Skip to main content
Top
Published in: Seminars in Immunopathology 6/2018

01-11-2018 | Review

Picket-fences in the plasma membrane: functions in immune cells and phagocytosis

Authors: Sivakami M. Mylvaganam, Sergio Grinstein, Spencer A. Freeman

Published in: Seminars in Immunopathology | Issue 6/2018

Login to get access

Abstract

Recent studies of molecular mobility in the plasma membrane have revealed that diffusion is restricted by cytoskeletal networks or fences. Transmembrane protein “pickets” that reversibly associate with the membrane-associated skeleton and with the pericellular coat impede the movement of unattached bystander molecules. While membrane picket-fences were originally described as barriers to free diffusion in more passive cell types such as fibroblasts, they have particularly important functions in the more dynamic immune cells. In phagocytes, such fences curtail spontaneous activation and their disassembly facilitates stimulation by target particles, fostering receptor clustering and the exclusion of phosphatases from the phagocytic cup. In this review, we describe the nature of the cellular cytoskeleton and of the exoskeleton created by the pericellular coat, their association with transmembrane pickets, and the modulation of molecular mobility during phagocytosis.
Literature
1.
go back to reference Flannagan RS, Jaumouille V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98PubMedCrossRef Flannagan RS, Jaumouille V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98PubMedCrossRef
2.
go back to reference Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7(12):964–974PubMedCrossRef Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7(12):964–974PubMedCrossRef
3.
go back to reference Schrijvers DM, De Meyer GR, Herman AG, Martinet W (2007) Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73(3):470–480PubMedCrossRef Schrijvers DM, De Meyer GR, Herman AG, Martinet W (2007) Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73(3):470–480PubMedCrossRef
4.
go back to reference Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499PubMedPubMedCentralCrossRef Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499PubMedPubMedCentralCrossRef
5.
go back to reference Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262(1):193–215PubMedCrossRef Freeman SA, Grinstein S (2014) Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262(1):193–215PubMedCrossRef
6.
go back to reference Jones DH, Nusbacher J, Anderson CL (1985) Fc receptor-mediated binding and endocytosis by human mononuclear phagocytes: monomeric IgG is not endocytosed by U937 cells and monocytes. J Cell Biol 100:558–564PubMedCrossRef Jones DH, Nusbacher J, Anderson CL (1985) Fc receptor-mediated binding and endocytosis by human mononuclear phagocytes: monomeric IgG is not endocytosed by U937 cells and monocytes. J Cell Biol 100:558–564PubMedCrossRef
7.
go back to reference Turrini F, Arese P, Yuan J, Low PS (1991) Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 266(35):23611–23617PubMed Turrini F, Arese P, Yuan J, Low PS (1991) Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 266(35):23611–23617PubMed
8.
go back to reference Cox D, Greenberg S (2001) Phagocytic signaling strategies: Fc(gamma)receptor-mediated phagocytosis as a model system. Semin Immunol 13(6):339–345PubMedCrossRef Cox D, Greenberg S (2001) Phagocytic signaling strategies: Fc(gamma)receptor-mediated phagocytosis as a model system. Semin Immunol 13(6):339–345PubMedCrossRef
9.
go back to reference Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 76(6):1093–1103PubMedCrossRef Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 76(6):1093–1103PubMedCrossRef
10.
go back to reference Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan ASH, Magee AS, Danielson ME, Weiss A, Vasilakos JP, Underhill DM (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–475PubMedPubMedCentralCrossRef Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan ASH, Magee AS, Danielson ME, Weiss A, Vasilakos JP, Underhill DM (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–475PubMedPubMedCentralCrossRef
11.
go back to reference Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164(1–2):128–140PubMedPubMedCentralCrossRef Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S (2016) Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164(1–2):128–140PubMedPubMedCentralCrossRef
12.
go back to reference Bakalar MH, Joffe AM, Schmid EM, Son S, Podolski M, Fletcher DA (2018) Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. Cell 174(1):131–142 e113PubMedCrossRefPubMedCentral Bakalar MH, Joffe AM, Schmid EM, Son S, Podolski M, Fletcher DA (2018) Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. Cell 174(1):131–142 e113PubMedCrossRefPubMedCentral
13.
go back to reference Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJC, Klenerman D, Aricescu AR, Davis SJ (2016) Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat Immunol 17(5):574–582PubMedPubMedCentralCrossRef Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJC, Klenerman D, Aricescu AR, Davis SJ (2016) Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat Immunol 17(5):574–582PubMedPubMedCentralCrossRef
14.
go back to reference Jongstra-Bilen J, Harrison R, Grinstein S (2003) Fcgamma-receptors induce Mac-1 (CD11b/CD18) mobilization and accumulation in the phagocytic cup for optimal phagocytosis. J Biol Chem 278(46):45720–45729PubMedCrossRef Jongstra-Bilen J, Harrison R, Grinstein S (2003) Fcgamma-receptors induce Mac-1 (CD11b/CD18) mobilization and accumulation in the phagocytic cup for optimal phagocytosis. J Biol Chem 278(46):45720–45729PubMedCrossRef
16.
go back to reference Li X, Utomo A, Cullere X, Choi MM, Milner DA Jr, Venkatesh D, Yun SH, Mayadas TN (2011) The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 10(6):603–615PubMedPubMedCentralCrossRef Li X, Utomo A, Cullere X, Choi MM, Milner DA Jr, Venkatesh D, Yun SH, Mayadas TN (2011) The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 10(6):603–615PubMedPubMedCentralCrossRef
17.
18.
go back to reference van Spriel AB, Leusen JH, van Egmond M, Dijkman HB, Assmann KJ, Mayadas TN, van de Winkel J (2001) Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97(8):2478–2486PubMedCrossRef van Spriel AB, Leusen JH, van Egmond M, Dijkman HB, Assmann KJ, Mayadas TN, van de Winkel J (2001) Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97(8):2478–2486PubMedCrossRef
19.
go back to reference Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRef Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731PubMedCrossRef
20.
go back to reference Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399PubMedCrossRef Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399PubMedCrossRef
21.
go back to reference Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science 268(5216):1441–1442PubMedCrossRef Jacobson K, Sheets ED, Simson R (1995) Revisiting the fluid mosaic model of membranes. Science 268(5216):1441–1442PubMedCrossRef
22.
go back to reference Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378PubMedCrossRef Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378PubMedCrossRef
23.
go back to reference Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN (2012) Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol 28:215–250PubMedCrossRef Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN (2012) Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol 28:215–250PubMedCrossRef
24.
go back to reference Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081PubMedPubMedCentralCrossRef Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157(6):1071–1081PubMedPubMedCentralCrossRef
25.
go back to reference Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88(5):3659–3680PubMedPubMedCentralCrossRef Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88(5):3659–3680PubMedPubMedCentralCrossRef
26.
go back to reference Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174(6):851–862PubMedPubMedCentralCrossRef Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, Usukura J, Kusumi A (2006) Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol 174(6):851–862PubMedPubMedCentralCrossRef
27.
go back to reference Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, Bertozzi CR, Tammi MI, Lidke DS, Johnson P, Mayor S, Jaqaman K, Grinstein S (2018) Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172(1–2):305–317 e310PubMedCrossRefPubMedCentral Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP, Woods EC, Bertozzi CR, Tammi MI, Lidke DS, Johnson P, Mayor S, Jaqaman K, Grinstein S (2018) Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172(1–2):305–317 e310PubMedCrossRefPubMedCentral
28.
go back to reference Sheets ED, Lee GM, Simson R, Jacobson K (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36(41):12449–12458PubMedCrossRef Sheets ED, Lee GM, Simson R, Jacobson K (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36(41):12449–12458PubMedCrossRef
29.
go back to reference Saha S, Lee IH, Polley A, Groves JT, Rao M, Mayor S (2015) Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Mol Biol Cell 26(22):4033–4045PubMedPubMedCentralCrossRef Saha S, Lee IH, Polley A, Groves JT, Rao M, Mayor S (2015) Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin. Mol Biol Cell 26(22):4033–4045PubMedPubMedCentralCrossRef
30.
31.
go back to reference Frick M, Schmidt K, Nichols BJ (2007) Modulation of lateral diffusion in the plasma membrane by protein density. Curr Biol 17(5):462–467PubMedCrossRef Frick M, Schmidt K, Nichols BJ (2007) Modulation of lateral diffusion in the plasma membrane by protein density. Curr Biol 17(5):462–467PubMedCrossRef
32.
go back to reference Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225PubMedCrossRef Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225PubMedCrossRef
33.
go back to reference Allen TW, Anderson OS, Roux B (2004) On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J Gen Physiol 124(6):679–690PubMedPubMedCentralCrossRef Allen TW, Anderson OS, Roux B (2004) On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation. J Gen Physiol 124(6):679–690PubMedPubMedCentralCrossRef
35.
go back to reference Lu PW, Soong CJ, Tao M (1985) Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem 260(28):14958–14964PubMed Lu PW, Soong CJ, Tao M (1985) Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem 260(28):14958–14964PubMed
36.
go back to reference Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81(3):1353–1392PubMedCrossRef Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81(3):1353–1392PubMedCrossRef
37.
go back to reference Cianci CD, Giorgi M, Morrow JS (1988) Phosphorylation of ankyrin down-regulates its cooperative interaction with spectrin and protein 3. J Cell Biochem 37(3):301–315PubMedCrossRef Cianci CD, Giorgi M, Morrow JS (1988) Phosphorylation of ankyrin down-regulates its cooperative interaction with spectrin and protein 3. J Cell Biochem 37(3):301–315PubMedCrossRef
38.
go back to reference Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135(1):37–51PubMedCrossRef Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135(1):37–51PubMedCrossRef
40.
go back to reference Ostrowski PP, Grinstein S, Freeman SA (2016) Diffusion barriers, mechanical forces, and the biophysics of phagocytosis. Dev Cell 38(2):135–146PubMedCrossRef Ostrowski PP, Grinstein S, Freeman SA (2016) Diffusion barriers, mechanical forces, and the biophysics of phagocytosis. Dev Cell 38(2):135–146PubMedCrossRef
41.
go back to reference Moser M, Legate KR, Zent R, Fassler R (2009) The tail of integrins, talin, and kindlins. Science 324(5929):895–899PubMedCrossRef Moser M, Legate KR, Zent R, Fassler R (2009) The tail of integrins, talin, and kindlins. Science 324(5929):895–899PubMedCrossRef
42.
go back to reference Sheetz MP, Schindler M, Koppel DE (1980) Lateral mobility of integral membrane proteins is increased spherocytic erythrocytes. Nature 285:510–512PubMedCrossRef Sheetz MP, Schindler M, Koppel DE (1980) Lateral mobility of integral membrane proteins is increased spherocytic erythrocytes. Nature 285:510–512PubMedCrossRef
43.
go back to reference Tsuji A, Ohnishi S (1986) Restriction of the lateral motion of band-3 in the erythrocyte-membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25:6133–6139PubMedCrossRef Tsuji A, Ohnishi S (1986) Restriction of the lateral motion of band-3 in the erythrocyte-membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25:6133–6139PubMedCrossRef
44.
go back to reference Tsuji A, Kawasaki K, Ohnishi S, Merkle H, Kusumi A (1988) Regulation of band-3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27:7447–7452PubMedCrossRef Tsuji A, Kawasaki K, Ohnishi S, Merkle H, Kusumi A (1988) Regulation of band-3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27:7447–7452PubMedCrossRef
45.
go back to reference Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118):452–456PubMedCrossRef Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118):452–456PubMedCrossRef
46.
go back to reference Nakada C, Ritchie K, Oba Y, Nakamura M, Hotta Y, Iino R, Kasai RS, Yamaguchi K, Fujiwara T, Kusumi A (2003) Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat Cell Biol 5(7):626–632PubMedCrossRef Nakada C, Ritchie K, Oba Y, Nakamura M, Hotta Y, Iino R, Kasai RS, Yamaguchi K, Fujiwara T, Kusumi A (2003) Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat Cell Biol 5(7):626–632PubMedCrossRef
47.
go back to reference Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650PubMedCrossRef Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650PubMedCrossRef
48.
go back to reference Winckler B, Forscher P, Mellman I (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397:698–701PubMedCrossRef Winckler B, Forscher P, Mellman I (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397:698–701PubMedCrossRef
49.
go back to reference Winckler B, Mellman I (1999) Neuronal polarity: controlling the sorting and diffusion of membrane components. Neuron 23:637–640PubMedCrossRef Winckler B, Mellman I (1999) Neuronal polarity: controlling the sorting and diffusion of membrane components. Neuron 23:637–640PubMedCrossRef
50.
go back to reference Albrecht D, Winterflood CM, Sadeghi M, Tschager T, Noe F, Ewers H (2016) Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J Cell Biol 215(1):37–46PubMedPubMedCentralCrossRef Albrecht D, Winterflood CM, Sadeghi M, Tschager T, Noe F, Ewers H (2016) Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J Cell Biol 215(1):37–46PubMedPubMedCentralCrossRef
51.
go back to reference Monroe JG (2004) Ligand-independent tonic signaling in B-cell receptor function. Curr Opin Immunol 16(3):288–295PubMedCrossRef Monroe JG (2004) Ligand-independent tonic signaling in B-cell receptor function. Curr Opin Immunol 16(3):288–295PubMedCrossRef
52.
go back to reference Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista FD (2010) The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32(2):187–199PubMedPubMedCentralCrossRef Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista FD (2010) The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 32(2):187–199PubMedPubMedCentralCrossRef
53.
go back to reference Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, Lidke DS (2008) Actin restricts FcepsilonRI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 10(8):955–963PubMedPubMedCentralCrossRef Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS, Oliver JM, Lidke DS (2008) Actin restricts FcepsilonRI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 10(8):955–963PubMedPubMedCentralCrossRef
54.
go back to reference Eisenmann KM, Harris ES, Kitchen SM, Holman HA, Higgs HN, Alberts AS (2007) Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17(7):579–591PubMedCrossRef Eisenmann KM, Harris ES, Kitchen SM, Holman HA, Higgs HN, Alberts AS (2007) Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17(7):579–591PubMedCrossRef
55.
go back to reference Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11(1):62–74PubMedCrossRef Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11(1):62–74PubMedCrossRef
57.
go back to reference Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T, Freise A, Brühmann S, Kollasser J, Block J, Dimchev G, Geyer M, Schnittler HJ, Brakebusch C, Stradal TEB, Carlier MF, Sixt M, Käs J, Faix J, Rottner K (2017) FMNL formins boost lamellipodial force generation. Nat Commun 8:14832PubMedPubMedCentralCrossRef Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T, Freise A, Brühmann S, Kollasser J, Block J, Dimchev G, Geyer M, Schnittler HJ, Brakebusch C, Stradal TEB, Carlier MF, Sixt M, Käs J, Faix J, Rottner K (2017) FMNL formins boost lamellipodial force generation. Nat Commun 8:14832PubMedPubMedCentralCrossRef
58.
go back to reference Jaiswal R, Breitsprecher D, Collins A, Correa IR Jr, Xu MQ, Goode BL (2013) The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol 23(14):1373–1379PubMedPubMedCentralCrossRef Jaiswal R, Breitsprecher D, Collins A, Correa IR Jr, Xu MQ, Goode BL (2013) The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr Biol 23(14):1373–1379PubMedPubMedCentralCrossRef
59.
go back to reference Ramalingam N, Franke C, Jaschinski E, Winterhoff M, Lu Y, Brühmann S, Junemann A, Meier H, Noegel AA, Weber I, Zhao H, Merkel R, Schleicher M, Faix J (2015) A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement. Nat Commun 6:8496PubMedCrossRef Ramalingam N, Franke C, Jaschinski E, Winterhoff M, Lu Y, Brühmann S, Junemann A, Meier H, Noegel AA, Weber I, Zhao H, Merkel R, Schleicher M, Faix J (2015) A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement. Nat Commun 6:8496PubMedCrossRef
60.
go back to reference Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7(10):713–726PubMedCrossRef Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7(10):713–726PubMedCrossRef
62.
go back to reference Bovellan M, Romeo Y, Biro M, Boden A, Chugh P, Yonis A, Vaghela M, Fritzsche M, Moulding D, Thorogate R, Jégou A, Thrasher AJ, Romet-Lemonne G, Roux PP, Paluch EK, Charras G (2014) Cellular control of cortical actin nucleation. Curr Biol 24(14):1628–1635PubMedPubMedCentralCrossRef Bovellan M, Romeo Y, Biro M, Boden A, Chugh P, Yonis A, Vaghela M, Fritzsche M, Moulding D, Thorogate R, Jégou A, Thrasher AJ, Romet-Lemonne G, Roux PP, Paluch EK, Charras G (2014) Cellular control of cortical actin nucleation. Curr Biol 24(14):1628–1635PubMedPubMedCentralCrossRef
64.
go back to reference Burke TA, Christensen JR, Barone E, Suarez C, Sirotkin V, Kovar DR (2014) Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers. Curr Biol 24(5):579–585PubMedPubMedCentralCrossRef Burke TA, Christensen JR, Barone E, Suarez C, Sirotkin V, Kovar DR (2014) Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers. Curr Biol 24(5):579–585PubMedPubMedCentralCrossRef
65.
go back to reference Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510–523PubMedCrossRef Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510–523PubMedCrossRef
66.
go back to reference Hayakawa K, Tatsumi H, Sokabe M (2011) Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol 195(5):721–727PubMedPubMedCentralCrossRef Hayakawa K, Tatsumi H, Sokabe M (2011) Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol 195(5):721–727PubMedPubMedCentralCrossRef
67.
go back to reference Schmoller KM, Semmrich C, Bausch AR (2011) Slow down of actin depolymerization by cross-linking molecules. J Struct Biol 173(2):350–357PubMedCrossRef Schmoller KM, Semmrich C, Bausch AR (2011) Slow down of actin depolymerization by cross-linking molecules. J Struct Biol 173(2):350–357PubMedCrossRef
68.
go back to reference Mukhina S, Wang YL, Murata-Hori M (2007) Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 13(4):554–565PubMedPubMedCentralCrossRef Mukhina S, Wang YL, Murata-Hori M (2007) Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 13(4):554–565PubMedPubMedCentralCrossRef
69.
go back to reference Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283(5410):2083–2085PubMedCrossRef Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283(5410):2083–2085PubMedCrossRef
70.
go back to reference Lomakin AJ, Lee KC, Han SJ, Bui DA, Davidson M, Mogilner A, Danuser G (2015) Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 17(11):1435–1445PubMedPubMedCentralCrossRef Lomakin AJ, Lee KC, Han SJ, Bui DA, Davidson M, Mogilner A, Danuser G (2015) Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 17(11):1435–1445PubMedPubMedCentralCrossRef
71.
go back to reference Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16(11):3044–3056PubMedPubMedCentralCrossRef Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16(11):3044–3056PubMedPubMedCentralCrossRef
73.
go back to reference Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186(9):1487–1494PubMedPubMedCentralCrossRef Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S (1997) Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186(9):1487–1494PubMedPubMedCentralCrossRef
74.
go back to reference Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410PubMedCrossRef Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410PubMedCrossRef
75.
go back to reference Koronakis V, Hume PJ, Humphreys D, Liu T, Horning O, Jensen ON, McGhie EJ (2011) WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc Natl Acad Sci U S A 108(35):14449–14454PubMedPubMedCentralCrossRef Koronakis V, Hume PJ, Humphreys D, Liu T, Horning O, Jensen ON, McGhie EJ (2011) WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc Natl Acad Sci U S A 108(35):14449–14454PubMedPubMedCentralCrossRef
76.
go back to reference Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8(8):803–814PubMedCrossRef Ohta Y, Hartwig JH, Stossel TP (2006) FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling. Nat Cell Biol 8(8):803–814PubMedCrossRef
77.
go back to reference Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147(5):1009–1022PubMedPubMedCentralCrossRef Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147(5):1009–1022PubMedPubMedCentralCrossRef
78.
go back to reference Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218PubMedPubMedCentralCrossRef Flannagan RS, Harrison RE, Yip CM, Jaqaman K, Grinstein S (2010) Dynamic macrophage “probing” is required for the efficient capture of phagocytic targets. J Cell Biol 191:1205–1218PubMedPubMedCentralCrossRef
79.
go back to reference Jaumouille V, Farkash Y, Jaqaman K, Das R, Lowell CA, Grinstein S (2014) Actin cytoskeleton reorganization by Syk regulates Fcgamma receptor responsiveness by increasing its lateral mobility and clustering. Dev Cell 29(5):534–546PubMedPubMedCentralCrossRef Jaumouille V, Farkash Y, Jaqaman K, Das R, Lowell CA, Grinstein S (2014) Actin cytoskeleton reorganization by Syk regulates Fcgamma receptor responsiveness by increasing its lateral mobility and clustering. Dev Cell 29(5):534–546PubMedPubMedCentralCrossRef
80.
go back to reference Jaqaman K, Kuwata H, Touret N, Collins R, Trimble WS, Danuser G, Grinstein S (2011) Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146(6):593–606PubMedPubMedCentralCrossRef Jaqaman K, Kuwata H, Touret N, Collins R, Trimble WS, Danuser G, Grinstein S (2011) Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146(6):593–606PubMedPubMedCentralCrossRef
81.
go back to reference Bourguignon LY, Lokeshwar VB, He J, Chen X, Bourguignon GJ (1992) A CD44-like endothelial cell transmembrane glycoprotein (GP116) interacts with extracellular matrix and ankyrin. Mol Cell Biol 12(10):4464–4471PubMedPubMedCentralCrossRef Bourguignon LY, Lokeshwar VB, He J, Chen X, Bourguignon GJ (1992) A CD44-like endothelial cell transmembrane glycoprotein (GP116) interacts with extracellular matrix and ankyrin. Mol Cell Biol 12(10):4464–4471PubMedPubMedCentralCrossRef
82.
go back to reference Caron E, Self AJ, Hall A (2000) The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 10:974–978PubMedCrossRef Caron E, Self AJ, Hall A (2000) The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 10:974–978PubMedCrossRef
83.
go back to reference Williams LM, Ridley AJ (2000) Lipopolysaccharide induces actin reorganization and tyrosine phosphorylation of Pyk2 and paxillin in monocytes and macrophages. J Immunol 164:2028–2036PubMedCrossRef Williams LM, Ridley AJ (2000) Lipopolysaccharide induces actin reorganization and tyrosine phosphorylation of Pyk2 and paxillin in monocytes and macrophages. J Immunol 164:2028–2036PubMedCrossRef
85.
go back to reference West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305(5687):1153–1157PubMedCrossRef West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305(5687):1153–1157PubMedCrossRef
86.
go back to reference Weiss-Haljiti C, Pasquali C, Ji H, Gillieron C, Chabert C, Curchod ML, Hirsch E, Ridley AJ, van Huijsduijnen RH, Camps M, Rommel C (2004) Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration. J Biol Chem 279(41):43273–43284PubMedCrossRef Weiss-Haljiti C, Pasquali C, Ji H, Gillieron C, Chabert C, Curchod ML, Hirsch E, Ridley AJ, van Huijsduijnen RH, Camps M, Rommel C (2004) Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration. J Biol Chem 279(41):43273–43284PubMedCrossRef
87.
go back to reference Matsui S, Matsumoto S, Adachi R, Kusui K, Hirayama A, Watanabe H, Ohashi K, Mizuno K, Yamaguchi T, Kasahara T, Suzuki K (2002) LIM kinase 1 modulates opsonized zymosan-triggered activation of macrophage-like U937 cells. Possible involvement of phosphorylation of cofilin and reorganization of actin cytoskeleton. J Biol Chem 277(1):544–549PubMedCrossRef Matsui S, Matsumoto S, Adachi R, Kusui K, Hirayama A, Watanabe H, Ohashi K, Mizuno K, Yamaguchi T, Kasahara T, Suzuki K (2002) LIM kinase 1 modulates opsonized zymosan-triggered activation of macrophage-like U937 cells. Possible involvement of phosphorylation of cofilin and reorganization of actin cytoskeleton. J Biol Chem 277(1):544–549PubMedCrossRef
88.
go back to reference Vargas P, Maiuri P, Bretou M et al (2016) Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat Cell Biol 135:510–523 Vargas P, Maiuri P, Bretou M et al (2016) Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat Cell Biol 135:510–523
89.
go back to reference Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304(5671):743–746PubMedCrossRef Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304(5671):743–746PubMedCrossRef
90.
go back to reference Martin WL, West AP Jr, Gan L, Bjorkman PJ (2001) Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 7(4):867–877PubMedCrossRef Martin WL, West AP Jr, Gan L, Bjorkman PJ (2001) Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 7(4):867–877PubMedCrossRef
91.
go back to reference Brown J, O’Callaghan CA, Marshall AS et al (2007) Structure of the fungal beta-glucan-binding immune receptor dectin-1: implications for function. Protein Sci 16(6):1042–1052PubMedPubMedCentralCrossRef Brown J, O’Callaghan CA, Marshall AS et al (2007) Structure of the fungal beta-glucan-binding immune receptor dectin-1: implications for function. Protein Sci 16(6):1042–1052PubMedPubMedCentralCrossRef
92.
go back to reference Wykes M, MacDonald KP, Tran M, Quin RJ, Xing PX, Gendler SJ, Hart DN, McGuckin M (2002) MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J Leukoc Biol 72(4):692–701PubMed Wykes M, MacDonald KP, Tran M, Quin RJ, Xing PX, Gendler SJ, Hart DN, McGuckin M (2002) MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J Leukoc Biol 72(4):692–701PubMed
93.
go back to reference Xu X, Padilla MT, Li B, Wells A, Kato K, Tellez C, Belinsky SA, Kim KC, Lin Y (2014) MUC1 in macrophage: contributions to cigarette smoke-induced lung cancer. Cancer Res 74(2):460–470PubMedCrossRef Xu X, Padilla MT, Li B, Wells A, Kato K, Tellez C, Belinsky SA, Kim KC, Lin Y (2014) MUC1 in macrophage: contributions to cigarette smoke-induced lung cancer. Cancer Res 74(2):460–470PubMedCrossRef
94.
go back to reference Wesseling J, van der Valk SW, Vos HL (1995) Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol 129:255–265PubMedCrossRef Wesseling J, van der Valk SW, Vos HL (1995) Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components. J Cell Biol 129:255–265PubMedCrossRef
95.
go back to reference Lesley J, Hascall VC, Tammi M, Hyman R (2000) Hyaluronan binding by cell surface CD44. J Biol Chem 275(35):26967–26975PubMed Lesley J, Hascall VC, Tammi M, Hyman R (2000) Hyaluronan binding by cell surface CD44. J Biol Chem 275(35):26967–26975PubMed
96.
go back to reference Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385PubMedPubMedCentralCrossRef Lajoie P, Goetz JG, Dennis JW, Nabi IR (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J Cell Biol 185:381–385PubMedPubMedCentralCrossRef
97.
go back to reference Erasmus MF, Matlawska-Wasowska K, Kinjyo I, Mahajan A, Winter SS, Xu L, Horowitz M, Lidke DS, Wilson BS (2016) Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci Signal 9(456):ra116PubMedPubMedCentralCrossRef Erasmus MF, Matlawska-Wasowska K, Kinjyo I, Mahajan A, Winter SS, Xu L, Horowitz M, Lidke DS, Wilson BS (2016) Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci Signal 9(456):ra116PubMedPubMedCentralCrossRef
98.
go back to reference Liu SD, Tomassian T, Bruhn KW, Miller JF, Poirier F, Miceli MC (2009) Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size. J Immunol 182(9):5283–5295PubMedCrossRef Liu SD, Tomassian T, Bruhn KW, Miller JF, Poirier F, Miceli MC (2009) Galectin-1 tunes TCR binding and signal transduction to regulate CD8 burst size. J Immunol 182(9):5283–5295PubMedCrossRef
99.
go back to reference Lutomski D, Fouillit M, Bourin P, Mellottée D, Denize N, Pontet M, Bladier D, Caron M, Joubert-Caron R (1997) Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation. Glycobiology 7(8):1193–1199PubMedCrossRef Lutomski D, Fouillit M, Bourin P, Mellottée D, Denize N, Pontet M, Bladier D, Caron M, Joubert-Caron R (1997) Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation. Glycobiology 7(8):1193–1199PubMedCrossRef
100.
go back to reference Cao A, Alluqmani N, Buhari FHM, Wasim L, Smith LK, Quaile AT, Shannon M, Hakim Z, Furmli H, Owen DM, Savchenko A, Treanor B (2018) Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat Commun 9(1):3288PubMedPubMedCentralCrossRef Cao A, Alluqmani N, Buhari FHM, Wasim L, Smith LK, Quaile AT, Shannon M, Hakim Z, Furmli H, Owen DM, Savchenko A, Treanor B (2018) Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat Commun 9(1):3288PubMedPubMedCentralCrossRef
101.
go back to reference Ghazizadeh S, Bolen JB, Fleit HB (1994) Physical and functional association of Src-related protein tyrosine kinases with FcgRII in monocytic THP-1 cells. J Biol Chem 269:8878–8884PubMed Ghazizadeh S, Bolen JB, Fleit HB (1994) Physical and functional association of Src-related protein tyrosine kinases with FcgRII in monocytic THP-1 cells. J Biol Chem 269:8878–8884PubMed
102.
go back to reference Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7(8):803–809PubMedCrossRef Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7(8):803–809PubMedCrossRef
103.
go back to reference Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME, Wu N, Vinh DC, Sinha M, Calderon V, Lowell CA, Danska JS, Veillette A (2017) SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544(7651):493–497PubMedPubMedCentralCrossRef Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME, Wu N, Vinh DC, Sinha M, Calderon V, Lowell CA, Danska JS, Veillette A (2017) SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544(7651):493–497PubMedPubMedCentralCrossRef
104.
go back to reference Hsu TY, Wu YC (2010) Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Current biology : CB 20(6):477–486PubMedCrossRef Hsu TY, Wu YC (2010) Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Current biology : CB 20(6):477–486PubMedCrossRef
105.
go back to reference Wu Y, Singh S, Georgescu MM, Birge RB (2005) A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118(Pt 3):539–553PubMedCrossRef Wu Y, Singh S, Georgescu MM, Birge RB (2005) A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118(Pt 3):539–553PubMedCrossRef
107.
go back to reference Rowley RB, Burkhardt AL, Chao HG, Matsueda GR, Bolen JB (1995) Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem 270(19):11590–11594PubMedCrossRef Rowley RB, Burkhardt AL, Chao HG, Matsueda GR, Bolen JB (1995) Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem 270(19):11590–11594PubMedCrossRef
108.
go back to reference Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, Grinstein S (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153(7):1369–1380PubMedPubMedCentralCrossRef Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, Grinstein S (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153(7):1369–1380PubMedPubMedCentralCrossRef
109.
go back to reference Law CL, Chandran KA, Sidorenko SP, Clark EA (1996) Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol Cell Biol 16(4):1305–1315PubMedPubMedCentralCrossRef Law CL, Chandran KA, Sidorenko SP, Clark EA (1996) Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol Cell Biol 16(4):1305–1315PubMedPubMedCentralCrossRef
110.
go back to reference Hao JJ, Liu Y, Kruhlak M, Debell KE, Rellahan BL, Shaw S (2009) Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J Cell Biol 184(3):451–462PubMedPubMedCentralCrossRef Hao JJ, Liu Y, Kruhlak M, Debell KE, Rellahan BL, Shaw S (2009) Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J Cell Biol 184(3):451–462PubMedPubMedCentralCrossRef
111.
go back to reference Zhang Y, Du G (2009) Phosphatidic acid signaling regulation of Ras superfamily of small guanosine triphosphatases. Biochim Biophys Acta 1791(9):850–855PubMedPubMedCentralCrossRef Zhang Y, Du G (2009) Phosphatidic acid signaling regulation of Ras superfamily of small guanosine triphosphatases. Biochim Biophys Acta 1791(9):850–855PubMedPubMedCentralCrossRef
112.
go back to reference Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton (Hoboken) 70(7):360–384CrossRef Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton (Hoboken) 70(7):360–384CrossRef
113.
go back to reference Bierne H, Gouin E, Roux P, Caroni P, Yin HL, Cossart P (2001) A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J Cell Biol 155(1):101–112PubMedPubMedCentralCrossRef Bierne H, Gouin E, Roux P, Caroni P, Yin HL, Cossart P (2001) A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J Cell Biol 155(1):101–112PubMedPubMedCentralCrossRef
114.
go back to reference Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469PubMedCrossRef Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469PubMedCrossRef
115.
117.
go back to reference Dart AE, Donnelly SK, Holden DW, Way M, Caron E (2012) Nck and Cdc42 co-operate to recruit N-WASP to promote FcgammaR-mediated phagocytosis. J Cell Sci 125(Pt 12):2825–2830PubMedCrossRef Dart AE, Donnelly SK, Holden DW, Way M, Caron E (2012) Nck and Cdc42 co-operate to recruit N-WASP to promote FcgammaR-mediated phagocytosis. J Cell Sci 125(Pt 12):2825–2830PubMedCrossRef
118.
go back to reference Blasutig IM, New LA, Thanabalasuriar A, Dayarathna TK, Goudreault M, Quaggin SE, Li SSC, Gruenheid S, Jones N, Pawson T (2008) Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce actin reorganization. Mol Cell Biol 28(6):2035–2046PubMedPubMedCentralCrossRef Blasutig IM, New LA, Thanabalasuriar A, Dayarathna TK, Goudreault M, Quaggin SE, Li SSC, Gruenheid S, Jones N, Pawson T (2008) Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce actin reorganization. Mol Cell Biol 28(6):2035–2046PubMedPubMedCentralCrossRef
119.
go back to reference Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS (2001) Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci 114(Pt 23):4307–4318PubMed Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS (2001) Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci 114(Pt 23):4307–4318PubMed
120.
go back to reference Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150(6):1299–1310PubMedPubMedCentralCrossRef Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150(6):1299–1310PubMedPubMedCentralCrossRef
121.
go back to reference Pearson AM, Baksa K, Ramet M et al (2003) Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect 5(10):815–824PubMedCrossRef Pearson AM, Baksa K, Ramet M et al (2003) Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect 5(10):815–824PubMedCrossRef
122.
go back to reference Grimsley CM, Kinchen JM, Tosello-Trampont AC, Brugnera E, Haney LB, Lu M, Chen Q, Klingele D, Hengartner MO, Ravichandran KS (2004) Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem 279(7):6087–6097PubMedCrossRef Grimsley CM, Kinchen JM, Tosello-Trampont AC, Brugnera E, Haney LB, Lu M, Chen Q, Klingele D, Hengartner MO, Ravichandran KS (2004) Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol Chem 279(7):6087–6097PubMedCrossRef
123.
124.
go back to reference Hall AB, Gakidis MA, Glogauer M et al (2006) Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis. Immunity 24(3):305–316PubMedCrossRef Hall AB, Gakidis MA, Glogauer M et al (2006) Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis. Immunity 24(3):305–316PubMedCrossRef
125.
go back to reference Koh AL, Sun CX, Zhu F, Glogauer M (2005) The role of Rac1 and Rac2 in bacterial killing. Cell Immunol 235(2):92–97PubMedCrossRef Koh AL, Sun CX, Zhu F, Glogauer M (2005) The role of Rac1 and Rac2 in bacterial killing. Cell Immunol 235(2):92–97PubMedCrossRef
126.
go back to reference Rotty JD, Brighton HE, Craig SL et al (2017) Arp2/3 complex is required for macrophage integrin functions but is dispensable for FcR phagocytosis and in vivo motility. Dev Cell 42(5):498–513 e496PubMedPubMedCentralCrossRef Rotty JD, Brighton HE, Craig SL et al (2017) Arp2/3 complex is required for macrophage integrin functions but is dispensable for FcR phagocytosis and in vivo motility. Dev Cell 42(5):498–513 e496PubMedPubMedCentralCrossRef
127.
go back to reference Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S (2015) Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 6:8623PubMedCrossRef Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S (2015) Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 6:8623PubMedCrossRef
128.
go back to reference Bajno L, Peng XR, Schreiber AD, Moore HP, Trimble WS, Grinstein S (2000) Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol 149(3):697–706PubMedPubMedCentralCrossRef Bajno L, Peng XR, Schreiber AD, Moore HP, Trimble WS, Grinstein S (2000) Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol 149(3):697–706PubMedPubMedCentralCrossRef
Metadata
Title
Picket-fences in the plasma membrane: functions in immune cells and phagocytosis
Authors
Sivakami M. Mylvaganam
Sergio Grinstein
Spencer A. Freeman
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 6/2018
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-018-0705-x

Other articles of this Issue 6/2018

Seminars in Immunopathology 6/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.