Skip to main content
Top
Published in: Malaria Journal 1/2011

Open Access 01-12-2011 | Research

Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development

Authors: Janet Storm, Jan Perner, Isabela Aparicio, Eva-Maria Patzewitz, Kellen Olszewski, Manuel Llinas, Paul C Engel, Sylke Müller

Published in: Malaria Journal | Issue 1/2011

Login to get access

Abstract

Background

Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target.

Methods

The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated.

Results

No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdhaparasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites.

Conclusions

First, the data support the conclusion that D10Δgdhaparasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hudson RC, Daniel RM: L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B. 1993, 106: 767-792. 10.1016/0305-0491(93)90031-Y.PubMed Hudson RC, Daniel RM: L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B. 1993, 106: 767-792. 10.1016/0305-0491(93)90031-Y.PubMed
2.
go back to reference Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511. 10.1038/nature01097.CrossRefPubMed Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419: 498-511. 10.1038/nature01097.CrossRefPubMed
3.
go back to reference Aparicio IM, Marin-Menendez A, Bell A, Engel PC: Susceptibility of Plasmodium falciparum to glutamate dehydrogenase inhibitors-A possible new antimalarial target. Mol Biochem Parasitol. 2010, 172: 152-155. 10.1016/j.molbiopara.2010.04.002.CrossRefPubMed Aparicio IM, Marin-Menendez A, Bell A, Engel PC: Susceptibility of Plasmodium falciparum to glutamate dehydrogenase inhibitors-A possible new antimalarial target. Mol Biochem Parasitol. 2010, 172: 152-155. 10.1016/j.molbiopara.2010.04.002.CrossRefPubMed
4.
go back to reference Avendano A, Deluna A, Olivera H, Valenzuela L, Gonzalez A: GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1997, 179: 5594-5597.PubMedCentralPubMed Avendano A, Deluna A, Olivera H, Valenzuela L, Gonzalez A: GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1997, 179: 5594-5597.PubMedCentralPubMed
5.
go back to reference DeLuna A, Avendano A, Riego L, Gonzalez A: NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem. 2001, 276: 43775-43783. 10.1074/jbc.M107986200.CrossRefPubMed DeLuna A, Avendano A, Riego L, Gonzalez A: NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem. 2001, 276: 43775-43783. 10.1074/jbc.M107986200.CrossRefPubMed
6.
go back to reference Miyashita Y, Good AG: Glutamate deamination by glutamate dehydrogenase plays a central role in amino acid catabolism in plants. Plant Signal Behav. 2008, 3: 842-843. 10.4161/psb.3.10.5936.PubMedCentralCrossRefPubMed Miyashita Y, Good AG: Glutamate deamination by glutamate dehydrogenase plays a central role in amino acid catabolism in plants. Plant Signal Behav. 2008, 3: 842-843. 10.4161/psb.3.10.5936.PubMedCentralCrossRefPubMed
7.
go back to reference Miyashita Y, Good AG: NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot. 2008, 59: 667-680. 10.1093/jxb/erm340.CrossRefPubMed Miyashita Y, Good AG: NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot. 2008, 59: 667-680. 10.1093/jxb/erm340.CrossRefPubMed
8.
go back to reference Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R: Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta. 2010, 232: 299-311. 10.1007/s00425-010-1172-3.CrossRefPubMed Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R: Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta. 2010, 232: 299-311. 10.1007/s00425-010-1172-3.CrossRefPubMed
9.
go back to reference Robinson SA, Slade AP, Fox GG, Phillips R, Ratcliffe RG, Stewart GR: The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol. 1991, 95: 509-516. 10.1104/pp.95.2.509.PubMedCentralCrossRefPubMed Robinson SA, Slade AP, Fox GG, Phillips R, Ratcliffe RG, Stewart GR: The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol. 1991, 95: 509-516. 10.1104/pp.95.2.509.PubMedCentralCrossRefPubMed
10.
go back to reference Labboun S, Terce-Laforgue T, Roscher A, Bedu M, Restivo FM, Velanis CN, Skopelitis DS, Moschou PN, Roubelakis-Angelakis KA, Suzuki A, Hirel B: Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments. Plant Cell Physiol. 2009, 50: 1761-1773. 10.1093/pcp/pcp118.PubMedCentralCrossRefPubMed Labboun S, Terce-Laforgue T, Roscher A, Bedu M, Restivo FM, Velanis CN, Skopelitis DS, Moschou PN, Roubelakis-Angelakis KA, Suzuki A, Hirel B: Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments. Plant Cell Physiol. 2009, 50: 1761-1773. 10.1093/pcp/pcp118.PubMedCentralCrossRefPubMed
11.
go back to reference Tang Y, Sieg A, Trotter PJ: (13)C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae. Microbiol Res. 2011, Tang Y, Sieg A, Trotter PJ: (13)C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae. Microbiol Res. 2011,
12.
go back to reference Krauth-Siegel RL, Muller JG, Lottspeich F, Schirmer RH: Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. Eur J Biochem. 1996, 235: 345-350. 10.1111/j.1432-1033.1996.00345.x.CrossRefPubMed Krauth-Siegel RL, Muller JG, Lottspeich F, Schirmer RH: Glutathione reductase and glutamate dehydrogenase of Plasmodium falciparum, the causative agent of tropical malaria. Eur J Biochem. 1996, 235: 345-350. 10.1111/j.1432-1033.1996.00345.x.CrossRefPubMed
13.
go back to reference Wagner JT, Ludemann H, Farber PM, Lottspeich F, Krauth-Siegel RL: Glutamate dehydrogenase, the marker protein of Plasmodium falciparum--cloning, expression and characterization of the malarial enzyme. Eur J Biochem. 1998, 258: 813-819. 10.1046/j.1432-1327.1998.2580813.x.CrossRefPubMed Wagner JT, Ludemann H, Farber PM, Lottspeich F, Krauth-Siegel RL: Glutamate dehydrogenase, the marker protein of Plasmodium falciparum--cloning, expression and characterization of the malarial enzyme. Eur J Biochem. 1998, 258: 813-819. 10.1046/j.1432-1327.1998.2580813.x.CrossRefPubMed
14.
go back to reference Werner C, Stubbs MT, Krauth-Siegel RL, Klebe G: The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. J Mol Bio. 2005, 349: 597-607. 10.1016/j.jmb.2005.03.077.CrossRef Werner C, Stubbs MT, Krauth-Siegel RL, Klebe G: The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs. J Mol Bio. 2005, 349: 597-607. 10.1016/j.jmb.2005.03.077.CrossRef
15.
go back to reference Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H: Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol. 2004, 34: 163-189. 10.1016/j.ijpara.2003.09.011.CrossRefPubMed Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H: Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol. 2004, 34: 163-189. 10.1016/j.ijpara.2003.09.011.CrossRefPubMed
16.
go back to reference Muller S: Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol. 2004, 53: 1291-1305. 10.1111/j.1365-2958.2004.04257.x.CrossRefPubMed Muller S: Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol Microbiol. 2004, 53: 1291-1305. 10.1111/j.1365-2958.2004.04257.x.CrossRefPubMed
17.
go back to reference Muller S, Liebau E, Walter RD, Krauth-Siegel RL: Thiol-based redox metabolism of protozoan parasites. Trends Parasitol. 2003, 19: 320-328. 10.1016/S1471-4922(03)00141-7.CrossRefPubMed Muller S, Liebau E, Walter RD, Krauth-Siegel RL: Thiol-based redox metabolism of protozoan parasites. Trends Parasitol. 2003, 19: 320-328. 10.1016/S1471-4922(03)00141-7.CrossRefPubMed
18.
go back to reference Vander Jagt DL, Hunsaker LA, Kibirige M, Campos NM: NADPH production by the malarial parasite Plasmodium falciparum. Blood. 1989, 74: 471-474.PubMed Vander Jagt DL, Hunsaker LA, Kibirige M, Campos NM: NADPH production by the malarial parasite Plasmodium falciparum. Blood. 1989, 74: 471-474.PubMed
19.
go back to reference Walter RD, Nordmeyer JP, Konigk E: NADP-specific glutamate dehydrogenase from Plasmodium chabaudi. Hoppe Seylers Z Physiol Chem. 1974, 355: 495-500. 10.1515/bchm2.1974.355.1.495.CrossRefPubMed Walter RD, Nordmeyer JP, Konigk E: NADP-specific glutamate dehydrogenase from Plasmodium chabaudi. Hoppe Seylers Z Physiol Chem. 1974, 355: 495-500. 10.1515/bchm2.1974.355.1.495.CrossRefPubMed
20.
go back to reference Crowther GJ, Napuli AJ, Gilligan JH, Gagaring K, Borboa R, Francek C, Chen Z, Dagostino EF, Stockmyer JB, Wang Y, Rodenbough PP, Castaneda LJ, Leibly DJ, Bhandari J, Gelb MH, Brinker A, Engels IH, Taylor J, Chatterjee AK, Fantauzzi P, Glynne RJ, Van Voorhis WC, Kuhen KL: Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol Biochem Parasitol. 175: 21-29. Crowther GJ, Napuli AJ, Gilligan JH, Gagaring K, Borboa R, Francek C, Chen Z, Dagostino EF, Stockmyer JB, Wang Y, Rodenbough PP, Castaneda LJ, Leibly DJ, Bhandari J, Gelb MH, Brinker A, Engels IH, Taylor J, Chatterjee AK, Fantauzzi P, Glynne RJ, Van Voorhis WC, Kuhen KL: Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Mol Biochem Parasitol. 175: 21-29.
21.
go back to reference Crabb BS: Transfection technology and the study of drug resistance in the malaria parasite Plasmodium falciparum. Drug Resist Updat. 2002, 5: 126-130. 10.1016/S1368-7646(02)00085-7.CrossRefPubMed Crabb BS: Transfection technology and the study of drug resistance in the malaria parasite Plasmodium falciparum. Drug Resist Updat. 2002, 5: 126-130. 10.1016/S1368-7646(02)00085-7.CrossRefPubMed
22.
go back to reference Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF: Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000, 403: 906-909. 10.1038/35002615.CrossRefPubMed Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF: Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000, 403: 906-909. 10.1038/35002615.CrossRefPubMed
23.
go back to reference Wrenger C, Muller S: Isocitrate dehydrogenase of Plasmodium falciparum. Eur J Biochem. 2003, 270: 1775-1783. 10.1046/j.1432-1033.2003.03536.x.CrossRefPubMed Wrenger C, Muller S: Isocitrate dehydrogenase of Plasmodium falciparum. Eur J Biochem. 2003, 270: 1775-1783. 10.1046/j.1432-1033.2003.03536.x.CrossRefPubMed
24.
go back to reference Gunther S, McMillan PJ, Wallace LJ, Muller S: Plasmodium falciparum possesses organelle-specific alpha-keto acid dehydrogenase complexes and lipoylation pathways. Biochem Soc Trans. 2005, 33: 977-980. 10.1042/BST20050977.CrossRefPubMed Gunther S, McMillan PJ, Wallace LJ, Muller S: Plasmodium falciparum possesses organelle-specific alpha-keto acid dehydrogenase complexes and lipoylation pathways. Biochem Soc Trans. 2005, 33: 977-980. 10.1042/BST20050977.CrossRefPubMed
25.
go back to reference Gilberger TW, Schirmer RH, Walter RD, Muller S: Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. Mol Biochem Parasitol. 2000, 107: 169-179. 10.1016/S0166-6851(00)00188-2.CrossRefPubMed Gilberger TW, Schirmer RH, Walter RD, Muller S: Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. Mol Biochem Parasitol. 2000, 107: 169-179. 10.1016/S0166-6851(00)00188-2.CrossRefPubMed
26.
go back to reference Krnajski Z, Gilberger TW, Walter RD, Muller S: The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol Biochem Parasitol. 2001, 112: 219-228. 10.1016/S0166-6851(00)00372-8.CrossRefPubMed Krnajski Z, Gilberger TW, Walter RD, Muller S: The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol Biochem Parasitol. 2001, 112: 219-228. 10.1016/S0166-6851(00)00372-8.CrossRefPubMed
27.
go back to reference Krnajski Z, Walter RD, Muller S: Isolation and functional analysis of two thioredoxin peroxidases (peroxiredoxins) from Plasmodium falciparum. Mol Biochem Parasitol. 2001, 113: 303-308. 10.1016/S0166-6851(01)00219-5.CrossRefPubMed Krnajski Z, Walter RD, Muller S: Isolation and functional analysis of two thioredoxin peroxidases (peroxiredoxins) from Plasmodium falciparum. Mol Biochem Parasitol. 2001, 113: 303-308. 10.1016/S0166-6851(01)00219-5.CrossRefPubMed
28.
go back to reference Akerman SE, Muller S: 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol. 2003, 130: 75-81. 10.1016/S0166-6851(03)00161-0.CrossRefPubMed Akerman SE, Muller S: 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol. 2003, 130: 75-81. 10.1016/S0166-6851(03)00161-0.CrossRefPubMed
29.
go back to reference Trager W, Jensen JB: Human malaria parasites in continuous culture. Science. 1976, 193: 673-675. 10.1126/science.781840.CrossRefPubMed Trager W, Jensen JB: Human malaria parasites in continuous culture. Science. 1976, 193: 673-675. 10.1126/science.781840.CrossRefPubMed
30.
go back to reference Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979, 65: 418-420. 10.2307/3280287.CrossRefPubMed Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979, 65: 418-420. 10.2307/3280287.CrossRefPubMed
31.
go back to reference Umlas J, Fallon JN: New thick-film technique for malaria diagnosis. Use of saponin stromatolytic solution for lysis. Am J Trop Med Hyg. 1971, 20: 527-529.PubMed Umlas J, Fallon JN: New thick-film technique for malaria diagnosis. Use of saponin stromatolytic solution for lysis. Am J Trop Med Hyg. 1971, 20: 527-529.PubMed
32.
go back to reference Crabb BS, Cowman AF: Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc Natl Acad Sci USA. 1996, 93: 7289-7294. 10.1073/pnas.93.14.7289.PubMedCentralCrossRefPubMed Crabb BS, Cowman AF: Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc Natl Acad Sci USA. 1996, 93: 7289-7294. 10.1073/pnas.93.14.7289.PubMedCentralCrossRefPubMed
33.
go back to reference Kirkman LA, Su XZ, Wellems TE: Plasmodium falciparum: isolation of large numbers of parasite clones from infected blood samples. Exp Parasitol. 1996, 83: 147-149. 10.1006/expr.1996.0058.CrossRefPubMed Kirkman LA, Su XZ, Wellems TE: Plasmodium falciparum: isolation of large numbers of parasite clones from infected blood samples. Exp Parasitol. 1996, 83: 147-149. 10.1006/expr.1996.0058.CrossRefPubMed
34.
go back to reference Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.PubMedCentralCrossRefPubMed Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979, 16: 710-718.PubMedCentralCrossRefPubMed
35.
go back to reference Gunther S, Wallace L, Patzewitz EM, McMillan PJ, Storm J, Wrenger C, Bissett R, Smith TK, Muller S: Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum. PLoS Pathog. 2007, 3: e189-10.1371/journal.ppat.0030189.PubMedCentralCrossRefPubMed Gunther S, Wallace L, Patzewitz EM, McMillan PJ, Storm J, Wrenger C, Bissett R, Smith TK, Muller S: Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum. PLoS Pathog. 2007, 3: e189-10.1371/journal.ppat.0030189.PubMedCentralCrossRefPubMed
36.
go back to reference Smith JD, Kyes S, Craig AG, Fagan T, Hudson-Taylor D, Miller LH, Baruch DI, Newbold CI: Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain. Mol Biochem Parasitol. 1998, 97: 133-148. 10.1016/S0166-6851(98)00145-5.CrossRefPubMed Smith JD, Kyes S, Craig AG, Fagan T, Hudson-Taylor D, Miller LH, Baruch DI, Newbold CI: Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain. Mol Biochem Parasitol. 1998, 97: 133-148. 10.1016/S0166-6851(98)00145-5.CrossRefPubMed
37.
go back to reference Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.CrossRefPubMed Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.CrossRefPubMed
38.
go back to reference Mamoun CB, Goldberg DE: Plasmodium protein phosphatase 2C dephosphorylates translation elongation factor 1beta and inhibits its PKC-mediated nucleotide exchange activity in vitro. Mol Microbiol. 2001, 39: 973-981. 10.1046/j.1365-2958.2001.02289.x.CrossRefPubMed Mamoun CB, Goldberg DE: Plasmodium protein phosphatase 2C dephosphorylates translation elongation factor 1beta and inhibits its PKC-mediated nucleotide exchange activity in vitro. Mol Microbiol. 2001, 39: 973-981. 10.1046/j.1365-2958.2001.02289.x.CrossRefPubMed
39.
go back to reference Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG: Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol. 2003, 49: 179-191. 10.1046/j.1365-2958.2003.03570.x.CrossRefPubMed Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG: Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol. 2003, 49: 179-191. 10.1046/j.1365-2958.2003.03570.x.CrossRefPubMed
40.
go back to reference Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.CrossRefPubMed Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983, 65: 55-63. 10.1016/0022-1759(83)90303-4.CrossRefPubMed
41.
go back to reference Williams RA, Westrop GD, Coombs GH: Two pathways for cysteine biosynthesis in Leishmania major. Biochem J. 2009, 420: 451-462. 10.1042/BJ20082441.CrossRefPubMed Williams RA, Westrop GD, Coombs GH: Two pathways for cysteine biosynthesis in Leishmania major. Biochem J. 2009, 420: 451-462. 10.1042/BJ20082441.CrossRefPubMed
42.
go back to reference Olszewski KL, Mather MW, Morrisey JM, Garcia BA, Vaidya AB, Rabinowitz JD, Llinas M: Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature. 2010, 466: 774-778. 10.1038/nature09301.PubMedCentralCrossRefPubMed Olszewski KL, Mather MW, Morrisey JM, Garcia BA, Vaidya AB, Rabinowitz JD, Llinas M: Branched tricarboxylic acid metabolism in Plasmodium falciparum. Nature. 2010, 466: 774-778. 10.1038/nature09301.PubMedCentralCrossRefPubMed
43.
go back to reference Luersen K, Walter RD, Muller S: Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem J. 2000, 346 (Pt 2): 545-552.PubMedCentralCrossRefPubMed Luersen K, Walter RD, Muller S: Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem J. 2000, 346 (Pt 2): 545-552.PubMedCentralCrossRefPubMed
44.
go back to reference Atamna H, Ginsburg H: The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem. 1997, 250: 670-679. 10.1111/j.1432-1033.1997.00670.x.CrossRefPubMed Atamna H, Ginsburg H: The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem. 1997, 250: 670-679. 10.1111/j.1432-1033.1997.00670.x.CrossRefPubMed
45.
go back to reference Ayi K, Cappadoro M, Branca M, Turrini F, Arese P: Plasmodium falciparum glutathione metabolism and growth are independent of glutathione system of host erythrocyte. FEBS Lett. 1998, 424: 257-261. 10.1016/S0014-5793(98)00185-9.CrossRefPubMed Ayi K, Cappadoro M, Branca M, Turrini F, Arese P: Plasmodium falciparum glutathione metabolism and growth are independent of glutathione system of host erythrocyte. FEBS Lett. 1998, 424: 257-261. 10.1016/S0014-5793(98)00185-9.CrossRefPubMed
46.
47.
go back to reference Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinas M: Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009, 5: 191-199. 10.1016/j.chom.2009.01.004.PubMedCentralCrossRefPubMed Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinas M: Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe. 2009, 5: 191-199. 10.1016/j.chom.2009.01.004.PubMedCentralCrossRefPubMed
48.
go back to reference Berger LC, Wilson J, Wood P, Berger BJ: Methionine regeneration and aspartate aminotransferase in parasitic protozoa. J Bacteriol. 2001, 183: 4421-4434. 10.1128/JB.183.15.4421-4434.2001.PubMedCentralCrossRefPubMed Berger LC, Wilson J, Wood P, Berger BJ: Methionine regeneration and aspartate aminotransferase in parasitic protozoa. J Bacteriol. 2001, 183: 4421-4434. 10.1128/JB.183.15.4421-4434.2001.PubMedCentralCrossRefPubMed
49.
go back to reference Wrenger C, Muller IB, Schifferdecker AJ, Jain R, Jordanova R, Groves MR: Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. J Mol Biol. 405: 956-971. Wrenger C, Muller IB, Schifferdecker AJ, Jain R, Jordanova R, Groves MR: Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. J Mol Biol. 405: 956-971.
50.
go back to reference Lepore BW, Liu D, Peng Y, Fu M, Yasuda C, Manning JM, Silverman RB, Ringe D: Chiral discrimination among aminotransferases: inactivation by 4-amino-4,5-dihydrothiophenecarboxylic acid. Biochemistry. 49: 3138-3147. Lepore BW, Liu D, Peng Y, Fu M, Yasuda C, Manning JM, Silverman RB, Ringe D: Chiral discrimination among aminotransferases: inactivation by 4-amino-4,5-dihydrothiophenecarboxylic acid. Biochemistry. 49: 3138-3147.
51.
go back to reference Cornell NW, Zuurendonk PF, Kerich MJ, Straight CB: Selective inhibition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes. Biochem J. 1984, 220: 707-716.PubMedCentralCrossRefPubMed Cornell NW, Zuurendonk PF, Kerich MJ, Straight CB: Selective inhibition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes. Biochem J. 1984, 220: 707-716.PubMedCentralCrossRefPubMed
52.
go back to reference Ling IT, Cooksley S, Bates PA, Hempelmann E, Wilson RJ: Antibodies to the glutamate dehydrogenase of Plasmodium falciparum. Parasitology. 1986, 92 (Pt 2): 313-324.CrossRefPubMed Ling IT, Cooksley S, Bates PA, Hempelmann E, Wilson RJ: Antibodies to the glutamate dehydrogenase of Plasmodium falciparum. Parasitology. 1986, 92 (Pt 2): 313-324.CrossRefPubMed
53.
go back to reference Abiko T, Obara M, Ushioda A, Hayakawa T, Hodges M, Yamaya T: Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase. Plant Cell Physiol. 2005, 46: 1724-1734. 10.1093/pcp/pci188.CrossRefPubMed Abiko T, Obara M, Ushioda A, Hayakawa T, Hodges M, Yamaya T: Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots: candidates for providing carbon skeletons to NADH-glutamate synthase. Plant Cell Physiol. 2005, 46: 1724-1734. 10.1093/pcp/pci188.CrossRefPubMed
54.
go back to reference Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F: Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.). Plant Cell Physiol. 2005, 46: 964-974. 10.1093/pcp/pci105.CrossRefPubMed Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F: Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.). Plant Cell Physiol. 2005, 46: 964-974. 10.1093/pcp/pci105.CrossRefPubMed
55.
go back to reference Zeuthen T, Wu B, Pavlovic-Djuranovic S, Holm LM, Uzcategui NL, Duszenko M, Kun JF, Schultz JE, Beitz E: Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol Microbiol. 2006, 61: 1598-1608. 10.1111/j.1365-2958.2006.05325.x.CrossRefPubMed Zeuthen T, Wu B, Pavlovic-Djuranovic S, Holm LM, Uzcategui NL, Duszenko M, Kun JF, Schultz JE, Beitz E: Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol Microbiol. 2006, 61: 1598-1608. 10.1111/j.1365-2958.2006.05325.x.CrossRefPubMed
57.
go back to reference Helling RB: Why does Escherichia coli have two primary pathways for synthesis of glutamate?. J Bacteriol. 1994, 176: 4664-4668.PubMedCentralPubMed Helling RB: Why does Escherichia coli have two primary pathways for synthesis of glutamate?. J Bacteriol. 1994, 176: 4664-4668.PubMedCentralPubMed
58.
go back to reference Baars JJ, Op den Camp HJ, van der Drift C, Joordens JJ, Wijmenga SS, van Griensven LJ, Vogels GD: 15N-NMR study of ammonium assimilation in Agaricus bisporus. Biochim Biophys Acta. 1996, 1310: 74-80. 10.1016/0167-4889(95)00157-3.CrossRefPubMed Baars JJ, Op den Camp HJ, van der Drift C, Joordens JJ, Wijmenga SS, van Griensven LJ, Vogels GD: 15N-NMR study of ammonium assimilation in Agaricus bisporus. Biochim Biophys Acta. 1996, 1310: 74-80. 10.1016/0167-4889(95)00157-3.CrossRefPubMed
59.
go back to reference Perysinakis A, Kinghorn JR, Drainas C: Glutamine synthetase/glutamate synthase ammonium-assimilating pathway in Schizosaccharomyces pombe. Curr Microbiol. 1995, 30: 367-372. 10.1007/BF00369864.CrossRefPubMed Perysinakis A, Kinghorn JR, Drainas C: Glutamine synthetase/glutamate synthase ammonium-assimilating pathway in Schizosaccharomyces pombe. Curr Microbiol. 1995, 30: 367-372. 10.1007/BF00369864.CrossRefPubMed
Metadata
Title
Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development
Authors
Janet Storm
Jan Perner
Isabela Aparicio
Eva-Maria Patzewitz
Kellen Olszewski
Manuel Llinas
Paul C Engel
Sylke Müller
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2011
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-10-193

Other articles of this Issue 1/2011

Malaria Journal 1/2011 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.