a web-based application for gene regulatory network analysis in Plasmodium falciparum

Authors: Roelof van Wyk, Riëtte van Biljon, Lyn-Marie Birkholtz

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Gene Regulatory Networks (GRN) produce powerful insights into transcriptional regulation in cells. The power of GRNs has been underutilized in malaria research. The Arboreto library was incorporated into a user-friendly web-based application for malaria researchers (http://​malboost.​bi.​up.​ac.​za). This application will assist researchers with gaining an in depth understanding of transcriptomic datasets.

Methods

The web application for MALBoost was built in Python-Flask with Redis and Celery workers for queue submission handling, which execute the Arboreto suite algorithms. A submission of 5–50 regulators and total expression set of 5200 genes is permitted. The program runs in a point-and-click web user interface built using Bootstrap4 templates. Post-analysis submission, users are redirected to a status page with run time estimates and ultimately a download button upon completion. Result updates or failure updates will be emailed to the users.

Results

A web-based application with an easy-to-use interface is presented with a use case validation of AP2-G and AP2-I. The validation set incorporates cross-referencing with ChIP-seq and transcriptome datasets. For AP2-G, 5 ChIP-seq targets were significantly enriched with seven more targets presenting with strong evidence of validated targets.

Conclusion

The MALBoost application provides the first tool for easy interfacing and efficiently allows gene regulatory network construction for Plasmodium. Additionally, access is provided to a pre-compiled network for use as reference framework. Validation for sexually committed ring-stage parasite targets of AP2-G, suggests the algorithm was effective in resolving “traditionally” low-level signatures even in bulk RNA datasets.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davidson E, Levin M. Gene regulatory networks. Proc Natl Acad Sci USA. 2005;102:4935.CrossRef Davidson E, Levin M. Gene regulatory networks. Proc Natl Acad Sci USA. 2005;102:4935.CrossRef
2.
go back to reference Isewon I, Oyelade J, Brors B, Adebiyi E. In silico gene regulatory network of the Maurer’s cleft pathway in Plasmodium falciparum. Evol Bioinforma Online. 2015;11:231–8. Isewon I, Oyelade J, Brors B, Adebiyi E. In silico gene regulatory network of the Maurer’s cleft pathway in Plasmodium falciparum. Evol Bioinforma Online. 2015;11:231–8.
3.
go back to reference Li E, Davidson EH. Building developmental gene regulatory networks. Birth Defects Res C Embryo Today. 2009;87:123–30.CrossRef Li E, Davidson EH. Building developmental gene regulatory networks. Birth Defects Res C Embryo Today. 2009;87:123–30.CrossRef
4.
go back to reference Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, et al. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol. 2010;28:91–8.CrossRef Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S, et al. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol. 2010;28:91–8.CrossRef
5.
go back to reference Tienda-Luna IM, Yin Y, Carrion MC, Huang Y, Cai H, Sanchez M, et al. Inferring the skeleton cell cycle regulatory network of malaria parasite using comparative genomic and variational Bayesian approaches. Genetica. 2008;132:131–42.CrossRef Tienda-Luna IM, Yin Y, Carrion MC, Huang Y, Cai H, Sanchez M, et al. Inferring the skeleton cell cycle regulatory network of malaria parasite using comparative genomic and variational Bayesian approaches. Genetica. 2008;132:131–42.CrossRef
6.
go back to reference Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S, Kortok MM, et al. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol. 2018;2:377–87.CrossRef Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S, Kortok MM, et al. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol. 2018;2:377–87.CrossRef
7.
go back to reference Liu F, Zhang S-W, Guo W-F, Wei Z-G, Chen L. Inference of gene regulatory network based on local Bayesian networks. PLoS Comput Biol. 2016;12: e1005024.CrossRef Liu F, Zhang S-W, Guo W-F, Wei Z-G, Chen L. Inference of gene regulatory network based on local Bayesian networks. PLoS Comput Biol. 2016;12: e1005024.CrossRef
8.
go back to reference Van Biljon R, Niemand J, Van Wyk R, Clark K, Verlinden B, Abrie C, et al. Inducing controlled cell cycle arrest and re-entry during asexual proliferation of Plasmodium falciparum malaria parasites. Sci Rep. 2018;8:16581.CrossRef Van Biljon R, Niemand J, Van Wyk R, Clark K, Verlinden B, Abrie C, et al. Inducing controlled cell cycle arrest and re-entry during asexual proliferation of Plasmodium falciparum malaria parasites. Sci Rep. 2018;8:16581.CrossRef
9.
go back to reference van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, et al. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics. 2019;20:920.CrossRef van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, et al. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics. 2019;20:920.CrossRef
10.
go back to reference Aibar S, González-blas CB, Moerman T, Huynh-thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.CrossRef Aibar S, González-blas CB, Moerman T, Huynh-thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.CrossRef
12.
go back to reference Moerman T, Aibar S, González-blas CB, Moreau Y, Aerts J, Aerts S. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2019;35:2159–61.CrossRef Moerman T, Aibar S, González-blas CB, Moreau Y, Aerts J, Aerts S. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2019;35:2159–61.CrossRef
13.
go back to reference Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE. 2010;5: e12776.CrossRef Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE. 2010;5: e12776.CrossRef
14.
go back to reference Josling GA, Russell TJ, Venezia J, Orchard L, van Biljon R, Painter HJ, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun. 2020;11:1503.CrossRef Josling GA, Russell TJ, Venezia J, Orchard L, van Biljon R, Painter HJ, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun. 2020;11:1503.CrossRef
15.
go back to reference Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014;507:248–52.CrossRef Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014;507:248–52.CrossRef
26.
go back to reference Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.CrossRef
27.
go back to reference Pelle KG, Oh K, Buchholz K, Narasimhan V, Joice R, Milner DA, et al. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med. 2015;7:19.CrossRef Pelle KG, Oh K, Buchholz K, Narasimhan V, Joice R, Milner DA, et al. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med. 2015;7:19.CrossRef
28.
go back to reference Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science. 2005;309:1384–7.CrossRef Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science. 2005;309:1384–7.CrossRef
29.
go back to reference López-barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics. 2011;12:587.CrossRef López-barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics. 2011;12:587.CrossRef
30.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef
31.
go back to reference Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 2014;507:253–7.CrossRef Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 2014;507:253–7.CrossRef
Metadata
Title
MALBoost: a web-based application for gene regulatory network analysis in Plasmodium falciparum
Authors
Roelof van Wyk
Riëtte van Biljon
Lyn-Marie Birkholtz
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03848-2

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine