Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Original Article

Photon-counting CT allows better visualization of temporal bone structures in comparison with current generation multi-detector CT

Authors: Robert Hermans, Lukas Boomgaert, Lesley Cockmartin, Joke Binst, Rashèl De Stefanis, Hilde Bosmans

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Purpose

To compare photon-counting CT (PCCT) and multi-detector CT (MDCT) for visualization of temporal bone anatomic structures.

Methods

Thirty-six exams of temporal bones without pathology were collected from consecutive patients on a MDCT, and another 35 exams on a PCCT scanner. Two radiologists independently scored visibility of 14 structures for the MDCT and PCCT dataset, using a 5-point Likert scale, with a 2-month wash-out period. For MDCT, the acquisition parameters were: 110 kV, 64 × 0.6 mm (slice thickness reconstructed to 0.4 mm), pitch 0.85, quality ref. mAs 150, and 1 s rotation time; for PCCT: 120 kV, 144 × 0.2 mm, pitch 0.35, IQ level 75, and 0.5 s rotation time. Patient doses were reported as dose length product values (DLP). Statistical analysis was done using the Mann–Whitney U test, visual grading characteristic (VGC) analysis, and ordinal regression.

Results

Substantial agreement was found between readers (intraclass correlation coefficient 0.63 and 0.52 for MDCT and PCCT, resp.). All structures were scored higher for PCCT (p < 0.0001), except for Arnold’s canal (p = 0.12). The area under the VGC curve was 0.76 (95% CI, 0.73–0.79), indicating a significantly better visualization on PCCT. Ordinal regression showed the odds for better visualization are 354 times higher (95% CI, 75–1673) in PCCT (p < 0.0001). Average (range) of DLP was 95 (79–127) mGy*cm for MDCT and 74 (50–95) mGy*cm for PCCT (p < 0.001).

Conclusion

PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose.

Graphical Abstract

Critical relevance statement

PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose.

Key points

1.
PCCT allows high-resolution imaging of temporal bone structures.
 
2.
Compared to MDCT, the visibility of normal temporal bone structures is scored better with PCCT.
 
3.
PCCT allows to obtain high-quality CT images of the temporal bones at lower radiation doses than MDCT.
 
Literature
1.
go back to reference Zhou W, Lane JI, Carlson ML et al (2018) Comparison of a photon-counting-detector CT with an energy-integrating-detector CT for temporal bone imaging: a cadaveric study. AJNR Am J Neuroradiol 39:1733–1738CrossRefPubMedPubMedCentral Zhou W, Lane JI, Carlson ML et al (2018) Comparison of a photon-counting-detector CT with an energy-integrating-detector CT for temporal bone imaging: a cadaveric study. AJNR Am J Neuroradiol 39:1733–1738CrossRefPubMedPubMedCentral
2.
go back to reference McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653CrossRefPubMed McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653CrossRefPubMed
4.
go back to reference Benson JC, Rajendran K, Lane JI et al (2022) A new frontier in temporal bone imaging : photon-counting detector CT demonstrates superior visualisation of critical anatomic structures at reduced radiation dose. AJNR Am J Neuroradiol 43:579–584CrossRefPubMedPubMedCentral Benson JC, Rajendran K, Lane JI et al (2022) A new frontier in temporal bone imaging : photon-counting detector CT demonstrates superior visualisation of critical anatomic structures at reduced radiation dose. AJNR Am J Neuroradiol 43:579–584CrossRefPubMedPubMedCentral
5.
go back to reference Meyer M, Haubenreisser H, Raupach R et al (2015) Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging. Eur Radiol 25:178–185CrossRefPubMed Meyer M, Haubenreisser H, Raupach R et al (2015) Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging. Eur Radiol 25:178–185CrossRefPubMed
6.
go back to reference Svalkvist A, Svensson S, Håkansson M, Båth M, Månsson LG (2016) ViewDEX: a status report. Radiat Prot Dosim 169(1–4):38–45CrossRef Svalkvist A, Svensson S, Håkansson M, Båth M, Månsson LG (2016) ViewDEX: a status report. Radiat Prot Dosim 169(1–4):38–45CrossRef
7.
go back to reference Håkansson M, Svensson S, Zachrisson S, Svalkvist A, Båth M, Månsson LG (2010) ViewDEX: an efficient and easy-to-use software for observer performance studies. Radiat Prot Dosim 139(1–3):42–51CrossRef Håkansson M, Svensson S, Zachrisson S, Svalkvist A, Båth M, Månsson LG (2010) ViewDEX: an efficient and easy-to-use software for observer performance studies. Radiat Prot Dosim 139(1–3):42–51CrossRef
8.
go back to reference Börjesson S, Håkansson M, Båth M et al (2005) A software tool for increased efficiency in observer performance studies in radiology. Radiat Prot Dosim 114(1–3):45–52CrossRef Börjesson S, Håkansson M, Båth M et al (2005) A software tool for increased efficiency in observer performance studies in radiology. Radiat Prot Dosim 114(1–3):45–52CrossRef
10.
go back to reference Koesling S, Kunkel P, Schul T (2005) Vascular anomalies, sutures and small canals of the temporal bone on axial CT. Eur J Radiol 54:335–343CrossRefPubMed Koesling S, Kunkel P, Schul T (2005) Vascular anomalies, sutures and small canals of the temporal bone on axial CT. Eur J Radiol 54:335–343CrossRefPubMed
11.
go back to reference Komune N, Suzuki T, Miyamoto Y et al (2023) Anatomy of small canals around the jugular foramen: special reference to Jacobson’s and Arnold’s nerves. Clin Anat 36:599–606CrossRefPubMed Komune N, Suzuki T, Miyamoto Y et al (2023) Anatomy of small canals around the jugular foramen: special reference to Jacobson’s and Arnold’s nerves. Clin Anat 36:599–606CrossRefPubMed
13.
go back to reference Duman IS, Dogan SN (2020) Contribution of reformatted multislice temporal computed tomography images in the planes of Stenvers and Pöschl to the diagnosis of superior semicircular canal dehiscence. J Comput Assist Tomogr 44:53–58CrossRefPubMed Duman IS, Dogan SN (2020) Contribution of reformatted multislice temporal computed tomography images in the planes of Stenvers and Pöschl to the diagnosis of superior semicircular canal dehiscence. J Comput Assist Tomogr 44:53–58CrossRefPubMed
14.
go back to reference Rousset J, Garetier M, Gentric J-C et al (2014) Biometry of the normal stapes using stapes axial plane, high-resolution computed tomography. J Laryngol Otol 128:425–430CrossRefPubMed Rousset J, Garetier M, Gentric J-C et al (2014) Biometry of the normal stapes using stapes axial plane, high-resolution computed tomography. J Laryngol Otol 128:425–430CrossRefPubMed
15.
go back to reference European Commission (1999) European guidelines on quality criteria for computed tomography EUR 16262 EN. Luxemburg Office for Official Publications of the European Communities European Commission (1999) European guidelines on quality criteria for computed tomography EUR 16262 EN. Luxemburg Office for Official Publications of the European Communities
16.
go back to reference Båth M, Månsson LG (2007) Visual grading characteristics (VGC) analysis: a non-parametric rank-invariant statistical method for image quality evaluation. Br J Radiol 80:169–176CrossRefPubMed Båth M, Månsson LG (2007) Visual grading characteristics (VGC) analysis: a non-parametric rank-invariant statistical method for image quality evaluation. Br J Radiol 80:169–176CrossRefPubMed
17.
go back to reference Smedby O, Fredrikson M (2010) Visual grading regression: analysing data from visual grading experiments with regression models. Br J Radiol 83(993):767–775CrossRefPubMedPubMedCentral Smedby O, Fredrikson M (2010) Visual grading regression: analysing data from visual grading experiments with regression models. Br J Radiol 83(993):767–775CrossRefPubMedPubMedCentral
18.
go back to reference Zarb F, McEntee MF, Rainford L (2015) Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations. Insights Imaging 6:393–401CrossRefPubMed Zarb F, McEntee MF, Rainford L (2015) Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations. Insights Imaging 6:393–401CrossRefPubMed
19.
go back to reference Wehrse E, Sawall S, Klein L et al (2021) Potential of ultra-high-resolution photon-counting CT of bone metastases: initial experiences in breast cancer patients. NPJ Breast Cancer 7(1):3CrossRefPubMedPubMedCentral Wehrse E, Sawall S, Klein L et al (2021) Potential of ultra-high-resolution photon-counting CT of bone metastases: initial experiences in breast cancer patients. NPJ Breast Cancer 7(1):3CrossRefPubMedPubMedCentral
21.
go back to reference Klein L, Dorn S, Amato C et al (2020) Effects of detector sampling on noise reduction in clinical photon-counting whole-body computed tomography. Investig Radiol 55(2):111–119CrossRef Klein L, Dorn S, Amato C et al (2020) Effects of detector sampling on noise reduction in clinical photon-counting whole-body computed tomography. Investig Radiol 55(2):111–119CrossRef
22.
go back to reference Stratis A, Zhang G, Lopez-Rendon X et al (2017) Two examples of indication specific radiation dose calculaties in dental CBCT and multidector CT scanners. Phys Med 41:71–77CrossRefPubMed Stratis A, Zhang G, Lopez-Rendon X et al (2017) Two examples of indication specific radiation dose calculaties in dental CBCT and multidector CT scanners. Phys Med 41:71–77CrossRefPubMed
Metadata
Title
Photon-counting CT allows better visualization of temporal bone structures in comparison with current generation multi-detector CT
Authors
Robert Hermans
Lukas Boomgaert
Lesley Cockmartin
Joke Binst
Rashèl De Stefanis
Hilde Bosmans
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01467-w

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue