Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2006

Open Access 01-12-2006 | Research

Photodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma

Authors: Christian S Head, Quang Luu, Joel Sercarz, Romaine Saxton

Published in: World Journal of Surgical Oncology | Issue 1/2006

Login to get access

Abstract

Background

Conventional cancer therapy including surgery, radiation, and chemotherapy often are physically debilitating and largely ineffective in previously treated patients with recurrent head and neck squamous cell carcinoma (SCC). A natural photochemical, hypericin, could be a less invasive method for laser photodynamic therapy (PDT) of these recurrent head and neck malignancies. Hypericin has powerful photo-oxidizing ability, tumor localization properties, and fluorescent imaging capabilities as well as minimal dark toxicity. The current study defined hypericin PDT in vitro with human SCC cells before the cells were grown as tumor transplants in nude mice and tested as a model for hypericin induced tumor fluorescence and PDT via laser fiberoptics.

Methods

SNU squamous carcinoma cells were grown in tissue culture, detached from monolayers with trypsin, and incubated with 0.1 μg to 10 μg/ml of hypericin before exposure to laser light at 514, 550, or 593 nm to define optimal dose, time, and wavelength for PDT of tumor cells. The SCC cells also were injected subcutaneously in nude mice and grown for 6–8 weeks to form tumors before hypericin injection and insertion of fiberoptics from a KTP532 surgical laser to assess the feasibility of this operating room instrument in stimulating fluorescence and PDT of tumors.

Results

In vitro testing revealed a hypericin dose of 0.2–0.5 μg/ml was needed for PDT of the SCC cells with an optimal tumoricidal response seen at the 593 nm light absorption maximum. In vivo tumor retention of injected hypericin was seen for 7 to10 days using KTP532 laser induced fluorescence and biweekly PDT via laser fiberoptics led to regression of SCC tumor transplants under 0.4 cm2 diameter, but resulted in progression of larger size tumors in the nude mice.

Conclusion

In this preclinical study, hypericin was tested for 514–593 nm dye laser PDT of human SCC cells in vitro and for KTP532 surgical laser targeting of SCC tumors in mice. The results suggest hypericin is a potent tumor imaging agent using this surgical laser that may prove useful in defining tumor margins and possibly in sterilizing post-resection margins. Deeply penetrating pulsed infrared laser emissions will be needed for PDT of larger and more inaccessible tumors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ganly I, Kaye SB: Recurrent squamous-cell carcinoma of the head and neck: Overview of current therapy and future prospects. Ann Oncol. 2000, 11: 11-16.CrossRefPubMed Ganly I, Kaye SB: Recurrent squamous-cell carcinoma of the head and neck: Overview of current therapy and future prospects. Ann Oncol. 2000, 11: 11-16.CrossRefPubMed
2.
go back to reference Chung PS, Saxton RE, Paiva MB, Rhee CK, Soudant J, Mathey A, Foote C, Castro DJ: Hypericin uptake in rabbits and nude mice transplanted with human squamous cell carcinomas: study of a new sensitizer for laser phototherapy. Laryngoscope. 1994, 104: 1471-1476.CrossRefPubMed Chung PS, Saxton RE, Paiva MB, Rhee CK, Soudant J, Mathey A, Foote C, Castro DJ: Hypericin uptake in rabbits and nude mice transplanted with human squamous cell carcinomas: study of a new sensitizer for laser phototherapy. Laryngoscope. 1994, 104: 1471-1476.CrossRefPubMed
3.
go back to reference VanderWerf QM, Saxton RE, Chang A, Horton D, Paiva MB, Anderson J, Foote C, Soudant J, Mathey A, Castro DJ: Hypericin: a new laser phototargeting agent for human cancer cells. Laryngoscope. 1996, 106: 479-483.CrossRefPubMed VanderWerf QM, Saxton RE, Chang A, Horton D, Paiva MB, Anderson J, Foote C, Soudant J, Mathey A, Castro DJ: Hypericin: a new laser phototargeting agent for human cancer cells. Laryngoscope. 1996, 106: 479-483.CrossRefPubMed
4.
go back to reference Chung PS, Rhee CK, Kim KH, Paek W, Chung J, Paiva MB, Eshraghi AA, Castro DJ, Saxton RE: Intratumoral hypericin and KTP laser therapy for transplanted squamous cell carcinoma. Laryngoscope. 2000, 110: 1312-1316.CrossRefPubMed Chung PS, Rhee CK, Kim KH, Paek W, Chung J, Paiva MB, Eshraghi AA, Castro DJ, Saxton RE: Intratumoral hypericin and KTP laser therapy for transplanted squamous cell carcinoma. Laryngoscope. 2000, 110: 1312-1316.CrossRefPubMed
5.
go back to reference Liu CD, Kwan D, Saxton RE, McFadden DW: Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res. 2000, 93: 137-143.CrossRefPubMed Liu CD, Kwan D, Saxton RE, McFadden DW: Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res. 2000, 93: 137-143.CrossRefPubMed
6.
go back to reference Lavu H, Geary K, Fetterman HR, Saxton RE: Pancreatic tumor detection using hypericin based fluorescence spectroscopy and cytology. SPIE. 2005, 5689: 282-290. Lavu H, Geary K, Fetterman HR, Saxton RE: Pancreatic tumor detection using hypericin based fluorescence spectroscopy and cytology. SPIE. 2005, 5689: 282-290.
7.
go back to reference Bublik M, Head C, Benharash P, Paiva M, Eshraghi A, Kim T, Saxton R: Hypericin and pulsed laser therapy of squamous cell cancer in vitro. Photomedicine and Laser Surgery. 2006, 24: 341-347.CrossRefPubMed Bublik M, Head C, Benharash P, Paiva M, Eshraghi A, Kim T, Saxton R: Hypericin and pulsed laser therapy of squamous cell cancer in vitro. Photomedicine and Laser Surgery. 2006, 24: 341-347.CrossRefPubMed
8.
go back to reference Alecu , Ursaciuc C, Halalau F, Coman G, Merlevede W, Waelkens E, de Witte P: Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin. Anticancer Res. 1998, 18: 4651-4654.PubMed Alecu , Ursaciuc C, Halalau F, Coman G, Merlevede W, Waelkens E, de Witte P: Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin. Anticancer Res. 1998, 18: 4651-4654.PubMed
9.
go back to reference Thong PS, Watt F, Ren MQ, Tan PH, Soo KC, Olivo M: Hypericin-photodynamic therapy (PDT) using an alternative treatment regime suitable for multi-fraction PDT. Photochem Photobiol B. 2006, 82: 1-8.CrossRef Thong PS, Watt F, Ren MQ, Tan PH, Soo KC, Olivo M: Hypericin-photodynamic therapy (PDT) using an alternative treatment regime suitable for multi-fraction PDT. Photochem Photobiol B. 2006, 82: 1-8.CrossRef
10.
go back to reference Kamuhabwa AR, Huygens A, Roskams T, De Witte PA: Enhancing the photodynamic effect of hypericin in human bladder transitional cell carcinoma spheroids by the use of the oxygen carrier, perfluorodecalin. Int J Oncol. 2006, 28: 775-780.PubMed Kamuhabwa AR, Huygens A, Roskams T, De Witte PA: Enhancing the photodynamic effect of hypericin in human bladder transitional cell carcinoma spheroids by the use of the oxygen carrier, perfluorodecalin. Int J Oncol. 2006, 28: 775-780.PubMed
11.
go back to reference Yee KK, Soo KC, Olivo M: Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int J Mol Med. 2005, 16: 993-1002.PubMed Yee KK, Soo KC, Olivo M: Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma. Int J Mol Med. 2005, 16: 993-1002.PubMed
Metadata
Title
Photodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma
Authors
Christian S Head
Quang Luu
Joel Sercarz
Romaine Saxton
Publication date
01-12-2006
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2006
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-4-87

Other articles of this Issue 1/2006

World Journal of Surgical Oncology 1/2006 Go to the issue