Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Review

Plant responses to geminivirus infection: guardians of the plant immunity

Authors: Neha Gupta, Kishorekumar Reddy, Dhriti Bhattacharyya, Supriya Chakraborty✉

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis.

Main body

Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host–pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant’s defence response against geminiviruses is required. This review discusses the current knowledge of plant’s antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed.

Conclusions

Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.
Literature
1.
go back to reference Jeske H, Lütgemeier M, Preiss W. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. Embo J. 2001;20(21):6158–67.PubMedPubMedCentralCrossRef Jeske H, Lütgemeier M, Preiss W. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. Embo J. 2001;20(21):6158–67.PubMedPubMedCentralCrossRef
2.
go back to reference Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11(11):777–88.PubMedCrossRef Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 2013;11(11):777–88.PubMedCrossRef
3.
go back to reference Abouzid AM, Frischmuth T, Jeske H. A putative replicative form of the abutilon mosaic virus (gemini group) in a chromatin-like structure. Mol Gen Genet MGG. 1988;212(2):252–8.CrossRef Abouzid AM, Frischmuth T, Jeske H. A putative replicative form of the abutilon mosaic virus (gemini group) in a chromatin-like structure. Mol Gen Genet MGG. 1988;212(2):252–8.CrossRef
4.
go back to reference Kushwaha NK, Mansi B, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog. 2017;13(8):e1006587.PubMedPubMedCentralCrossRef Kushwaha NK, Mansi B, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog. 2017;13(8):e1006587.PubMedPubMedCentralCrossRef
5.
go back to reference Mansoor S, Zafar Y, Briddon RW. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 2006;11(5):209–12.PubMedCrossRef Mansoor S, Zafar Y, Briddon RW. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 2006;11(5):209–12.PubMedCrossRef
6.
go back to reference Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, et al. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot. 2015;66(19):5881–95.PubMedPubMedCentralCrossRef Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, et al. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot. 2015;66(19):5881–95.PubMedPubMedCentralCrossRef
7.
go back to reference Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, et al. ICTV virus taxonomy profile: geminiviridae. J Gen Virol. 2017;98(2):131–3.PubMedPubMedCentralCrossRef Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, et al. ICTV virus taxonomy profile: geminiviridae. J Gen Virol. 2017;98(2):131–3.PubMedPubMedCentralCrossRef
8.
go back to reference Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and their satellites. FEBS Lett. 2009;583(12):1825–32.PubMedCrossRef Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and their satellites. FEBS Lett. 2009;583(12):1825–32.PubMedCrossRef
11.
go back to reference Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease. 2019;30(1):66–73.PubMedCrossRef Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease. 2019;30(1):66–73.PubMedCrossRef
12.
go back to reference Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, et al. Characterization of non-coding DNA satellites associated with sweepoviruses (Genus Begomovirus, Geminiviridae)—definition of a distinct class of begomovirus-associated satellites. Front Microbiol. 2016;7:162.PubMedPubMedCentralCrossRef Lozano G, Trenado HP, Fiallo-Olivé E, Chirinos D, Geraud-Pouey F, Briddon RW, et al. Characterization of non-coding DNA satellites associated with sweepoviruses (Genus Begomovirus, Geminiviridae)—definition of a distinct class of begomovirus-associated satellites. Front Microbiol. 2016;7:162.PubMedPubMedCentralCrossRef
13.
go back to reference Gnanasekaran P, Chakraborty S. Biology of viral satellites and their role in pathogenesis. Curr Opin Virol. 2018;33:96–105.PubMedCrossRef Gnanasekaran P, Chakraborty S. Biology of viral satellites and their role in pathogenesis. Curr Opin Virol. 2018;33:96–105.PubMedCrossRef
14.
go back to reference Saunders K, Briddon RW, Stanley J. Replication promiscuity of DNA-beta satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-beta satellite localizes sequences involved in replication. J Gen Virol. 2008;89(Pt 12):3165–72.PubMedCrossRef Saunders K, Briddon RW, Stanley J. Replication promiscuity of DNA-beta satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-beta satellite localizes sequences involved in replication. J Gen Virol. 2008;89(Pt 12):3165–72.PubMedCrossRef
15.
go back to reference Saunders K, Stanley J. A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology. 1999;264(1):142–52.PubMedCrossRef Saunders K, Stanley J. A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology. 1999;264(1):142–52.PubMedCrossRef
16.
go back to reference Kumar J, Kumar J, Singh SP, Tuli R. βC1 is a pathogenicity determinant: not only for begomoviruses but also for a mastrevirus. Arch Virol. 2014;159(11):3071–6.PubMedCrossRef Kumar J, Kumar J, Singh SP, Tuli R. βC1 is a pathogenicity determinant: not only for begomoviruses but also for a mastrevirus. Arch Virol. 2014;159(11):3071–6.PubMedCrossRef
17.
go back to reference Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol. 2019;20(7):1019–33.PubMedPubMedCentralCrossRef Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. Mol Plant Pathol. 2019;20(7):1019–33.PubMedPubMedCentralCrossRef
18.
go back to reference Saeed M, Behjatnia SA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA. A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol Plant Microbe Interact. 2005;18(1):7–14.PubMedCrossRef Saeed M, Behjatnia SA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA. A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol Plant Microbe Interact. 2005;18(1):7–14.PubMedCrossRef
19.
go back to reference Hu T, Song Y, Wang Y, Zhou X. Functional analysis of a novel βV1 gene identified in a geminivirus betasatellite. Sci China Life Sci. 2020;63(5):688–96.PubMedCrossRef Hu T, Song Y, Wang Y, Zhou X. Functional analysis of a novel βV1 gene identified in a geminivirus betasatellite. Sci China Life Sci. 2020;63(5):688–96.PubMedCrossRef
20.
go back to reference Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, et al. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology. 2003;312(1):106–21.PubMedCrossRef Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, et al. Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology. 2003;312(1):106–21.PubMedCrossRef
21.
go back to reference Reddy K, Bhattacharyya D, Chakraborty S. Mutational study of radish leaf curl betasatellite to understand the role of the non-coding region in begomovirus pathogenesis. Physiol Mol Plant Pathol. 2020;112:101549.CrossRef Reddy K, Bhattacharyya D, Chakraborty S. Mutational study of radish leaf curl betasatellite to understand the role of the non-coding region in begomovirus pathogenesis. Physiol Mol Plant Pathol. 2020;112:101549.CrossRef
22.
go back to reference Vanitharani R, Chellappan P, Fauquet CM. Geminiviruses and RNA silencing. Trends Plant Sci. 2005;10(3):144–51.PubMedCrossRef Vanitharani R, Chellappan P, Fauquet CM. Geminiviruses and RNA silencing. Trends Plant Sci. 2005;10(3):144–51.PubMedCrossRef
23.
go back to reference Zarreen F, Chakraborty S. Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. J Exp Bot. 2020;71(22):6890–906.PubMedCrossRef Zarreen F, Chakraborty S. Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. J Exp Bot. 2020;71(22):6890–906.PubMedCrossRef
24.
go back to reference Ceniceros-Ojeda EA, Rodríguez-Negrete EA, Rivera-Bustamante RF. Two populations of viral minichromosomes are present in a geminivirus-infected plant showing symptom remission (recovery). J Virol. 2016;90(8):3828–38.PubMedPubMedCentralCrossRef Ceniceros-Ojeda EA, Rodríguez-Negrete EA, Rivera-Bustamante RF. Two populations of viral minichromosomes are present in a geminivirus-infected plant showing symptom remission (recovery). J Virol. 2016;90(8):3828–38.PubMedPubMedCentralCrossRef
25.
go back to reference Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell. 2009;33(2):192–203.PubMedCrossRef Ream TS, Haag JR, Wierzbicki AT, Nicora CD, Norbeck AD, Zhu JK, et al. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell. 2009;33(2):192–203.PubMedCrossRef
26.
go back to reference Jackel JN, Storer JM, Coursey T, Bisaro DM. Arabidopsis RNA polymerases IV and V are required to establish H3K9 methylation, but not cytosine methylation, on geminivirus chromatin. J Virol. 2016;90(16):7529–40.PubMedPubMedCentralCrossRef Jackel JN, Storer JM, Coursey T, Bisaro DM. Arabidopsis RNA polymerases IV and V are required to establish H3K9 methylation, but not cytosine methylation, on geminivirus chromatin. J Virol. 2016;90(16):7529–40.PubMedPubMedCentralCrossRef
27.
go back to reference Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2(5):E104.PubMedPubMedCentralCrossRef Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2(5):E104.PubMedPubMedCentralCrossRef
28.
go back to reference He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, et al. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell. 2009;137(3):498–508.PubMedPubMedCentralCrossRef He XJ, Hsu YF, Zhu S, Wierzbicki AT, Pontes O, Pikaard CS, et al. An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell. 2009;137(3):498–508.PubMedPubMedCentralCrossRef
29.
go back to reference Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol. 2011;12(8):483–92.PubMedCrossRef Haag JR, Pikaard CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol. 2011;12(8):483–92.PubMedCrossRef
30.
go back to reference Sun YW, Tee CS, Ma YH, Wang G, Yao XM, Ye J. Attenuation of histone methyltransferase KRYPTONITE-mediated transcriptional gene silencing by geminivirus. Sci Rep. 2015;5:16476.PubMedPubMedCentralCrossRef Sun YW, Tee CS, Ma YH, Wang G, Yao XM, Ye J. Attenuation of histone methyltransferase KRYPTONITE-mediated transcriptional gene silencing by geminivirus. Sci Rep. 2015;5:16476.PubMedPubMedCentralCrossRef
31.
go back to reference Deleris A, Halter T, Navarro L. DNA methylation and demethylation in plant immunity. Annu Rev Phytopathol. 2016;54:579–603.PubMedCrossRef Deleris A, Halter T, Navarro L. DNA methylation and demethylation in plant immunity. Annu Rev Phytopathol. 2016;54:579–603.PubMedCrossRef
32.
go back to reference Raja P, Sanville BC, Buchmann RC, Bisaro DM. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol. 2008;82(18):8997–9007.PubMedPubMedCentralCrossRef Raja P, Sanville BC, Buchmann RC, Bisaro DM. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol. 2008;82(18):8997–9007.PubMedPubMedCentralCrossRef
33.
go back to reference Shen W, Dallas MB, Goshe MB, Hanley-Bowdoin L. SnRK1 phosphorylation of AL2 delays Cabbage leaf curl virus infection in Arabidopsis. J Virol. 2014;88(18):10598–612.PubMedPubMedCentralCrossRef Shen W, Dallas MB, Goshe MB, Hanley-Bowdoin L. SnRK1 phosphorylation of AL2 delays Cabbage leaf curl virus infection in Arabidopsis. J Virol. 2014;88(18):10598–612.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, et al. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol. 2014;95(Pt 1):225–30.PubMedCrossRef Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, et al. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol. 2014;95(Pt 1):225–30.PubMedCrossRef
36.
go back to reference Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. Elife. 2020;9:e55542.PubMedPubMedCentralCrossRef Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. Elife. 2020;9:e55542.PubMedPubMedCentralCrossRef
37.
go back to reference Wang Y, Wu Y, Gong Q, Ismayil A, Yuan Y, Lian B, et al. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. J Virol. 2019;93(6):e01675-e1718.PubMedPubMedCentralCrossRef Wang Y, Wu Y, Gong Q, Ismayil A, Yuan Y, Lian B, et al. Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4. J Virol. 2019;93(6):e01675-e1718.PubMedPubMedCentralCrossRef
38.
go back to reference Mei Y, Wang Y, Li F, Zhou X. The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathog. 2020;16(10):e1008829.PubMedPubMedCentralCrossRef Mei Y, Wang Y, Li F, Zhou X. The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathog. 2020;16(10):e1008829.PubMedPubMedCentralCrossRef
39.
go back to reference Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell. 2011;23(1):273–88.PubMedPubMedCentralCrossRef Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell. 2011;23(1):273–88.PubMedPubMedCentralCrossRef
40.
go back to reference Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, et al. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 2011;7(10):e1002329.PubMedPubMedCentralCrossRef Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, et al. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 2011;7(10):e1002329.PubMedPubMedCentralCrossRef
41.
go back to reference Wang B, Yang X, Wang Y, Xie Y, Zhou X. Tomato yellow leaf curl virus V2 interacts with host histone deacetylase 6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol. 2018;92(18):e00036-e118.PubMedPubMedCentralCrossRef Wang B, Yang X, Wang Y, Xie Y, Zhou X. Tomato yellow leaf curl virus V2 interacts with host histone deacetylase 6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol. 2018;92(18):e00036-e118.PubMedPubMedCentralCrossRef
42.
go back to reference Coursey T, Milutinovic M, Regedanz E, Brkljacic J, Bisaro DM. Arabidopsis histone reader EMSY-LIKE 1 binds H3K36 and suppresses geminivirus infection. J Virol. 2018;92(16):e00219-e318.PubMedPubMedCentralCrossRef Coursey T, Milutinovic M, Regedanz E, Brkljacic J, Bisaro DM. Arabidopsis histone reader EMSY-LIKE 1 binds H3K36 and suppresses geminivirus infection. J Virol. 2018;92(16):e00219-e318.PubMedPubMedCentralCrossRef
43.
go back to reference Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep. 2016;6:27078.PubMedPubMedCentralCrossRef Sahu PP, Sharma N, Puranik S, Chakraborty S, Prasad M. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato. Sci Rep. 2016;6:27078.PubMedPubMedCentralCrossRef
44.
go back to reference Seemanpillai M, Dry I, Randles J, Rezaian A. Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact. 2003;16(5):429–38.PubMedCrossRef Seemanpillai M, Dry I, Randles J, Rezaian A. Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact. 2003;16(5):429–38.PubMedCrossRef
45.
go back to reference Basu S, Kumar Kushwaha N, Kumar Singh A, Pankaj Sahu P, Vinoth Kumar R, Chakraborty S. Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J Exp Bot. 2018;69(8):2085–102.PubMedPubMedCentralCrossRef Basu S, Kumar Kushwaha N, Kumar Singh A, Pankaj Sahu P, Vinoth Kumar R, Chakraborty S. Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J Exp Bot. 2018;69(8):2085–102.PubMedPubMedCentralCrossRef
46.
go back to reference Prakash V, Singh A, Singh AK, Dalmay T, Chakraborty S. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. Planta. 2020;252(1):11.PubMedCrossRef Prakash V, Singh A, Singh AK, Dalmay T, Chakraborty S. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. Planta. 2020;252(1):11.PubMedCrossRef
47.
go back to reference Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T. RNAi targeting of DNA virus in plants. Nat Biotechnol. 2003;21(2):131–2.PubMedCrossRef Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T. RNAi targeting of DNA virus in plants. Nat Biotechnol. 2003;21(2):131–2.PubMedCrossRef
48.
go back to reference Rodríguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol. 2009;83(3):1332–40.PubMedCrossRef Rodríguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol. 2009;83(3):1332–40.PubMedCrossRef
49.
go back to reference Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.PubMedPubMedCentralCrossRef Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7.PubMedPubMedCentralCrossRef
50.
go back to reference Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22(5):268–80.PubMedCrossRef Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006;22(5):268–80.PubMedCrossRef
51.
52.
go back to reference Ye J, Yang J, Sun Y, Zhao P, Gao S, Jung C, et al. Geminivirus activates ASYMMETRIC LEAVES 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens RNA silencing in arabidopsis. PLoS Pathog. 2015;11(10):e1005196.PubMedPubMedCentralCrossRef Ye J, Yang J, Sun Y, Zhao P, Gao S, Jung C, et al. Geminivirus activates ASYMMETRIC LEAVES 2 to accelerate cytoplasmic DCP2-mediated mRNA turnover and weakens RNA silencing in arabidopsis. PLoS Pathog. 2015;11(10):e1005196.PubMedPubMedCentralCrossRef
53.
go back to reference Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 2014;10(2):e1003921.PubMedPubMedCentralCrossRef Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 2014;10(2):e1003921.PubMedPubMedCentralCrossRef
54.
go back to reference Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, et al. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog. 2017;13(2):e1006213.PubMedPubMedCentralCrossRef Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X, et al. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog. 2017;13(2):e1006213.PubMedPubMedCentralCrossRef
55.
go back to reference Wang Y, Dang M, Hou H, Mei Y, Qian Y, Zhou X. Identification of an RNA silencing suppressor encoded by a mastrevirus. J Gen Virol. 2014;95(Pt 9):2082–8.PubMedCrossRef Wang Y, Dang M, Hou H, Mei Y, Qian Y, Zhou X. Identification of an RNA silencing suppressor encoded by a mastrevirus. J Gen Virol. 2014;95(Pt 9):2082–8.PubMedCrossRef
56.
go back to reference Eini O. A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol (Mosk). 2017;51(4):656–63.CrossRef Eini O. A betasatellite-encoded protein regulates key components of gene silencing system in plants. Mol Biol (Mosk). 2017;51(4):656–63.CrossRef
57.
go back to reference Ismayil A, Haxim Y, Wang Y, Li H, Qian L, Han T, et al. Cotton Leaf Curl Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathog. 2018;14(8):e1007282.PubMedPubMedCentralCrossRef Ismayil A, Haxim Y, Wang Y, Li H, Qian L, Han T, et al. Cotton Leaf Curl Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathog. 2018;14(8):e1007282.PubMedPubMedCentralCrossRef
58.
go back to reference Roeder S, Dreschler K, Wirtz M, Cristescu SM, van Harren FJ, Hell R, et al. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol. 2009;70(5):535–46.PubMedPubMedCentralCrossRef Roeder S, Dreschler K, Wirtz M, Cristescu SM, van Harren FJ, Hell R, et al. SAM levels, gene expression of SAM synthetase, methionine synthase and ACC oxidase, and ethylene emission from N. suaveolens flowers. Plant Mol Biol. 2009;70(5):535–46.PubMedPubMedCentralCrossRef
59.
go back to reference Guha D, Poornima Priyadarshini CG, Purakayastha A, Thippeswamy R, Lakshmikanth M, Savithri HS. Biochemical characterization of C4 protein of Cotton leaf curl Kokhran Virus-Dabawali. Biochim Biophys Acta. 2013;1830(6):3734–44.PubMedCrossRef Guha D, Poornima Priyadarshini CG, Purakayastha A, Thippeswamy R, Lakshmikanth M, Savithri HS. Biochemical characterization of C4 protein of Cotton leaf curl Kokhran Virus-Dabawali. Biochim Biophys Acta. 2013;1830(6):3734–44.PubMedCrossRef
60.
go back to reference Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986;232(4751):738–43.PubMedCrossRef Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 1986;232(4751):738–43.PubMedCrossRef
61.
go back to reference Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, et al. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (N Y). 1994;12(5):500–4.CrossRef Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, et al. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (N Y). 1994;12(5):500–4.CrossRef
62.
go back to reference Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol. 2015;16(7):724–34.PubMedPubMedCentralCrossRef Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol. 2015;16(7):724–34.PubMedPubMedCentralCrossRef
63.
go back to reference Namgial T, Kaldis A, Chakraborty S, Voloudakis A. Topical application of double-stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiol Mol Plant Pathol. 2019;108:101432.CrossRef Namgial T, Kaldis A, Chakraborty S, Voloudakis A. Topical application of double-stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiol Mol Plant Pathol. 2019;108:101432.CrossRef
65.
go back to reference Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J. 2011;8:143.PubMedPubMedCentralCrossRef Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol J. 2011;8:143.PubMedPubMedCentralCrossRef
66.
go back to reference Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A. 2005;102(29):10381–6.PubMedPubMedCentralCrossRef Chellappan P, Vanitharani R, Fauquet CM. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci U S A. 2005;102(29):10381–6.PubMedPubMedCentralCrossRef
67.
go back to reference Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS ONE. 2014;9(2):e89951.PubMedPubMedCentralCrossRef Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS ONE. 2014;9(2):e89951.PubMedPubMedCentralCrossRef
68.
go back to reference Patwa N, Nithin C, Bahadur RP, Basak J. Identification and characterization of differentially expressed Phaseolus vulgaris miRNAs and their targets during mungbean yellow mosaic India virus infection reveals new insight into Phaseolus-MYMIV interaction. Genomics. 2019;111(6):1333–42.PubMedCrossRef Patwa N, Nithin C, Bahadur RP, Basak J. Identification and characterization of differentially expressed Phaseolus vulgaris miRNAs and their targets during mungbean yellow mosaic India virus infection reveals new insight into Phaseolus-MYMIV interaction. Genomics. 2019;111(6):1333–42.PubMedCrossRef
69.
go back to reference Xiao B, Yang X, Ye CY, Liu Y, Yan C, Wang Y, et al. A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biol. 2014;14:60.PubMedPubMedCentralCrossRef Xiao B, Yang X, Ye CY, Liu Y, Yan C, Wang Y, et al. A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biol. 2014;14:60.PubMedPubMedCentralCrossRef
70.
go back to reference Naqvi AR, Choudhury NR, Mukherjee SK, Haq QM. In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem. 2011;49(1):13–7.PubMedCrossRef Naqvi AR, Choudhury NR, Mukherjee SK, Haq QM. In silico analysis reveals that several tomato microRNA/microRNA* sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem. 2011;49(1):13–7.PubMedCrossRef
71.
go back to reference Vu TV, Choudhury NR, Mukherjee SK. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res. 2013;172(1–2):35–45.PubMedCrossRef Vu TV, Choudhury NR, Mukherjee SK. Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res. 2013;172(1–2):35–45.PubMedCrossRef
72.
go back to reference Akmal M, Baig MS, Khan JA. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol. 2017;263:21–9.PubMedCrossRef Akmal M, Baig MS, Khan JA. Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol. 2017;263:21–9.PubMedCrossRef
73.
go back to reference Ramesh SV, Gupta GK, Husain SM. Soybean (Glycine max) micrornas display proclivity to repress begomovirus genomes. Curr Sci. 2016;110:424–8.CrossRef Ramesh SV, Gupta GK, Husain SM. Soybean (Glycine max) micrornas display proclivity to repress begomovirus genomes. Curr Sci. 2016;110:424–8.CrossRef
74.
go back to reference Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol. 2016;17(3):427–37.PubMedCrossRef Kis A, Tholt G, Ivanics M, Várallyay É, Jenes B, Havelda Z. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol. 2016;17(3):427–37.PubMedCrossRef
75.
go back to reference Sharma N, Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. Plant Cell Rep. 2020;39(11):1565–79.PubMedCrossRef Sharma N, Prasad M. Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. Plant Cell Rep. 2020;39(11):1565–79.PubMedCrossRef
76.
go back to reference Ramesh SV, Chouhan BS, Kumar G, Praveen S, Chand S. Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during Mungbean yellow mosaic India virus (MYMIV) infection. Physiol Mol Plant Pathol. 2017;100:13–22.CrossRef Ramesh SV, Chouhan BS, Kumar G, Praveen S, Chand S. Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during Mungbean yellow mosaic India virus (MYMIV) infection. Physiol Mol Plant Pathol. 2017;100:13–22.CrossRef
77.
go back to reference Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. J Exp Bot. 2018;69(19):4529–37.PubMedCrossRef Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. J Exp Bot. 2018;69(19):4529–37.PubMedCrossRef
79.
go back to reference Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1. Mol Plant. 2016;9(6):911–25.PubMedCrossRef Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1. Mol Plant. 2016;9(6):911–25.PubMedCrossRef
80.
go back to reference Li F, Zhang M, Zhang C, Zhou X. Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytol. 2020;225(4):1746–61.PubMedCrossRef Li F, Zhang M, Zhang C, Zhou X. Nuclear autophagy degrades a geminivirus nuclear protein to restrict viral infection in solanaceous plants. New Phytol. 2020;225(4):1746–61.PubMedCrossRef
81.
go back to reference Gorovits R, Moshe A, Kolot M, Sobol I, Czosnek H. Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus. Virus Res. 2013;171(1):33–43.PubMedCrossRef Gorovits R, Moshe A, Kolot M, Sobol I, Czosnek H. Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus. Virus Res. 2013;171(1):33–43.PubMedCrossRef
82.
go back to reference Maio F, Arroyo-Mateos M, Bobay BG, Bejarano ER, Prins M, van den Burg HA. A lysine residue essential for geminivirus replication also controls nuclear localization of the tomato yellow leaf curl virus rep protein. J Virol. 2019;93(10):e01910-e1918.PubMedPubMedCentralCrossRef Maio F, Arroyo-Mateos M, Bobay BG, Bejarano ER, Prins M, van den Burg HA. A lysine residue essential for geminivirus replication also controls nuclear localization of the tomato yellow leaf curl virus rep protein. J Virol. 2019;93(10):e01910-e1918.PubMedPubMedCentralCrossRef
83.
go back to reference Gorovits R, Czosnek H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection. Front Plant Sci. 2017;8:355.PubMedPubMedCentralCrossRef Gorovits R, Czosnek H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection. Front Plant Sci. 2017;8:355.PubMedPubMedCentralCrossRef
84.
go back to reference Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 2009;57(5):905–17.PubMedCrossRef Lai J, Chen H, Teng K, Zhao Q, Zhang Z, Li Y, et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 2009;57(5):905–17.PubMedCrossRef
85.
go back to reference Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, et al. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses. 2013;5(3):998–1022.PubMedPubMedCentralCrossRef Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, et al. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses. 2013;5(3):998–1022.PubMedPubMedCentralCrossRef
86.
go back to reference Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, et al. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell. 2011;23(3):1014–32.PubMedPubMedCentralCrossRef Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, et al. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell. 2011;23(3):1014–32.PubMedPubMedCentralCrossRef
87.
go back to reference Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, et al. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in nicotiana benthamiana. PLoS Pathog. 2016;12(6):e1005668.PubMedPubMedCentralCrossRef Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, et al. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in nicotiana benthamiana. PLoS Pathog. 2016;12(6):e1005668.PubMedPubMedCentralCrossRef
88.
go back to reference Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite. Mol Plant Microbe Interact. 2009;22(6):737–46.PubMedCrossRef Eini O, Dogra S, Selth LA, Dry IB, Randles JW, Rezaian MA. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite. Mol Plant Microbe Interact. 2009;22(6):737–46.PubMedCrossRef
89.
go back to reference Camborde L, Planchais S, Tournier V, Jakubiec A, Drugeon G, Lacassagne E, et al. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. Plant Cell. 2010;22(9):3142–52.PubMedPubMedCentralCrossRef Camborde L, Planchais S, Tournier V, Jakubiec A, Drugeon G, Lacassagne E, et al. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. Plant Cell. 2010;22(9):3142–52.PubMedPubMedCentralCrossRef
91.
go back to reference Nair A, Chatterjee KS, Jha V, Das R, Shivaprasad PV. Stability of Begomoviral pathogenicity determinant βC1 is modulated by mutually antagonistic SUMOylation and SIM interactions. BMC Biol. 2020;18(1):110.PubMedPubMedCentralCrossRef Nair A, Chatterjee KS, Jha V, Das R, Shivaprasad PV. Stability of Begomoviral pathogenicity determinant βC1 is modulated by mutually antagonistic SUMOylation and SIM interactions. BMC Biol. 2020;18(1):110.PubMedPubMedCentralCrossRef
92.
go back to reference van den Burg HA, Kini RK, Schuurink RC, Takken FL. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell. 2010;22(6):1998–2016.PubMedPubMedCentralCrossRef van den Burg HA, Kini RK, Schuurink RC, Takken FL. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. Plant Cell. 2010;22(6):1998–2016.PubMedPubMedCentralCrossRef
93.
go back to reference Mazur MJ, van den Burg HA. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses. Front Plant Sci. 2012;3:215.PubMedPubMedCentralCrossRef Mazur MJ, van den Burg HA. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses. Front Plant Sci. 2012;3:215.PubMedPubMedCentralCrossRef
94.
go back to reference Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER. Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol. 2004;78(6):2758–69.PubMedPubMedCentralCrossRef Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER. Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol. 2004;78(6):2758–69.PubMedPubMedCentralCrossRef
95.
go back to reference Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, et al. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol. 2011;85(19):9789–800.PubMedPubMedCentralCrossRef Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, et al. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol. 2011;85(19):9789–800.PubMedPubMedCentralCrossRef
96.
go back to reference Xiong R, Wang A. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol. 2013;87(8):4704–15.PubMedPubMedCentralCrossRef Xiong R, Wang A. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol. 2013;87(8):4704–15.PubMedPubMedCentralCrossRef
97.
go back to reference Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T, Prins M, et al. Geminivirus replication protein impairs SUMO conjugation of proliferating cellular nuclear antigen at two acceptor sites. J Virol. 2018;92(18):e00611-e618.PubMedPubMedCentralCrossRef Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T, Prins M, et al. Geminivirus replication protein impairs SUMO conjugation of proliferating cellular nuclear antigen at two acceptor sites. J Virol. 2018;92(18):e00611-e618.PubMedPubMedCentralCrossRef
98.
go back to reference Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, et al. Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife. 2017;6:e23897.PubMedPubMedCentralCrossRef Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng X, Chen T, et al. Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife. 2017;6:e23897.PubMedPubMedCentralCrossRef
99.
go back to reference Hafrén A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A. 2017;114(10):E2026–35.PubMedPubMedCentralCrossRef Hafrén A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A. 2017;114(10):E2026–35.PubMedPubMedCentralCrossRef
100.
go back to reference Ismayil A, Yang M, Haxim Y, Wang Y, Li J, Han L, et al. Cotton leaf curl multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyceraldehyde-3-phosphate dehydrogenases. Plant Cell. 2020;32(4):1124–35.PubMedPubMedCentralCrossRef Ismayil A, Yang M, Haxim Y, Wang Y, Li J, Han L, et al. Cotton leaf curl multan virus βC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyceraldehyde-3-phosphate dehydrogenases. Plant Cell. 2020;32(4):1124–35.PubMedPubMedCentralCrossRef
102.
go back to reference Santos AA, Carvalho CM, Florentino LH, Ramos HJ, Fontes EP. Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS ONE. 2009;4(6):e5781.PubMedPubMedCentralCrossRef Santos AA, Carvalho CM, Florentino LH, Ramos HJ, Fontes EP. Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS ONE. 2009;4(6):e5781.PubMedPubMedCentralCrossRef
103.
go back to reference Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. Plant Physiol. 2011;157(3):1394–406.PubMedPubMedCentralCrossRef Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. Plant Physiol. 2011;157(3):1394–406.PubMedPubMedCentralCrossRef
104.
go back to reference Hu T, Huang C, He Y, Castillo-González C, Gui X, Wang Y, et al. βC1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathog. 2019;15(4):e1007728.PubMedPubMedCentralCrossRef Hu T, Huang C, He Y, Castillo-González C, Gui X, Wang Y, et al. βC1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathog. 2019;15(4):e1007728.PubMedPubMedCentralCrossRef
105.
go back to reference Baena-González E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007;448(7156):938–42.PubMedCrossRef Baena-González E, Rolland F, Thevelein JM, Sheen J. A central integrator of transcription networks in plant stress and energy signalling. Nature. 2007;448(7156):938–42.PubMedCrossRef
106.
go back to reference Shen W, Reyes MI, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol. 2009;150(2):996–1005.PubMedPubMedCentralCrossRef Shen W, Reyes MI, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol. 2009;150(2):996–1005.PubMedPubMedCentralCrossRef
107.
go back to reference Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol. 2006;142(4):1642–55.PubMedPubMedCentralCrossRef Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol. 2006;142(4):1642–55.PubMedPubMedCentralCrossRef
108.
go back to reference Zhong X, Wang ZQ, Xiao R, Cao L, Wang Y, Xie Y, et al. Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. J Virol. 2017;91(16):e00300-e317.PubMedPubMedCentralCrossRef Zhong X, Wang ZQ, Xiao R, Cao L, Wang Y, Xie Y, et al. Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. J Virol. 2017;91(16):e00300-e317.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Son S, Oh CJ, An CS. Arabidopsis thaliana remorins interact with SnRK1 and play a role in susceptibility to beet curly top virus and beet severe curly top virus. Plant Pathol J. 2014;30(3):269–78.PubMedPubMedCentralCrossRef Son S, Oh CJ, An CS. Arabidopsis thaliana remorins interact with SnRK1 and play a role in susceptibility to beet curly top virus and beet severe curly top virus. Plant Pathol J. 2014;30(3):269–78.PubMedPubMedCentralCrossRef
111.
112.
go back to reference Shen W, Bobay BG, Greeley LA, Reyes MI, Rajabu CA, Blackburn RK, et al. Sucrose Nonfermenting 1-related protein kinase 1 phosphorylates a geminivirus rep protein to impair viral replication and infection. Plant Physiol. 2018;178(1):372–89.PubMedPubMedCentralCrossRef Shen W, Bobay BG, Greeley LA, Reyes MI, Rajabu CA, Blackburn RK, et al. Sucrose Nonfermenting 1-related protein kinase 1 phosphorylates a geminivirus rep protein to impair viral replication and infection. Plant Physiol. 2018;178(1):372–89.PubMedPubMedCentralCrossRef
113.
go back to reference Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–66.PubMedCrossRef Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol. 2013;51:245–66.PubMedCrossRef
114.
go back to reference Asano T, Nguyen TH, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, et al. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. J Exp Bot. 2020;71(6):2085–97.PubMedCrossRef Asano T, Nguyen TH, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, et al. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. J Exp Bot. 2020;71(6):2085–97.PubMedCrossRef
115.
go back to reference Patel A, Dey N, Chaudhuri S, Pal A. Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication. Plant Sci. 2017;262:127–40.PubMedCrossRef Patel A, Dey N, Chaudhuri S, Pal A. Molecular and biochemical characterization of a Vigna mungo MAP kinase associated with Mungbean Yellow Mosaic India Virus infection and deciphering its role in restricting the virus multiplication. Plant Sci. 2017;262:127–40.PubMedCrossRef
116.
go back to reference Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, et al. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE. 2017;12(2):e0172466.PubMedPubMedCentralCrossRef Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, et al. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE. 2017;12(2):e0172466.PubMedPubMedCentralCrossRef
117.
go back to reference Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, et al. Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol. 2011;85(7):3330–40.PubMedPubMedCentralCrossRef Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, et al. Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J Virol. 2011;85(7):3330–40.PubMedPubMedCentralCrossRef
118.
go back to reference Mei Y, Wang Y, Hu T, He Z, Zhou X. The C4 protein encoded by Tomato leaf curl Yunnan virus interferes with mitogen-activated protein kinase cascade-related defense responses through inhibiting the dissociation of the ERECTA/BKI1 complex. New Phytol. 2021;231(2):747–62.PubMedCrossRef Mei Y, Wang Y, Hu T, He Z, Zhou X. The C4 protein encoded by Tomato leaf curl Yunnan virus interferes with mitogen-activated protein kinase cascade-related defense responses through inhibiting the dissociation of the ERECTA/BKI1 complex. New Phytol. 2021;231(2):747–62.PubMedCrossRef
119.
go back to reference Yang X, Deng F, Ramonell KM. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. Front Biol. 2012;7(2):155–66.CrossRef Yang X, Deng F, Ramonell KM. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. Front Biol. 2012;7(2):155–66.CrossRef
121.
go back to reference Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, et al. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology. 2004;318(1):24–31.PubMedCrossRef Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, et al. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology. 2004;318(1):24–31.PubMedCrossRef
122.
go back to reference Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 2004;18(20):2545–56.PubMedPubMedCentralCrossRef Fontes EP, Santos AA, Luz DF, Waclawovsky AJ, Chory J. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 2004;18(20):2545–56.PubMedPubMedCentralCrossRef
123.
go back to reference Li H, Zeng R, Chen Z, Liu X, Cao Z, Xie Q, et al. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. J Exp Bot. 2018;69(18):4459–68.PubMedPubMedCentralCrossRef Li H, Zeng R, Chen Z, Liu X, Cao Z, Xie Q, et al. S-acylation of a geminivirus C4 protein is essential for regulating the CLAVATA pathway in symptom determination. J Exp Bot. 2018;69(18):4459–68.PubMedPubMedCentralCrossRef
124.
go back to reference Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci U S A. 2018;115(6):1388–93.PubMedPubMedCentralCrossRef Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci U S A. 2018;115(6):1388–93.PubMedPubMedCentralCrossRef
125.
go back to reference Bi H, Fan W, Zhang P. C4 Protein of sweet potato leaf curl virus regulates brassinosteroid signaling pathway through interaction with AtBIN2 and affects male fertility in arabidopsis. Front Plant Sci. 2017;8:1689.PubMedPubMedCentralCrossRef Bi H, Fan W, Zhang P. C4 Protein of sweet potato leaf curl virus regulates brassinosteroid signaling pathway through interaction with AtBIN2 and affects male fertility in arabidopsis. Front Plant Sci. 2017;8:1689.PubMedPubMedCentralCrossRef
126.
go back to reference Garnelo Gómez B, Zhang D, Rosas-Díaz T, Wei Y, Macho AP, Lozano-Durán R. The C4 protein from tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses. 2019;11(11):1009.PubMedCentralCrossRef Garnelo Gómez B, Zhang D, Rosas-Díaz T, Wei Y, Macho AP, Lozano-Durán R. The C4 protein from tomato yellow leaf curl virus can broadly interact with plant receptor-like kinases. Viruses. 2019;11(11):1009.PubMedCentralCrossRef
127.
go back to reference Mei Y, Zhang F, Wang M, Li F, Wang Y, Zhou X. Divergent symptoms caused by geminivirus-encoded C4 proteins correlate with their ability to bind NbSKη. J Virol. 2020;94(20):e01307-e1320.PubMedPubMedCentralCrossRef Mei Y, Zhang F, Wang M, Li F, Wang Y, Zhou X. Divergent symptoms caused by geminivirus-encoded C4 proteins correlate with their ability to bind NbSKη. J Virol. 2020;94(20):e01307-e1320.PubMedPubMedCentralCrossRef
128.
go back to reference Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, et al. A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol. 2006;80(13):6648–56.PubMedPubMedCentralCrossRef Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, et al. A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol. 2006;80(13):6648–56.PubMedPubMedCentralCrossRef
129.
go back to reference Zeng R, Liu X, Yang C, Lai J. Geminivirus C4: interplaying with receptor-like kinases. Trends Plant Sci. 2018;23(12):1044–6.PubMedCrossRef Zeng R, Liu X, Yang C, Lai J. Geminivirus C4: interplaying with receptor-like kinases. Trends Plant Sci. 2018;23(12):1044–6.PubMedCrossRef
131.
go back to reference Corrales-Gutierrez M, Medina-Puche L, Yu Y, Wang L, Ding X, Luna AP, et al. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol J. 2020;18(5):1121–3.PubMedCrossRef Corrales-Gutierrez M, Medina-Puche L, Yu Y, Wang L, Ding X, Luna AP, et al. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol J. 2020;18(5):1121–3.PubMedCrossRef
132.
go back to reference Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. J Exp Bot. 2021. Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. J Exp Bot. 2021.
133.
go back to reference Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54.PubMedPubMedCentralCrossRef Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54.PubMedPubMedCentralCrossRef
134.
go back to reference Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, et al. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. Plant J. 2010;62(1):12–23.PubMedCrossRef Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, et al. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. Plant J. 2010;62(1):12–23.PubMedCrossRef
135.
go back to reference Ali S, Khan M, Sahi S, Hassan M. Evaluation of plant extracts and salicylic acid against Bemisia tabaci and cotton leaf curl virus disease. Pak J Phytopathol. 2010;22:98–100. Ali S, Khan M, Sahi S, Hassan M. Evaluation of plant extracts and salicylic acid against Bemisia tabaci and cotton leaf curl virus disease. Pak J Phytopathol. 2010;22:98–100.
136.
go back to reference Li T, Huang Y, Xu ZS, Wang F, Xiong AS. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 2019;19(1):173.PubMedPubMedCentralCrossRef Li T, Huang Y, Xu ZS, Wang F, Xiong AS. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 2019;19(1):173.PubMedPubMedCentralCrossRef
137.
go back to reference Yang JY, Iwasaki M, Machida C, Machida Y, Zhou X, Chua NH. betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev. 2008;22(18):2564–77.PubMedPubMedCentralCrossRef Yang JY, Iwasaki M, Machida C, Machida Y, Zhou X, Chua NH. betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev. 2008;22(18):2564–77.PubMedPubMedCentralCrossRef
138.
go back to reference Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell. 2014;26(12):4991–5008.PubMedPubMedCentralCrossRef Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun Y, et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell. 2014;26(12):4991–5008.PubMedPubMedCentralCrossRef
139.
go back to reference Zhang PJ, He YC, Zhao C, Ye ZH, Yu XP. Jasmonic acid-dependent defenses play a key role in defending tomato against bemisia tabaci nymphs, but not adults. Front Plant Sci. 2018;9:1065.PubMedPubMedCentralCrossRef Zhang PJ, He YC, Zhao C, Ye ZH, Yu XP. Jasmonic acid-dependent defenses play a key role in defending tomato against bemisia tabaci nymphs, but not adults. Front Plant Sci. 2018;9:1065.PubMedPubMedCentralCrossRef
140.
go back to reference Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J Exp Bot. 2015;66(16):4885–96.PubMedCrossRef Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. J Exp Bot. 2015;66(16):4885–96.PubMedCrossRef
141.
go back to reference Vinutha T, Vanchinathan S, Bansal N, Kumar G, Permar V, Watts A, et al. Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. Planta. 2020;252(4):51.PubMedCrossRef Vinutha T, Vanchinathan S, Bansal N, Kumar G, Permar V, Watts A, et al. Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. Planta. 2020;252(4):51.PubMedCrossRef
142.
go back to reference Liu Y, Liu Y, Spetz C, Li L, Wang X. Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phytohormone and photosynthesis metabolism pathways. Phytopathol Res. 2020;2(1):3.CrossRef Liu Y, Liu Y, Spetz C, Li L, Wang X. Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phytohormone and photosynthesis metabolism pathways. Phytopathol Res. 2020;2(1):3.CrossRef
143.
go back to reference Baliji S, Lacatus G, Sunter G. The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology. 2010;402(2):238–47.PubMedCrossRef Baliji S, Lacatus G, Sunter G. The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology. 2010;402(2):238–47.PubMedCrossRef
144.
go back to reference Park J, Lee HJ, Cheon CI, Kim SH, Hur YS, Auh CK, et al. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS ONE. 2011;6(5):e20054.PubMedPubMedCentralCrossRef Park J, Lee HJ, Cheon CI, Kim SH, Hur YS, Auh CK, et al. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS ONE. 2011;6(5):e20054.PubMedPubMedCentralCrossRef
145.
go back to reference Soitamo AJ, Jada B, Lehto K. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biol. 2012;12:204.PubMedPubMedCentralCrossRef Soitamo AJ, Jada B, Lehto K. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biol. 2012;12:204.PubMedPubMedCentralCrossRef
146.
go back to reference Chandan RK, Singh AK, Patel S, Swain DM, Tuteja N, Jha G. Silencing of tomato CTR1 provides enhanced tolerance against Tomato leaf curl virus infection. Plant Signal Behav. 2019;14(3):e1565595.PubMedPubMedCentralCrossRef Chandan RK, Singh AK, Patel S, Swain DM, Tuteja N, Jha G. Silencing of tomato CTR1 provides enhanced tolerance against Tomato leaf curl virus infection. Plant Signal Behav. 2019;14(3):e1565595.PubMedPubMedCentralCrossRef
147.
go back to reference Krake LR, Rezaian MA, Dry IB. Expression of the tomato leaf curl geminivirus C4 gene produces viruslike symptoms in transgenic plants. Mol Plant-Microbe Interact. 1998;11(5):413–7.CrossRef Krake LR, Rezaian MA, Dry IB. Expression of the tomato leaf curl geminivirus C4 gene produces viruslike symptoms in transgenic plants. Mol Plant-Microbe Interact. 1998;11(5):413–7.CrossRef
148.
go back to reference Mills-Lujan K, Deom CM. Geminivirus C4 protein alters Arabidopsis development. Protoplasma. 2010;239(1–4):95–110.PubMedCrossRef Mills-Lujan K, Deom CM. Geminivirus C4 protein alters Arabidopsis development. Protoplasma. 2010;239(1–4):95–110.PubMedCrossRef
149.
go back to reference Piroux N, Saunders K, Page A, Stanley J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology. 2007;362(2):428–40.PubMedCrossRef Piroux N, Saunders K, Page A, Stanley J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signalling pathway. Virology. 2007;362(2):428–40.PubMedCrossRef
150.
go back to reference Villa-Ruano N, Velásquez-Valle R, Zepeda-Vallejo LG, Pérez-Hernández N, Velázquez-Ponce M, Arcos-Adame VM, et al. 1)H NMR-based metabolomic profiling for identification of metabolites in Capsicum annuum cv. mirasol infected by beet mild curly top virus (BMCTV). Food Res Int. 2018;106:870–7.PubMedCrossRef Villa-Ruano N, Velásquez-Valle R, Zepeda-Vallejo LG, Pérez-Hernández N, Velázquez-Ponce M, Arcos-Adame VM, et al. 1)H NMR-based metabolomic profiling for identification of metabolites in Capsicum annuum cv. mirasol infected by beet mild curly top virus (BMCTV). Food Res Int. 2018;106:870–7.PubMedCrossRef
152.
go back to reference Srivastava S, Bisht H, Sidhu OP, Srivastava A, Singh PC, Pandey RM, et al. Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection. Phytochemistry. 2012;80:8–16.PubMedCrossRef Srivastava S, Bisht H, Sidhu OP, Srivastava A, Singh PC, Pandey RM, et al. Changes in the metabolome and histopathology of Amaranthus hypochondriacus L. in response to Ageratum enation virus infection. Phytochemistry. 2012;80:8–16.PubMedCrossRef
153.
go back to reference Leal N, Lastra R. Altered metabolism of tomato plants infected with tomato yellow mosaic virus. Physiol Plant Pathol. 1984;24(1):1–7.CrossRef Leal N, Lastra R. Altered metabolism of tomato plants infected with tomato yellow mosaic virus. Physiol Plant Pathol. 1984;24(1):1–7.CrossRef
154.
go back to reference Kushwaha N, Sahu PP, Prasad M, Chakraborty S. Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol. 2015;99(11):4757–70.PubMedCrossRef Kushwaha N, Sahu PP, Prasad M, Chakraborty S. Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol. 2015;99(11):4757–70.PubMedCrossRef
155.
go back to reference Kushwaha NK, Mansi B, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. Physiol Mol Biol Plants. 2019;25(5):1185–96.PubMedPubMedCentralCrossRef Kushwaha NK, Mansi B, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. Physiol Mol Biol Plants. 2019;25(5):1185–96.PubMedPubMedCentralCrossRef
156.
go back to reference Cui H, Sun Y, Chen F, Zhang Y, Ge F. Elevated O3 and TYLCV infection reduce the suitability of tomato as a host for the whitefly bemisia tabaci. Int J Mol Sci. 2016;17(12):1964.PubMedCentralCrossRef Cui H, Sun Y, Chen F, Zhang Y, Ge F. Elevated O3 and TYLCV infection reduce the suitability of tomato as a host for the whitefly bemisia tabaci. Int J Mol Sci. 2016;17(12):1964.PubMedCentralCrossRef
157.
go back to reference Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, et al. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 2009;151(2):925–35.PubMedPubMedCentralCrossRef Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, et al. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 2009;151(2):925–35.PubMedPubMedCentralCrossRef
158.
go back to reference Zhang W, McAuslane HJ, Schuster DJ. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. J Econ Entomol. 2004;97(4):1310–8.PubMedCrossRef Zhang W, McAuslane HJ, Schuster DJ. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. J Econ Entomol. 2004;97(4):1310–8.PubMedCrossRef
159.
go back to reference Luan JB, Yao DM, Zhang T, Walling LL, Yang M, Wang YJ, et al. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett. 2013;16(3):390–8.PubMedCrossRef Luan JB, Yao DM, Zhang T, Walling LL, Yang M, Wang YJ, et al. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett. 2013;16(3):390–8.PubMedCrossRef
160.
go back to reference Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. Curr Opin Plant Biol. 2019;50:104–13.PubMedCrossRef Ayliffe M, Sørensen CK. Plant nonhost resistance: paradigms and new environments. Curr Opin Plant Biol. 2019;50:104–13.PubMedCrossRef
161.
go back to reference Seo YS, Jeon JS, Rojas MR, Gilbertson RL. Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Mol Plant Pathol. 2007;8(2):151–62.PubMedCrossRef Seo YS, Jeon JS, Rojas MR, Gilbertson RL. Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Mol Plant Pathol. 2007;8(2):151–62.PubMedCrossRef
162.
go back to reference Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, et al. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet. 2015;11(10):e1005538.PubMedPubMedCentralCrossRef Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, et al. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet. 2015;11(10):e1005538.PubMedPubMedCentralCrossRef
163.
go back to reference García-Arenal F, Zerbini FM. Life on the edge: geminiviruses at the interface between crops and wild plant hosts. Annu Rev Virol. 2019;6(1):411–33.PubMedCrossRef García-Arenal F, Zerbini FM. Life on the edge: geminiviruses at the interface between crops and wild plant hosts. Annu Rev Virol. 2019;6(1):411–33.PubMedCrossRef
164.
go back to reference Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, et al. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 2013;9(3):e1003399.PubMedPubMedCentralCrossRef Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, et al. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 2013;9(3):e1003399.PubMedPubMedCentralCrossRef
165.
go back to reference Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, et al. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A. 2014;111(35):12942–7.PubMedPubMedCentralCrossRef Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, et al. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A. 2014;111(35):12942–7.PubMedPubMedCentralCrossRef
166.
go back to reference Prasanna HC, Sinha DP, Rai GK, Krishna R, Kashyap SP, Singh NK, et al. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol. 2015;64(2):256–64.CrossRef Prasanna HC, Sinha DP, Rai GK, Krishna R, Kashyap SP, Singh NK, et al. Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol. 2015;64(2):256–64.CrossRef
167.
go back to reference Yamaguchi H, Ohnishi J, Saito A, Ohyama A, Nunome T, Miyatake K, et al. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theor Appl Genet. 2018;131(6):1345–62.PubMedCrossRef Yamaguchi H, Ohnishi J, Saito A, Ohyama A, Nunome T, Miyatake K, et al. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theor Appl Genet. 2018;131(6):1345–62.PubMedCrossRef
168.
go back to reference Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet. 2009;119(3):519–30.PubMedCrossRef Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet. 2009;119(3):519–30.PubMedCrossRef
169.
go back to reference Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, et al. Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theor Appl Genet. 2019;132(5):1543–54.PubMedPubMedCentralCrossRef Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, et al. Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theor Appl Genet. 2019;132(5):1543–54.PubMedPubMedCentralCrossRef
170.
go back to reference Ji Y, Scott JW, Schuster DJ, Maxwell DP. Molecular Mapping of Ty-4, a New Tomato Yellow Leaf Curl Virus Resistance Locus on Chromosome 3 of Tomato. 2009;134(2):281. Ji Y, Scott JW, Schuster DJ, Maxwell DP. Molecular Mapping of Ty-4, a New Tomato Yellow Leaf Curl Virus Resistance Locus on Chromosome 3 of Tomato. 2009;134(2):281.
171.
go back to reference Voorburg CM, Yan Z, Bergua-Vidal M, Wolters AA, Bai Y, Kormelink R. Ty-1, a universal resistance gene against geminiviruses that is compromised by co-replication of a betasatellite. Mol Plant Pathol. 2020;21(2):160–72.PubMedCrossRef Voorburg CM, Yan Z, Bergua-Vidal M, Wolters AA, Bai Y, Kormelink R. Ty-1, a universal resistance gene against geminiviruses that is compromised by co-replication of a betasatellite. Mol Plant Pathol. 2020;21(2):160–72.PubMedCrossRef
172.
go back to reference Singh RK, Rai N, Lima JM, Singh M, Singh SN, Kumar S. Genetic and molecular characterisations of Tomato leaf curl virus resistance in tomato (Solanum lycopersicum L.). J Horticult Sci Biotechnol. 2015;90(5):503–10.CrossRef Singh RK, Rai N, Lima JM, Singh M, Singh SN, Kumar S. Genetic and molecular characterisations of Tomato leaf curl virus resistance in tomato (Solanum lycopersicum L.). J Horticult Sci Biotechnol. 2015;90(5):503–10.CrossRef
173.
go back to reference Fregene M, Bernal A, Duque M, Dixon A, Tohme J. AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Genet. 2000;100(5):678–85.CrossRef Fregene M, Bernal A, Duque M, Dixon A, Tohme J. AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Genet. 2000;100(5):678–85.CrossRef
174.
go back to reference Fondong VN. The search for resistance to cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front Plant Sci. 2017;8:408.PubMedPubMedCentralCrossRef Fondong VN. The search for resistance to cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front Plant Sci. 2017;8:408.PubMedPubMedCentralCrossRef
175.
go back to reference Akano O, Dixon O, Mba C, Barrera E, Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet. 2002;105(4):521–5.CrossRefPubMed Akano O, Dixon O, Mba C, Barrera E, Fregene M. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet. 2002;105(4):521–5.CrossRefPubMed
176.
go back to reference Naqvi RZ, Zaidi SS, Akhtar KP, Strickler S, Woldemariam M, Mishra B, et al. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep. 2017;7(1):15880.PubMedPubMedCentralCrossRef Naqvi RZ, Zaidi SS, Akhtar KP, Strickler S, Woldemariam M, Mishra B, et al. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep. 2017;7(1):15880.PubMedPubMedCentralCrossRef
177.
go back to reference Nazeer W, Tipu AL, Ahmad S, Mahmood K, Mahmood A, Zhou B. Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypium arboreum and Gossypium hirsutum. PLoS ONE. 2014;9(11):e111861.PubMedPubMedCentralCrossRef Nazeer W, Tipu AL, Ahmad S, Mahmood K, Mahmood A, Zhou B. Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypium arboreum and Gossypium hirsutum. PLoS ONE. 2014;9(11):e111861.PubMedPubMedCentralCrossRef
178.
go back to reference Rahman M, Hussain D, Malik TA, Zafar Y. Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathol. 2005;54(6):764–72.CrossRef Rahman M, Hussain D, Malik TA, Zafar Y. Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathol. 2005;54(6):764–72.CrossRef
179.
go back to reference Naveed K, Abbas A, Khan SA, Amrao L, Ali MA. Global status and future prospects of research in cotton leaf curl disease. Arch Phytopathol Plant Protect. 2018;51(7–8):323–37.CrossRef Naveed K, Abbas A, Khan SA, Amrao L, Ali MA. Global status and future prospects of research in cotton leaf curl disease. Arch Phytopathol Plant Protect. 2018;51(7–8):323–37.CrossRef
180.
go back to reference Seth T, Chattopadhyay A, Dutta S, Hazra P, Singh B. Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica. 2017;213(2):30.CrossRef Seth T, Chattopadhyay A, Dutta S, Hazra P, Singh B. Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica. 2017;213(2):30.CrossRef
181.
go back to reference Singh H, Joshi B, Khanna P, Gupta P. Breeding for field resistance to yellow vein mosaic in bhindi. Indian J Genet Plant Breed. 1962;22(2):137–44. Singh H, Joshi B, Khanna P, Gupta P. Breeding for field resistance to yellow vein mosaic in bhindi. Indian J Genet Plant Breed. 1962;22(2):137–44.
182.
go back to reference Thakur M. Inheritance of Resistance to Yellow Vein Mosaic (YVM) in a Cross of Okra Species, Abelmoschus esculentus and A. manihot ssp, Manihot. SABRAO J. 1976;8:69–73. Thakur M. Inheritance of Resistance to Yellow Vein Mosaic (YVM) in a Cross of Okra Species, Abelmoschus esculentus and A. manihot ssp, Manihot. SABRAO J. 1976;8:69–73.
183.
go back to reference Dhankhar SK, Dhankhar BS, Yadava RK. Inheritance of resistance to yellow vein mosaic virus in an interspecific cross of okra (Abelmoschus esculentus). Indian J Agric Sci. 2005;75:87–9. Dhankhar SK, Dhankhar BS, Yadava RK. Inheritance of resistance to yellow vein mosaic virus in an interspecific cross of okra (Abelmoschus esculentus). Indian J Agric Sci. 2005;75:87–9.
184.
go back to reference Pullaiah N, Reddy TB, Moses GJ, Reddy BM, Reddy DR. Inheritance of resistance to yellow vein mosaic virus in okra (Abelmoschus esculentus(L.) Moench). Indian J Genet Plant Breed. 1998;58(3):349–52. Pullaiah N, Reddy TB, Moses GJ, Reddy BM, Reddy DR. Inheritance of resistance to yellow vein mosaic virus in okra (Abelmoschus esculentus(L.) Moench). Indian J Genet Plant Breed. 1998;58(3):349–52.
185.
go back to reference Jambhale ND, Nerkar YS. Inheritance of resistance to Okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet. 1981;60(5):313–6.PubMedCrossRef Jambhale ND, Nerkar YS. Inheritance of resistance to Okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet. 1981;60(5):313–6.PubMedCrossRef
186.
go back to reference Sharma BR, Dhillon TS. Genetics of resistance to yellow vein mosaic virus in interspecific crosses of okra. Genet Agraria. 1983;37:267–75. Sharma BR, Dhillon TS. Genetics of resistance to yellow vein mosaic virus in interspecific crosses of okra. Genet Agraria. 1983;37:267–75.
187.
go back to reference Dutta OP. Breeding in Okra for Resistance to Yellow Vein Mosaic Virus and Enation Leaf Curl Virus. Annual Report, IIHR. 1984. Dutta OP. Breeding in Okra for Resistance to Yellow Vein Mosaic Virus and Enation Leaf Curl Virus. Annual Report, IIHR. 1984.
188.
go back to reference Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe S. Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2007;114(2):261–71.PubMedCrossRef Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe S. Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2007;114(2):261–71.PubMedCrossRef
189.
go back to reference Velez JJ, Bassett MJ, Beaver JS, Molina A. Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Horticult Sci. 1998;123(4):628.CrossRef Velez JJ, Bassett MJ, Beaver JS, Molina A. Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Horticult Sci. 1998;123(4):628.CrossRef
190.
go back to reference Román MA, Castañeda AM, Sánchez JCA, Muñoz CGN, Beaver JS. Inheritance of normal pod development in bean golden yellow mosaic resistant common bean. J Am Soc Horticult Sci. 2004;129(4):549.CrossRef Román MA, Castañeda AM, Sánchez JCA, Muñoz CGN, Beaver JS. Inheritance of normal pod development in bean golden yellow mosaic resistant common bean. J Am Soc Horticult Sci. 2004;129(4):549.CrossRef
191.
go back to reference Monci F, García-Andrés S, Maldonado JA, Moriones E. Resistance to monopartite begomoviruses associated with the bean leaf crumple disease in phaseolus vulgaris controlled by a single dominant gene. Phytopathology. 2005;95(7):819–26.PubMedCrossRef Monci F, García-Andrés S, Maldonado JA, Moriones E. Resistance to monopartite begomoviruses associated with the bean leaf crumple disease in phaseolus vulgaris controlled by a single dominant gene. Phytopathology. 2005;95(7):819–26.PubMedCrossRef
192.
go back to reference Larsen RC, Miklas PN. Generation and molecular mapping of a sequence characterized amplified region marker linked with the bct gene for resistance to beet curly top virus in common bean. Phytopathology. 2004;94(4):320–5.PubMedCrossRef Larsen RC, Miklas PN. Generation and molecular mapping of a sequence characterized amplified region marker linked with the bct gene for resistance to beet curly top virus in common bean. Phytopathology. 2004;94(4):320–5.PubMedCrossRef
193.
go back to reference Islam S, Munshi AD, Mandal B, Kumar R, Behera TK. Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica. 2010;174(1):83–9.CrossRef Islam S, Munshi AD, Mandal B, Kumar R, Behera TK. Genetics of resistance in Luffa cylindrica Roem. against Tomato leaf curl New Delhi virus. Euphytica. 2010;174(1):83–9.CrossRef
194.
go back to reference Islam S, Anilabh Das M, Verma M, Arya L, Mandal B, Tusar Kanti B, et al. Screening of Luffa cylindrica Roem. for resistance against Tomato Leaf Curl New Delhi Virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. J Horticult Sci Biotechnol. 2011;86(6):661–7.CrossRef Islam S, Anilabh Das M, Verma M, Arya L, Mandal B, Tusar Kanti B, et al. Screening of Luffa cylindrica Roem. for resistance against Tomato Leaf Curl New Delhi Virus, inheritance of resistance, and identification of SRAP markers linked to the single dominant resistance gene. J Horticult Sci Biotechnol. 2011;86(6):661–7.CrossRef
195.
go back to reference Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, et al. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep. 2017;36(10):1571–84.PubMedCrossRef Sáez C, Esteras C, Martínez C, Ferriol M, Dhillon NPS, López C, et al. Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Rep. 2017;36(10):1571–84.PubMedCrossRef
196.
go back to reference Sáez C, Martínez C, Montero-Pau J, Esteras C, Sifres A, Blanca J, et al. A major QTL located in chromosome 8 of cucurbita moschata is responsible for resistance to tomato leaf curl new Delhi virus. Front Plant Sci. 2020;11:207.PubMedPubMedCentralCrossRef Sáez C, Martínez C, Montero-Pau J, Esteras C, Sifres A, Blanca J, et al. A major QTL located in chromosome 8 of cucurbita moschata is responsible for resistance to tomato leaf curl new Delhi virus. Front Plant Sci. 2020;11:207.PubMedPubMedCentralCrossRef
197.
go back to reference Moreno AB, López-Moya JJ. When viruses play team sports: mixed infections in plants. Phytopathology. 2020;110(1):29–48.PubMedCrossRef Moreno AB, López-Moya JJ. When viruses play team sports: mixed infections in plants. Phytopathology. 2020;110(1):29–48.PubMedCrossRef
198.
go back to reference Singh RP. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis. 1993;77:1103–6.CrossRef Singh RP. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis. 1993;77:1103–6.CrossRef
200.
go back to reference Garrido-Ramirez ER, Sudarshana MR, Lucas WJ, Gilbertson RL. Bean dwarf mosaic virus BV1 protein is a determinant of the hypersensitive response and avirulence in Phaseolus vulgaris. Mol Plant Microbe Interact. 2000;13(11):1184–94.PubMedCrossRef Garrido-Ramirez ER, Sudarshana MR, Lucas WJ, Gilbertson RL. Bean dwarf mosaic virus BV1 protein is a determinant of the hypersensitive response and avirulence in Phaseolus vulgaris. Mol Plant Microbe Interact. 2000;13(11):1184–94.PubMedCrossRef
201.
go back to reference van Wezel R, Dong X, Blake P, Stanley J, Hong Y. Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamiana. Mol Plant Pathol. 2002;3(6):461–71.PubMedCrossRef van Wezel R, Dong X, Blake P, Stanley J, Hong Y. Differential roles of geminivirus Rep and AC4 (C4) in the induction of necrosis in Nicotiana benthamiana. Mol Plant Pathol. 2002;3(6):461–71.PubMedCrossRef
202.
go back to reference Sharma P, Ikegami M. Tomato leaf curl Java virus V2 protein is a determinant of virulence, hypersensitive response and suppression of posttranscriptional gene silencing. Virology. 2010;396(1):85–93.PubMedCrossRef Sharma P, Ikegami M. Tomato leaf curl Java virus V2 protein is a determinant of virulence, hypersensitive response and suppression of posttranscriptional gene silencing. Virology. 2010;396(1):85–93.PubMedCrossRef
203.
go back to reference Matić S, Pegoraro M, Noris E. The C2 protein of tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 16-amino acid domain is responsible for inducing a hypersensitive response in plants. Virus Res. 2016;215:12–9.PubMedCrossRef Matić S, Pegoraro M, Noris E. The C2 protein of tomato yellow leaf curl Sardinia virus acts as a pathogenicity determinant and a 16-amino acid domain is responsible for inducing a hypersensitive response in plants. Virus Res. 2016;215:12–9.PubMedCrossRef
204.
go back to reference Mei Y, Ma Z, Wang Y, Zhou X. Geminivirus C4 antagonizes the HIR1-mediated hypersensitive response by inhibiting the HIR1 self-interaction and promoting degradation of the protein. New Phytol. 2020;225(3):1311–26.PubMedCrossRef Mei Y, Ma Z, Wang Y, Zhou X. Geminivirus C4 antagonizes the HIR1-mediated hypersensitive response by inhibiting the HIR1 self-interaction and promoting degradation of the protein. New Phytol. 2020;225(3):1311–26.PubMedCrossRef
205.
go back to reference Sowden RG, Watson SJ, Jarvis P. The role of chloroplasts in plant pathology. Essays Biochem. 2018;62(1):21–39.PubMedCrossRef Sowden RG, Watson SJ, Jarvis P. The role of chloroplasts in plant pathology. Essays Biochem. 2018;62(1):21–39.PubMedCrossRef
206.
go back to reference Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. Mol Plant Pathol. 2018;19(2):504–18.PubMedCrossRef Bhattacharyya D, Chakraborty S. Chloroplast: the Trojan horse in plant-virus interaction. Mol Plant Pathol. 2018;19(2):504–18.PubMedCrossRef
207.
go back to reference Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol Plant Pathol. 2019;20(7):943–60.PubMedPubMedCentralCrossRef Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol Plant Pathol. 2019;20(7):943–60.PubMedPubMedCentralCrossRef
208.
go back to reference Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopathology Research. 2019;1(1):3.CrossRef Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopathology Research. 2019;1(1):3.CrossRef
209.
go back to reference Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol. 1999;39(4):647–56.PubMedCrossRef Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol. 1999;39(4):647–56.PubMedCrossRef
210.
go back to reference Chung HY, Sunter G. Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity. Plant Mol Biol. 2014;86(1–2):185–200.PubMedCrossRef Chung HY, Sunter G. Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity. Plant Mol Biol. 2014;86(1–2):185–200.PubMedCrossRef
211.
go back to reference Ji X, Zhang H, Zhang Y, Wang Y, Gao C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 2015;1:15144.PubMedCrossRef Ji X, Zhang H, Zhang Y, Wang Y, Gao C. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 2015;1:15144.PubMedCrossRef
212.
go back to reference Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants. 2015;1(10):15145.CrossRefPubMedPubMedCentral Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants. 2015;1(10):15145.CrossRefPubMedPubMedCentral
213.
215.
go back to reference Mehta D, Sturchler A, Anjanappa RB, Zaidi SS, Hirsch-Hoffmann M, Gruissem W, et al. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol. 2019;20(1):80.PubMedPubMedCentralCrossRef Mehta D, Sturchler A, Anjanappa RB, Zaidi SS, Hirsch-Hoffmann M, Gruissem W, et al. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol. 2019;20(1):80.PubMedPubMedCentralCrossRef
216.
go back to reference Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep. 2016;6:26912.PubMedPubMedCentralCrossRef Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep. 2016;6:26912.PubMedPubMedCentralCrossRef
217.
go back to reference Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs (vol 6, pg 620, 2020). Nat Plants. 2021;7(1):99-. Ellison EE, Nagalakshmi U, Gamo ME, Huang PJ, Dinesh-Kumar S, Voytas DF. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs (vol 6, pg 620, 2020). Nat Plants. 2021;7(1):99-.
218.
go back to reference Roy A, Zhai Y, Ortiz J, Neff M, Mandal B, Mukherjee SK, et al. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS ONE. 2019;14(10):e0223765.PubMedPubMedCentralCrossRef Roy A, Zhai Y, Ortiz J, Neff M, Mandal B, Mukherjee SK, et al. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS ONE. 2019;14(10):e0223765.PubMedPubMedCentralCrossRef
Metadata
Title
Plant responses to geminivirus infection: guardians of the plant immunity
Authors
Neha Gupta
Kishorekumar Reddy
Dhriti Bhattacharyya
Supriya Chakraborty✉
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01612-1

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.