Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Impact of PKCε downregulation on autophagy in glioblastoma cells

Authors: Ewa Toton, Aleksandra Romaniuk, Natalia Konieczna, Johann Hofmann, Jan Barciszewski, Maria Rybczynska

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Several efforts have been focused on identification of pathways involved in malignancy, progression, and response to treatment in Glioblastoma (GB). Overexpression of PKCε was detected in histological samples from GB, anaplastic astrocytoma, and gliosarcoma and is considered an important marker of negative disease outcome. In multiple studies on GB, autophagy has been shown as a survival mechanism during cellular stress, contributing to resistance against anti-cancer agents. The main object of this research was to determine the influence of PKCε downregulation on the expression of genes involved in autophagy pathways in glioblastoma cell lines U-138 MG and U-118 MG with high PKCε level.

Methods

We conducted siRNA-mediated knockdown of PKCε in glioblastoma cell lines and studied the effects of autophagy pathway. The expression of autophagy-related genes was analyzed using qPCR and Western blot analysis was carried out to assess protein levels. Immunostaining was used to detect functional autophagic maturation process.

Results

We found that these cell lines exhibited a high basal expression of autophagy-related genes. Our results suggest that the loss of PKCε contributes to the downregulation of genes involved in autophagy pathways. Moreover, most of the changes we observed in Western blot analysis and endogenous immunofluorescence experiments confirmed dysfunction of autophagy programs. We found that knockdown of PKCε induced a decrease in the expression of Beclin1, Atg5, PI3K, whereas the expression of other autophagy-related proteins mTOR and Bcl2 was increased. Treatment of control siRNA glioma cells with rapamycin-induced autophagosome formation and increase in LC3-II level and caused a decrease in the expression of p62. Additionally, PKCε siRNA caused a diminution in the Akt phosphorylation at Ser473 and in the protein level in both cell lines. Moreover, we observed reduction in the adhesion of glioblastoma cells, accompanied by the decrease in total FAK protein level and phosphorylation.

Conclusions

Effects of down-regulation of PKCε in glioma cells raised the possibility that the expression of PKCε is essential for the autophagic signal transduction pathways in these cells.
Thus, our results identify an important role of PKCε in autophagy and may, more importantly, identifyit as a novel therapeutic target.
Literature
2.
go back to reference Ramirez YP, Weatherbee JL, Wheelhouse RT, Ross AH. Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals. 2013;6(12):1475–506.CrossRefPubMedPubMedCentral Ramirez YP, Weatherbee JL, Wheelhouse RT, Ross AH. Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals. 2013;6(12):1475–506.CrossRefPubMedPubMedCentral
3.
go back to reference Inda MM, Bonavia R, Seoane J. Glioblastoma multiforme: a look inside its heterogeneous nature. Cancer. 2014;6(1):226–39.CrossRef Inda MM, Bonavia R, Seoane J. Glioblastoma multiforme: a look inside its heterogeneous nature. Cancer. 2014;6(1):226–39.CrossRef
4.
go back to reference Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investig. 2012;30(1):48–56.CrossRef Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Investig. 2012;30(1):48–56.CrossRef
5.
go back to reference Sharif TR, Sharif M. Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999;15(2):237–43.PubMed Sharif TR, Sharif M. Overexpression of protein kinase C epsilon in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999;15(2):237–43.PubMed
6.
go back to reference Kang JH. Protein Kinase C (PKC) Isozymes and Cancer. New Journal of Science. 2014; ID 231418. Kang JH. Protein Kinase C (PKC) Isozymes and Cancer. New Journal of Science. 2014; ID 231418.
7.
go back to reference Jain K, Basu A. The multifunctional protein kinase C-ε in cancer development and progression. Cancer. 2014;6:860–78.CrossRef Jain K, Basu A. The multifunctional protein kinase C-ε in cancer development and progression. Cancer. 2014;6:860–78.CrossRef
8.
go back to reference Wang H, Gutierrez-Uzquiza A, Garg R, et al. Transcriptional regulation of oncogenic protein kinase Cϵ (PKCϵ) by STAT1 and Sp1 proteins. J Biol Chem. 2014;289(28):19823–38.CrossRefPubMedPubMedCentral Wang H, Gutierrez-Uzquiza A, Garg R, et al. Transcriptional regulation of oncogenic protein kinase Cϵ (PKCϵ) by STAT1 and Sp1 proteins. J Biol Chem. 2014;289(28):19823–38.CrossRefPubMedPubMedCentral
9.
go back to reference Yu L, Strandberg L, Lenardo MJ. The selectivity of autophagy and its role in cell death and survival. Autophagy. 2008;4(5):567–73.CrossRefPubMed Yu L, Strandberg L, Lenardo MJ. The selectivity of autophagy and its role in cell death and survival. Autophagy. 2008;4(5):567–73.CrossRefPubMed
10.
go back to reference Jiang H, White EJ, Conrad C, Gomez-Manzano C, Fueyo J. Autophagy pathways in glioblastoma. Methods Enzymol. 2009;453:273–86.CrossRefPubMed Jiang H, White EJ, Conrad C, Gomez-Manzano C, Fueyo J. Autophagy pathways in glioblastoma. Methods Enzymol. 2009;453:273–86.CrossRefPubMed
11.
go back to reference Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4(4):467–75.CrossRefPubMed Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T, Hollingsworth EF, Kobayashi R, Hess K, Shinojima N, Shingu T, Tamada Y, Zhang L, Conrad C, Bogler O, Mills G, Sawaya R, Kondo S. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4(4):467–75.CrossRefPubMed
12.
go back to reference Li C, Liu Y, Liu H, Zhang W, Shen C, Cho K, Chen X, Peng F, Bi Y, Hou X, Yang Z, Zheng Z, Wang K, Wang X, Zhang J, Zhong C, Zou H, Zhang X, Zhao S. Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells. Cell Physiol Biochem. 2015;35(4):1303–16.CrossRefPubMed Li C, Liu Y, Liu H, Zhang W, Shen C, Cho K, Chen X, Peng F, Bi Y, Hou X, Yang Z, Zheng Z, Wang K, Wang X, Zhang J, Zhong C, Zou H, Zhang X, Zhao S. Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells. Cell Physiol Biochem. 2015;35(4):1303–16.CrossRefPubMed
13.
go back to reference Kahana S, Finniss S, Cazacu S, Xiang C, Lee HK, Brodie S, Goldstein RS, Roitman V, Slavin S, Mikkelsen T, Brodie C. Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCε-dependent downregulation of AKT and XIAP expressions. Cell Signal. 2011;23(8):1348–57.CrossRefPubMed Kahana S, Finniss S, Cazacu S, Xiang C, Lee HK, Brodie S, Goldstein RS, Roitman V, Slavin S, Mikkelsen T, Brodie C. Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKCε-dependent downregulation of AKT and XIAP expressions. Cell Signal. 2011;23(8):1348–57.CrossRefPubMed
14.
go back to reference Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci. 1997;22:355–8.CrossRefPubMed Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci. 1997;22:355–8.CrossRefPubMed
15.
go back to reference Okhrimenko H, Lu W, Xiang C, Hamburger N, Kazimirsky G, Brodie C. Protein kinase C-epsilon regulates the apoptosis and survival of glioma cells. Cancer Res. 2005;65(16):7301–9.CrossRefPubMedPubMedCentral Okhrimenko H, Lu W, Xiang C, Hamburger N, Kazimirsky G, Brodie C. Protein kinase C-epsilon regulates the apoptosis and survival of glioma cells. Cancer Res. 2005;65(16):7301–9.CrossRefPubMedPubMedCentral
16.
go back to reference Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22:8983–98.CrossRefPubMed Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22:8983–98.CrossRefPubMed
18.
go back to reference Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e1000038.CrossRefPubMedCentral Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e1000038.CrossRefPubMedCentral
19.
20.
go back to reference Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating, and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.CrossRefPubMed Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating, and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.CrossRefPubMed
21.
go back to reference Toton E, Romaniuk A, Budzianowski J, Hofmann J, Rybczynska M. Zapotin (5,6,2′,6′-tetramethoxyflavone) modulates the crosstalk between autophagy and apoptosis pathways in cancer cells with overexpressed constitutively active PKCϵ. Nutr Cancer. 2016;68(2):290–304.CrossRefPubMed Toton E, Romaniuk A, Budzianowski J, Hofmann J, Rybczynska M. Zapotin (5,6,2′,6′-tetramethoxyflavone) modulates the crosstalk between autophagy and apoptosis pathways in cancer cells with overexpressed constitutively active PKCϵ. Nutr Cancer. 2016;68(2):290–304.CrossRefPubMed
22.
go back to reference Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.CrossRefPubMed Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.CrossRefPubMed
23.
go back to reference Reardon DA, Ligon KL, Chiocca EA, Wen PY. One size should not fit all: advancing toward personalized glioblastoma therapy. Discov Med. 2015;19(107):471–7.PubMed Reardon DA, Ligon KL, Chiocca EA, Wen PY. One size should not fit all: advancing toward personalized glioblastoma therapy. Discov Med. 2015;19(107):471–7.PubMed
26.
27.
go back to reference Garczarczyk D, Toton E, Biedermann V, Rosivatz E, Rechfeld F, Rybczynska M, Hofmann J. Signal transduction of constitutively active protein kinase C epsilon. Cell Signal. 2009;21(5):745–52.CrossRefPubMed Garczarczyk D, Toton E, Biedermann V, Rosivatz E, Rechfeld F, Rybczynska M, Hofmann J. Signal transduction of constitutively active protein kinase C epsilon. Cell Signal. 2009;21(5):745–52.CrossRefPubMed
28.
go back to reference Xiao H, Goldthwait DA, Mapstone T. The identification of four protein kinase C isoforms in human glioblastoma cell lines: PKC alpha, gamma, epsilon, and zeta. J Neurosurg. 1994;81(5):734–40.CrossRefPubMed Xiao H, Goldthwait DA, Mapstone T. The identification of four protein kinase C isoforms in human glioblastoma cell lines: PKC alpha, gamma, epsilon, and zeta. J Neurosurg. 1994;81(5):734–40.CrossRefPubMed
29.
go back to reference Sharif TR, Sharif M. Overexpression of protein kinase Cɛ in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999;15:237–43.PubMed Sharif TR, Sharif M. Overexpression of protein kinase Cɛ in astroglial brain tumor derived cell lines and primary tumor samples. Int J Oncol. 1999;15:237–43.PubMed
30.
go back to reference Cacace AM, Ueffing M, Philipp A, Han EK, Kolch W, Weinstein IB. PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene. 1996;13(12):2517–26.PubMed Cacace AM, Ueffing M, Philipp A, Han EK, Kolch W, Weinstein IB. PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene. 1996;13(12):2517–26.PubMed
31.
go back to reference Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology. 2013;2(10):e26260.CrossRefPubMedPubMedCentral Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology. 2013;2(10):e26260.CrossRefPubMedPubMedCentral
32.
go back to reference Tan SH, Shui G, Zhou J, Li JJ, Bay BH, Wenk MR, Shen HM. Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem. 2012;287(18):14364–76.CrossRefPubMedPubMedCentral Tan SH, Shui G, Zhou J, Li JJ, Bay BH, Wenk MR, Shen HM. Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J Biol Chem. 2012;287(18):14364–76.CrossRefPubMedPubMedCentral
33.
go back to reference Chen JL, Lin HH, Kim KJ, Lin A, Ou JH, Ann DK. PKCδ signaling. A dual role in regulating hypoxic stress-induced autophagy and apoptosis. Autophagy. 2009;5:244–6.CrossRefPubMedPubMedCentral Chen JL, Lin HH, Kim KJ, Lin A, Ou JH, Ann DK. PKCδ signaling. A dual role in regulating hypoxic stress-induced autophagy and apoptosis. Autophagy. 2009;5:244–6.CrossRefPubMedPubMedCentral
34.
go back to reference Rosivatz E, Woscholski R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal. 2011;23:478–86.CrossRefPubMedPubMedCentral Rosivatz E, Woscholski R. Removal or masking of phosphatidylinositol(4,5)bisphosphate from the outer mitochondrial membrane causes mitochondrial fragmentation. Cell Signal. 2011;23:478–86.CrossRefPubMedPubMedCentral
35.
go back to reference Silva RD, Manon S, Goncalves J, Saraiva L, Corte-Real M. Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Calpha. Exp Cell Res. 2011;317:781–90.CrossRefPubMed Silva RD, Manon S, Goncalves J, Saraiva L, Corte-Real M. Modulation of Bax mitochondrial insertion and induced cell death in yeast by mammalian protein kinase Calpha. Exp Cell Res. 2011;317:781–90.CrossRefPubMed
36.
go back to reference Sridharan S, Jain K, Basu A. Regulation of autophagy by kinases. Cancer. 2011;3:2630–54.CrossRef Sridharan S, Jain K, Basu A. Regulation of autophagy by kinases. Cancer. 2011;3:2630–54.CrossRef
37.
go back to reference Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, RA DP. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.CrossRefPubMed Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, RA DP. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.CrossRefPubMed
38.
go back to reference Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME. Gene expression profile of glioblastoma Multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005;7(1):7–16.CrossRefPubMedPubMedCentral Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME. Gene expression profile of glioblastoma Multiforme invasive phenotype points to new therapeutic targets. Neoplasia. 2005;7(1):7–16.CrossRefPubMedPubMedCentral
39.
go back to reference Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152(4):657–68.CrossRefPubMedPubMedCentral Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152(4):657–68.CrossRefPubMedPubMedCentral
41.
go back to reference Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu WF, Lin S, Ma HB, Wang XJ, Wu WY. Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells. Drug Des Devel Ther. 2013;7:149–59.CrossRefPubMedPubMedCentral Dai ZJ, Gao J, Kang HF, Ma YG, Ma XB, Lu WF, Lin S, Ma HB, Wang XJ, Wu WY. Targeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells. Drug Des Devel Ther. 2013;7:149–59.CrossRefPubMedPubMedCentral
42.
go back to reference Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friss R, Simon HU. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun. 2013;4:2130.CrossRefPubMedPubMedCentral Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friss R, Simon HU. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun. 2013;4:2130.CrossRefPubMedPubMedCentral
43.
go back to reference Toton E, Lisiak N, Sawicka P, Rybczynska M. Beclin-1 and its role as a target for anticancer therapy. J Physiol Pharmacol. 2014;65(4):459–67.PubMed Toton E, Lisiak N, Sawicka P, Rybczynska M. Beclin-1 and its role as a target for anticancer therapy. J Physiol Pharmacol. 2014;65(4):459–67.PubMed
45.
go back to reference Gong C, Bauvy C, Tonelli G, Yue W, Deloménie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, Delbos L, Gary-Gouy H, Morel AP, Ghavami S, Song E, Codogno P, Mehrpour M. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 2013;32:2261–72.CrossRefPubMed Gong C, Bauvy C, Tonelli G, Yue W, Deloménie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, Delbos L, Gary-Gouy H, Morel AP, Ghavami S, Song E, Codogno P, Mehrpour M. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 2013;32:2261–72.CrossRefPubMed
48.
go back to reference Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.CrossRefPubMedPubMedCentral Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.CrossRefPubMedPubMedCentral
49.
go back to reference Marquez RT, Xu L. Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2:214–21.PubMedPubMedCentral Marquez RT, Xu L. Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2:214–21.PubMedPubMedCentral
50.
go back to reference Fassina L, Magenes G, Inzaghi A, Palumbo S, Allavena G, Miracco C, Pirtoli L, Biggiogera M, Comincini S. AUTOCOUNTER, an ImageJ JavaScript to analyze LC3B-GFP expression dynamics in autophagy-induced astrocytoma cells. Eur J Histochem. 2012;56(4):e44.CrossRefPubMedPubMedCentral Fassina L, Magenes G, Inzaghi A, Palumbo S, Allavena G, Miracco C, Pirtoli L, Biggiogera M, Comincini S. AUTOCOUNTER, an ImageJ JavaScript to analyze LC3B-GFP expression dynamics in autophagy-induced astrocytoma cells. Eur J Histochem. 2012;56(4):e44.CrossRefPubMedPubMedCentral
52.
go back to reference Lisiak N, Paszel-Jaworska A, Totoń E, Rubiś B, Pakuła M, Bednarczyk-Cwynar B, Zaprutko L, Rybczyńska M. Semisynthetic oleanane triterpenoids inhibit migration and invasion of human breast cancer cells through downregulated expression of the ITGB1/PTK2/PXN pathway. Chem Biol Interact. 2017;268:136–47.CrossRefPubMed Lisiak N, Paszel-Jaworska A, Totoń E, Rubiś B, Pakuła M, Bednarczyk-Cwynar B, Zaprutko L, Rybczyńska M. Semisynthetic oleanane triterpenoids inhibit migration and invasion of human breast cancer cells through downregulated expression of the ITGB1/PTK2/PXN pathway. Chem Biol Interact. 2017;268:136–47.CrossRefPubMed
53.
go back to reference Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010;123:1007–13.CrossRefPubMed Schaller MD. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010;123:1007–13.CrossRefPubMed
54.
go back to reference Heidkamp MC, Bayer AL, Scully BT, Eble DM, Samarel AM. Activation of focal adhesion kinase by protein kinase C epsilon in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2003;285(4):H1684–96.CrossRefPubMed Heidkamp MC, Bayer AL, Scully BT, Eble DM, Samarel AM. Activation of focal adhesion kinase by protein kinase C epsilon in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2003;285(4):H1684–96.CrossRefPubMed
55.
go back to reference Zeidman R, Trollér U, Raghunath A, Påhlman S, Larsson C. Protein kinase C epsilon actin-binding site is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell. 2002;13(1):12–24.CrossRefPubMedPubMedCentral Zeidman R, Trollér U, Raghunath A, Påhlman S, Larsson C. Protein kinase C epsilon actin-binding site is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell. 2002;13(1):12–24.CrossRefPubMedPubMedCentral
56.
go back to reference Zhou S, Zhao L, Kuang M, Zhang B, Liang Z, Yi T, Wei Y, Zhao X. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde. Cancer Lett. 2012;323:115–27.CrossRefPubMed Zhou S, Zhao L, Kuang M, Zhang B, Liang Z, Yi T, Wei Y, Zhao X. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde. Cancer Lett. 2012;323:115–27.CrossRefPubMed
59.
go back to reference Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD, Marra MA, Gorski SM. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 2015:0. [Epub ahead of print]. Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD, Marra MA, Gorski SM. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 2015:0. [Epub ahead of print].
61.
go back to reference Yu Y, Yu X, Ma J, Tong Y, Yao J. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. Int J Oncol. 2016;49(1):285–93.CrossRefPubMed Yu Y, Yu X, Ma J, Tong Y, Yao J. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. Int J Oncol. 2016;49(1):285–93.CrossRefPubMed
62.
go back to reference Peltier J, O'Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 2007;67:1348–61.CrossRefPubMed Peltier J, O'Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 2007;67:1348–61.CrossRefPubMed
63.
go back to reference Yang F, Gao JY, Chen H, Du ZH ZXQ, Gao W. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer. Onco Targets Ther. 2017;10:4413–22.CrossRefPubMedPubMedCentral Yang F, Gao JY, Chen H, Du ZH ZXQ, Gao W. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer. Onco Targets Ther. 2017;10:4413–22.CrossRefPubMedPubMedCentral
64.
go back to reference Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015:690690. Tai YL, Chen LC, Shen TL. Emerging roles of focal adhesion kinase in cancer. Biomed Res Int. 2015:690690.
65.
go back to reference Yoon H, Dehart JP, Murphy JM, Lim ST. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63(2):114–28.CrossRefPubMed Yoon H, Dehart JP, Murphy JM, Lim ST. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63(2):114–28.CrossRefPubMed
66.
go back to reference Jaraíz-Rodríguez M, Tabernero MD, González-Tablas M, Otero A, Orfao A, Medina JM, Tabernero A. A short region of connexin43 reduces human glioma stem cell migration, invasion, and survival through Src, PTEN, and FAK. Stem Cell Reports. 2017;9(2):451–63.CrossRefPubMedPubMedCentral Jaraíz-Rodríguez M, Tabernero MD, González-Tablas M, Otero A, Orfao A, Medina JM, Tabernero A. A short region of connexin43 reduces human glioma stem cell migration, invasion, and survival through Src, PTEN, and FAK. Stem Cell Reports. 2017;9(2):451–63.CrossRefPubMedPubMedCentral
67.
go back to reference Nam JH, Cho HJ, Kang H, Lee JY, Jung M, Chang YC, Kim K, Hoe HS. A mercaptoacetamide-based class II histone deacetylase inhibitor suppresses cell migration and invasion in monomorphic malignant muman glioma cells by inhibiting FAK/STAT3 signaling. J Cell Biochem. 2017;118(12):4672–85.CrossRefPubMed Nam JH, Cho HJ, Kang H, Lee JY, Jung M, Chang YC, Kim K, Hoe HS. A mercaptoacetamide-based class II histone deacetylase inhibitor suppresses cell migration and invasion in monomorphic malignant muman glioma cells by inhibiting FAK/STAT3 signaling. J Cell Biochem. 2017;118(12):4672–85.CrossRefPubMed
68.
go back to reference Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, Welch DR. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog. 2014;53(12):1011–26.PubMed Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, Welch DR. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog. 2014;53(12):1011–26.PubMed
69.
go back to reference De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, Ylstra B, Leenstra S. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008;27(14):2091–6.CrossRefPubMed De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, Ylstra B, Leenstra S. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008;27(14):2091–6.CrossRefPubMed
70.
go back to reference Robert G, Ben Sahra I, Puissant A, Colosetti P, Belhacene N, Gounon P, Hofman P, Bost F, Cassuto JP, Auberger P. Acadesine kills chronic myelogenous leukemia (CML) cells through PKC-dependent induction of autophagic cell death. PLoS One. 2009;4:e7889.CrossRefPubMedPubMedCentral Robert G, Ben Sahra I, Puissant A, Colosetti P, Belhacene N, Gounon P, Hofman P, Bost F, Cassuto JP, Auberger P. Acadesine kills chronic myelogenous leukemia (CML) cells through PKC-dependent induction of autophagic cell death. PLoS One. 2009;4:e7889.CrossRefPubMedPubMedCentral
71.
go back to reference Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.CrossRefPubMedPubMedCentral Hu YL, Jahangiri A, Delay M, Aghi MK. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res. 2012;72:4294–9.CrossRefPubMedPubMedCentral
Metadata
Title
Impact of PKCε downregulation on autophagy in glioblastoma cells
Authors
Ewa Toton
Aleksandra Romaniuk
Natalia Konieczna
Johann Hofmann
Jan Barciszewski
Maria Rybczynska
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4095-1

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine