Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Physical activity patterns and the risk of colorectal cancer in the Norwegian Women and Cancer study: a population-based prospective study

Authors: Sunday Oluwafemi Oyeyemi, Tonje Braaten, Idlir Licaj, Eiliv Lund, Kristin Benjaminsen Borch

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Introduction

Colorectal cancer (CRC) remains the second most common cancer in women worldwide. Physical activity (PA) has been associated with reduced risk of CRC; however, this has been demonstrated more consistently in men, while results of studies in women have been largely equivocal. We aimed to further examine the relationship between PA patterns and the risk of CRC in women, using repeated measurements.

Methods

We followed participants of the Norwegian Women and Cancer (NOWAC) Study - a nationally representative cohort. Baseline information was available for 79,184 women, and we used this information in addition to follow-up information collected 6–8 years later, for repeated measurement analysis. At enrollment, participants were cancer-free and aged 30–70 years, with a median age of 51 years. We used Cox proportional hazards regression to compute hazard ratios (HRs) and 95% confidence intervals (CIs).

Results

During an average of 14.6 years of follow-up and 1.16 million person-years, 885 cases of colon and 426 cases of rectal cancer were identified through linkage to the Norwegian Cancer Registry (median age at diagnosis: 65 years). We found no association between PA level and the risk of colon cancer in baseline or repeated measurements analyses when comparing women with PA level 1–2 to those with PA level 5–6 (reference) (baseline: HR = 0.90, 95% CI 0.66–1.23, p-trend = 0.76; repeated measurements: HR = 0.78, 95% CI 0.55–1.10, p-trend = 0.27). Results were the same when comparing PA level 9–10 to the reference level (baseline: HR = 0.80, 95% CI 0.56–1.12, p-trend = 0.76; repeated measurements: HR = 0.82, 95% CI 0.58–1.16, p-trend = 0.27). Similarly, we found no association between PA levels and the risk of rectal cancer.

Conclusions

Women may need to look beyond PA in order to reduce their risk of CRC.
Literature
2.
go back to reference Larsen I, Møller B, Johannesen TB, Larønningen S, Robsahm T, Grimsrud T, et al. Cancer in Norway 2016 - Cancer incidence, mortality, survival and prevalence in Norway. Oslo: Cancer registry of Norway; 2017. Larsen I, Møller B, Johannesen TB, Larønningen S, Robsahm T, Grimsrud T, et al. Cancer in Norway 2016 - Cancer incidence, mortality, survival and prevalence in Norway. Oslo: Cancer registry of Norway; 2017.
4.
go back to reference Perera PS, Thompson RL, Wiseman MJ. Recent evidence for colorectal Cancer prevention through healthy food, nutrition, and physical activity: implications for recommendations. Curr Nutr Rep. 2012;1(1):44–54.CrossRef Perera PS, Thompson RL, Wiseman MJ. Recent evidence for colorectal Cancer prevention through healthy food, nutrition, and physical activity: implications for recommendations. Curr Nutr Rep. 2012;1(1):44–54.CrossRef
5.
go back to reference Giovannucci E, Colditz GA, Stampfer MJ, Willett WC. Physical activity, obesity, and risk of colorectal adenoma in women (United States). Cancer Causes Control. 1996;7(2):253–63.CrossRef Giovannucci E, Colditz GA, Stampfer MJ, Willett WC. Physical activity, obesity, and risk of colorectal adenoma in women (United States). Cancer Causes Control. 1996;7(2):253–63.CrossRef
6.
go back to reference Martinez ME, Giovannucci E, Spiegelman D, Hunter DJ, Willett WC, Colditz GA. Leisure-time physical activity, body size, and colon cancer in women. J Natl Cancer Inst. 1997;89(13):948–55.CrossRef Martinez ME, Giovannucci E, Spiegelman D, Hunter DJ, Willett WC, Colditz GA. Leisure-time physical activity, body size, and colon cancer in women. J Natl Cancer Inst. 1997;89(13):948–55.CrossRef
7.
go back to reference Nilsen TIL, Romundstad PR, Petersen H, Gunnell D, Vatten LJ. Recreational physical activity and cancer risk in subsites of the colon (the Nord-Trondelag health study). Cancer Epidemiol Biomarkers Prev. 2008;17(1):183–8.CrossRef Nilsen TIL, Romundstad PR, Petersen H, Gunnell D, Vatten LJ. Recreational physical activity and cancer risk in subsites of the colon (the Nord-Trondelag health study). Cancer Epidemiol Biomarkers Prev. 2008;17(1):183–8.CrossRef
8.
go back to reference Thune I, Lund E. Physical activity and risk of colorectal cancer in men and women. Br J Cancer. 1996;73(9):1134–40.CrossRef Thune I, Lund E. Physical activity and risk of colorectal cancer in men and women. Br J Cancer. 1996;73(9):1134–40.CrossRef
10.
go back to reference Calton BA, Lacey JV Jr, Schatzkin A, Schairer C, Colbert LH, Albanes D, et al. Physical activity and the risk of colon cancer among women: a prospective cohort study (United States). Int J Cancer. 2006;119(2):385–91.CrossRef Calton BA, Lacey JV Jr, Schatzkin A, Schairer C, Colbert LH, Albanes D, et al. Physical activity and the risk of colon cancer among women: a prospective cohort study (United States). Int J Cancer. 2006;119(2):385–91.CrossRef
11.
go back to reference Howard RA, Freedman DM, Park Y, Hollenbeck A, Schatzkin A, Leitzmann MF. Physical activity, sedentary behavior, and the risk of colon and rectal cancer in the NIH-AARP diet and health study. Cancer Causes Control. 2008;19(9):939–53.CrossRef Howard RA, Freedman DM, Park Y, Hollenbeck A, Schatzkin A, Leitzmann MF. Physical activity, sedentary behavior, and the risk of colon and rectal cancer in the NIH-AARP diet and health study. Cancer Causes Control. 2008;19(9):939–53.CrossRef
12.
go back to reference Johnsen NF, Christensen J, Thomsen BL, Olsen A, Loft S, Overvad K, et al. Physical activity and risk of colon cancer in a cohort of Danish middle-aged men and women. Eur J Epidemiol. 2006;21(12):877–84.CrossRef Johnsen NF, Christensen J, Thomsen BL, Olsen A, Loft S, Overvad K, et al. Physical activity and risk of colon cancer in a cohort of Danish middle-aged men and women. Eur J Epidemiol. 2006;21(12):877–84.CrossRef
13.
go back to reference Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S. Physical activity and risk of colorectal cancer in Japanese men and women: the Japan public health center-based prospective study. Cancer Causes Control. 2007;18(2):199–209.CrossRef Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S. Physical activity and risk of colorectal cancer in Japanese men and women: the Japan public health center-based prospective study. Cancer Causes Control. 2007;18(2):199–209.CrossRef
14.
go back to reference Nilsen TI, Vatten LJ. Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer. 2001;84(3):417–22.CrossRef Nilsen TI, Vatten LJ. Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer. 2001;84(3):417–22.CrossRef
15.
go back to reference Schnohr P, Gronbaek M, Petersen L, Hein HO, Sorensen TI. Physical activity in leisure-time and risk of cancer: 14-year follow-up of 28,000 Danish men and women. Scand J Public Health. 2005;33(4):244–9.CrossRef Schnohr P, Gronbaek M, Petersen L, Hein HO, Sorensen TI. Physical activity in leisure-time and risk of cancer: 14-year follow-up of 28,000 Danish men and women. Scand J Public Health. 2005;33(4):244–9.CrossRef
16.
go back to reference Wu AH, Paganini-Hill A, Ross RK, Henderson BE. Alcohol, physical activity and other risk factors for colorectal cancer: a prospective study. Br J Cancer. 1987;55(6):687–94.CrossRef Wu AH, Paganini-Hill A, Ross RK, Henderson BE. Alcohol, physical activity and other risk factors for colorectal cancer: a prospective study. Br J Cancer. 1987;55(6):687–94.CrossRef
17.
go back to reference Albanes D, Blair A, Taylor PR. Physical activity and risk of cancer in the NHANES I population. Am J Public Health. 1989;79(6):744–50.CrossRef Albanes D, Blair A, Taylor PR. Physical activity and risk of cancer in the NHANES I population. Am J Public Health. 1989;79(6):744–50.CrossRef
18.
go back to reference Ballard-Barbash R, Schatzkin A, Albanes D, Schiffman MH, Kreger BE, Kannel WB, et al. Physical activity and risk of large bowel cancer in Framingham study. Cancer Res. 1990;50(12):3610–3.PubMed Ballard-Barbash R, Schatzkin A, Albanes D, Schiffman MH, Kreger BE, Kannel WB, et al. Physical activity and risk of large bowel cancer in Framingham study. Cancer Res. 1990;50(12):3610–3.PubMed
19.
go back to reference Takahashi H, Kuriyama S, Tsubono Y, Nakaya N, Fujita K, Nishino Y, et al. Time spent walking and risk of colorectal cancer in Japan: the Miyagi cohort study. Eur J Cancer Prev. 2007;16(5):403–8.CrossRef Takahashi H, Kuriyama S, Tsubono Y, Nakaya N, Fujita K, Nishino Y, et al. Time spent walking and risk of colorectal cancer in Japan: the Miyagi cohort study. Eur J Cancer Prev. 2007;16(5):403–8.CrossRef
20.
go back to reference Inoue M, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S. Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol. 2008;168(4):391–403.CrossRef Inoue M, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, Tsugane S. Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol. 2008;168(4):391–403.CrossRef
21.
go back to reference Steenland K, Nowlin S, Palu S. Cancer incidence in the National Health and nutrition survey I. follow-up data: diabetes, cholesterol, pulse and physical activity. Cancer Epidemiol Biomark Prev. 1995;4(8):807–11. Steenland K, Nowlin S, Palu S. Cancer incidence in the National Health and nutrition survey I. follow-up data: diabetes, cholesterol, pulse and physical activity. Cancer Epidemiol Biomark Prev. 1995;4(8):807–11.
22.
go back to reference Bostick RM, Potter JD, Kushi LH, Sellers TA, Steinmetz KA, McKenzie DR, et al. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control. 1994;5(1):38–52.CrossRef Bostick RM, Potter JD, Kushi LH, Sellers TA, Steinmetz KA, McKenzie DR, et al. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control. 1994;5(1):38–52.CrossRef
23.
go back to reference Mai PL, Sullivan-Halley J, Ursin G, Stram DO, Deapen D, Villaluna D, et al. Physical activity and colon cancer risk among women in the California teachers study. Cancer Epidemiol Biomark Prev. 2007;16(3):517–25.CrossRef Mai PL, Sullivan-Halley J, Ursin G, Stram DO, Deapen D, Villaluna D, et al. Physical activity and colon cancer risk among women in the California teachers study. Cancer Epidemiol Biomark Prev. 2007;16(3):517–25.CrossRef
24.
go back to reference Moradi T, Gridley G, Bjork J, Dosemeci M, Ji BT, Berkel HJ, et al. Occupational physical activity and risk for cancer of the colon and rectum in Sweden among men and women by anatomic subsite. Eur J Cancer Prev. 2008;17(3):201–8.CrossRef Moradi T, Gridley G, Bjork J, Dosemeci M, Ji BT, Berkel HJ, et al. Occupational physical activity and risk for cancer of the colon and rectum in Sweden among men and women by anatomic subsite. Eur J Cancer Prev. 2008;17(3):201–8.CrossRef
25.
go back to reference Lynge E, Thygesen L. Use of surveillance systems for occupational cancer: data from the Danish national system. Int J Epidemiol. 1988;17(3):493–500.CrossRef Lynge E, Thygesen L. Use of surveillance systems for occupational cancer: data from the Danish national system. Int J Epidemiol. 1988;17(3):493–500.CrossRef
26.
go back to reference Chao A, Connell CJ, Jacobs EJ, McCullough ML, Patel AV, Calle EE, et al. Amount, type, and timing of recreational physical activity in relation to colon and rectal cancer in older adults: the Cancer prevention study II nutrition cohort. Cancer Epidemiol Biomark Prev. 2004;13(12):2187–95. Chao A, Connell CJ, Jacobs EJ, McCullough ML, Patel AV, Calle EE, et al. Amount, type, and timing of recreational physical activity in relation to colon and rectal cancer in older adults: the Cancer prevention study II nutrition cohort. Cancer Epidemiol Biomark Prev. 2004;13(12):2187–95.
27.
go back to reference Ainsworth BE. Challenges in measuring physical activity in women. Exerc Sport Sci Rev. 2000;28(2):93–6.PubMed Ainsworth BE. Challenges in measuring physical activity in women. Exerc Sport Sci Rev. 2000;28(2):93–6.PubMed
28.
go back to reference Meijer G, Janssen G, Westerterp K, Verhoeven F, Saris W, Hoor F. The effect of a 5-month endurance-training programme on physical activity: evidence for a sex-difference in the metabolic response to exercise. Eur J Appl Physiol Occup Physiol. 1991;62(1):11–7.CrossRef Meijer G, Janssen G, Westerterp K, Verhoeven F, Saris W, Hoor F. The effect of a 5-month endurance-training programme on physical activity: evidence for a sex-difference in the metabolic response to exercise. Eur J Appl Physiol Occup Physiol. 1991;62(1):11–7.CrossRef
29.
go back to reference Sheel AW. Sex differences in the physiology of exercise: an integrative perspective. 2016. p. 211–2. Sheel AW. Sex differences in the physiology of exercise: an integrative perspective. 2016. p. 211–2.
30.
go back to reference Eiliv L, Merethe K, Tonje B, Anette H, Kjersti B, Elise E, et al. External validity in a population-based national prospective study – the Norwegian women and Cancer study (NOWAC). Cancer Causes Control. 2003;14(10):1001–8.CrossRef Eiliv L, Merethe K, Tonje B, Anette H, Kjersti B, Elise E, et al. External validity in a population-based national prospective study – the Norwegian women and Cancer study (NOWAC). Cancer Causes Control. 2003;14(10):1001–8.CrossRef
31.
go back to reference Lund E, Dumeaux V, Braaten T, Hjartåker A, Engeset D, Skeie G, et al. Cohort profile: the Norwegian women and Cancer study—NOWAC—Kvinner og kreft. Int J Epidemiol. 2008;37(1):36–41.CrossRef Lund E, Dumeaux V, Braaten T, Hjartåker A, Engeset D, Skeie G, et al. Cohort profile: the Norwegian women and Cancer study—NOWAC—Kvinner og kreft. Int J Epidemiol. 2008;37(1):36–41.CrossRef
32.
go back to reference Borch KB, Ekelund U, Brage S, Lund E. Criterion validity of a 10-category scale for ranking physical activity in Norwegian women.(research)(report). Int J Behav Nutr Phys Act. 2012;9:2.CrossRef Borch KB, Ekelund U, Brage S, Lund E. Criterion validity of a 10-category scale for ranking physical activity in Norwegian women.(research)(report). Int J Behav Nutr Phys Act. 2012;9:2.CrossRef
33.
go back to reference Larsen IK, Småstuen M, Johannesen TB, Langmark F, Parkin DM, Bray F, et al. Data quality at the Cancer registry of Norway: an overview of comparability, completeness, validity and timeliness. Eur J Cancer. 2009;45(7):1218–31.CrossRef Larsen IK, Småstuen M, Johannesen TB, Langmark F, Parkin DM, Bray F, et al. Data quality at the Cancer registry of Norway: an overview of comparability, completeness, validity and timeliness. Eur J Cancer. 2009;45(7):1218–31.CrossRef
34.
go back to reference Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600.CrossRef Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600.CrossRef
35.
go back to reference Karahalios A, English DR, Simpson JA. Weight change and risk of colorectal Cancer: a systematic review and meta-analysis. Am J Epidemiol. 2015;181(11):832–45.CrossRef Karahalios A, English DR, Simpson JA. Weight change and risk of colorectal Cancer: a systematic review and meta-analysis. Am J Epidemiol. 2015;181(11):832–45.CrossRef
36.
go back to reference Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and Cancer — viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794–8.CrossRef Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and Cancer — viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794–8.CrossRef
37.
go back to reference Quadrilatero J, Hoffman-Goetz L. Physical activity and colon cancer. A systematic review of potential mechanisms. J Sports Med Phys Fitness. 2003;43(2):121–38.PubMed Quadrilatero J, Hoffman-Goetz L. Physical activity and colon cancer. A systematic review of potential mechanisms. J Sports Med Phys Fitness. 2003;43(2):121–38.PubMed
38.
go back to reference Westerlind KC. Physical activity and cancer prevention--mechanisms. Med Sci Sports Exerc. 2003;35(11):1834–40.CrossRef Westerlind KC. Physical activity and cancer prevention--mechanisms. Med Sci Sports Exerc. 2003;35(11):1834–40.CrossRef
39.
go back to reference Wolin KY, Lee IM, Colditz GA, Glynn RJ, Fuchs C, Giovannucci E. Leisure-time physical activity patterns and risk of colon cancer in women. Int J Cancer. 2007;121(12):2776–81.CrossRef Wolin KY, Lee IM, Colditz GA, Glynn RJ, Fuchs C, Giovannucci E. Leisure-time physical activity patterns and risk of colon cancer in women. Int J Cancer. 2007;121(12):2776–81.CrossRef
40.
go back to reference Abel T, Graf N, Niemann S. Gender bias in the assessment of physical activity in population studies. Soz Praventivmed. 2001;46(4):268–72.CrossRef Abel T, Graf N, Niemann S. Gender bias in the assessment of physical activity in population studies. Soz Praventivmed. 2001;46(4):268–72.CrossRef
41.
go back to reference Lee IM, Paffenbarger RS Jr, Hsieh C. Physical activity and risk of developing colorectal cancer among college alumni. J Natl Cancer Inst. 1991;83(18):1324–9.CrossRef Lee IM, Paffenbarger RS Jr, Hsieh C. Physical activity and risk of developing colorectal cancer among college alumni. J Natl Cancer Inst. 1991;83(18):1324–9.CrossRef
42.
go back to reference Lee IM, Manson J, Ajani U, Paffenbarger R, Hennekens C, Buring J. Physical activity and risk of colon cancer: the physicians‘ health study (United States). Cancer Causes Control. 1997;8(4):568–74.CrossRef Lee IM, Manson J, Ajani U, Paffenbarger R, Hennekens C, Buring J. Physical activity and risk of colon cancer: the physicians‘ health study (United States). Cancer Causes Control. 1997;8(4):568–74.CrossRef
43.
go back to reference Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport. 2000;71(2):1–14.CrossRef Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport. 2000;71(2):1–14.CrossRef
44.
go back to reference Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.CrossRef Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.CrossRef
45.
go back to reference Lagerros Y, Mucci L, Bellocco R, Nyrén O, Bälter O, Bälter K. Validity and reliability of self-reported Total energy expenditure using a novel instrument. Eur J Epidemiol. 2006;21(3):227–36.CrossRef Lagerros Y, Mucci L, Bellocco R, Nyrén O, Bälter O, Bälter K. Validity and reliability of self-reported Total energy expenditure using a novel instrument. Eur J Epidemiol. 2006;21(3):227–36.CrossRef
46.
go back to reference Sedgwick P. Prospective cohort studies: advantages and disadvantages. BMJ: Br Med J. 2013;347:f6304.CrossRef Sedgwick P. Prospective cohort studies: advantages and disadvantages. BMJ: Br Med J. 2013;347:f6304.CrossRef
47.
go back to reference Hjartaker A, Andersen LF, Lund E. Comparison of diet measures from a food-frequency questionnaire with measures from repeated 24-hour dietary recalls. The Norwegian women and Cancer study. Public Health Nutr. 2007;10(10):1094–103.CrossRef Hjartaker A, Andersen LF, Lund E. Comparison of diet measures from a food-frequency questionnaire with measures from repeated 24-hour dietary recalls. The Norwegian women and Cancer study. Public Health Nutr. 2007;10(10):1094–103.CrossRef
48.
go back to reference Parr CL, Veierod MB, Laake P, Lund E, Hjartaker A. Test-retest reproducibility of a food frequency questionnaire (FFQ) and estimated effects on disease risk in the Norwegian women and Cancer study (NOWAC). Nutr J. 2006;5:4.CrossRef Parr CL, Veierod MB, Laake P, Lund E, Hjartaker A. Test-retest reproducibility of a food frequency questionnaire (FFQ) and estimated effects on disease risk in the Norwegian women and Cancer study (NOWAC). Nutr J. 2006;5:4.CrossRef
49.
go back to reference Skeie G, Mode N, Henningsen M, Borch KB. Validity of self-reported body mass index among middle-aged participants in the Norwegian women and Cancer study. Clin Epidemiol. 2015;7:313–23.CrossRef Skeie G, Mode N, Henningsen M, Borch KB. Validity of self-reported body mass index among middle-aged participants in the Norwegian women and Cancer study. Clin Epidemiol. 2015;7:313–23.CrossRef
50.
go back to reference Rothwell PM, Wilson M, Elwin C-E, Norrving B, Algra A, Warlow CP, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741–50.CrossRef Rothwell PM, Wilson M, Elwin C-E, Norrving B, Algra A, Warlow CP, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741–50.CrossRef
Metadata
Title
Physical activity patterns and the risk of colorectal cancer in the Norwegian Women and Cancer study: a population-based prospective study
Authors
Sunday Oluwafemi Oyeyemi
Tonje Braaten
Idlir Licaj
Eiliv Lund
Kristin Benjaminsen Borch
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5092-0

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine