Skip to main content
Top
Published in: Journal of Neurology 9/2017

01-09-2017 | Pioneers in Neurology

Phenytoin: a step by step insight into its multiple mechanisms of action—80 years of mechanistic studies in neuropharmacology

Author: Jan M. Keppel Hesselink

Published in: Journal of Neurology | Issue 9/2017

Login to get access

Excerpt

In drug development, there is a general consensus that ‘mechanism matters’ [1]. The story of how scientists defined the mechanism of action of phenytoin during its 80 years history is, therefore, relevant, because it adds a new context to the philosophy of ‘mechanism matters’, a concept that is in need of some fine tuning. In this article, we will focus exclusively on the progress of insight related to the pharmacological targets of phenytoin, and we will not discuss the physiological complexities related to the voltage dependency of phenytoin’s sodium channel blocking actions, reviewed extensively by Yaari et al. [2]. …
Literature
2.
go back to reference Yaari Y, Seltzer M, Pincus JH (1986) Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 20:171–184CrossRefPubMed Yaari Y, Seltzer M, Pincus JH (1986) Phenytoin: mechanisms of its anticonvulsant action. Ann Neurol 20:171–184CrossRefPubMed
3.
go back to reference Goodman LS, Swinyard EA, Toman JE (1946) Studies on the anticonvulsant properties of diphenylhydantoin. Fed Proc 5:180PubMed Goodman LS, Swinyard EA, Toman JE (1946) Studies on the anticonvulsant properties of diphenylhydantoin. Fed Proc 5:180PubMed
4.
go back to reference Putnam TJ, Merritt HH (1937) Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85(2213):525–526CrossRefPubMed Putnam TJ, Merritt HH (1937) Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 85(2213):525–526CrossRefPubMed
5.
go back to reference Keppel Hesselink JM, Kopsky DJ (2017) Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. J Neurol. doi:10.1007/s00415-017-8391-5 Keppel Hesselink JM, Kopsky DJ (2017) Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. J Neurol. doi:10.​1007/​s00415-017-8391-5
6.
go back to reference Williams D (1939) Treatment of epilepsy with sodium diphenyl hydantoinate. Lancet 234(6056):678–681CrossRef Williams D (1939) Treatment of epilepsy with sodium diphenyl hydantoinate. Lancet 234(6056):678–681CrossRef
7.
go back to reference Frost I (1939) Sodium diphenyl hydantoinate in the treatment of epilepsy: preliminary observations in severe cases. Br J Psychiatry 85:976–985CrossRef Frost I (1939) Sodium diphenyl hydantoinate in the treatment of epilepsy: preliminary observations in severe cases. Br J Psychiatry 85:976–985CrossRef
8.
go back to reference Victor HG, Drake ME (1940) The effects of intravenous injection of sodium diphenyl hydantoinate (dilantin) on respiration, blood pressure, and the vagus nerve. J Pharmacol Exp Ther 68:36–40 Victor HG, Drake ME (1940) The effects of intravenous injection of sodium diphenyl hydantoinate (dilantin) on respiration, blood pressure, and the vagus nerve. J Pharmacol Exp Ther 68:36–40
10.
go back to reference Toman JE (1949) The neuropharmacology of antiepileptics. Electroencephalogr Clin Neurophysiol 1(1):33–44CrossRefPubMed Toman JE (1949) The neuropharmacology of antiepileptics. Electroencephalogr Clin Neurophysiol 1(1):33–44CrossRefPubMed
11.
go back to reference Pratt CH (1939) Sodium diphenyl hydantoinate (dilantin) and its combination with phenobarbital in the treatment of epilepsy?: a review and preliminary report. BJP 85:986–998CrossRef Pratt CH (1939) Sodium diphenyl hydantoinate (dilantin) and its combination with phenobarbital in the treatment of epilepsy?: a review and preliminary report. BJP 85:986–998CrossRef
12.
13.
go back to reference Woodbury DM, Naisbitt MS (1955) Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J Pharmacol Exp Ther 115:74–95PubMed Woodbury DM, Naisbitt MS (1955) Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J Pharmacol Exp Ther 115:74–95PubMed
14.
go back to reference Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617PubMed Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45:596–617PubMed
15.
go back to reference Rawson MD, Pincus JH (1968) The effect of diphenylhydantoin on sodium, potassium, magnesium-activated adenosine triphosphatase in microsomal fractions of rat and guinea pig brain and on whole homogenates of human brain. Biochem Pharmacol 17:573–579CrossRefPubMed Rawson MD, Pincus JH (1968) The effect of diphenylhydantoin on sodium, potassium, magnesium-activated adenosine triphosphatase in microsomal fractions of rat and guinea pig brain and on whole homogenates of human brain. Biochem Pharmacol 17:573–579CrossRefPubMed
16.
go back to reference Korey SR (1951) Effect of dilantin and mesantoin on the giant axon of the squid. Proc Soc Exp Biol Med 76:297–299CrossRefPubMed Korey SR (1951) Effect of dilantin and mesantoin on the giant axon of the squid. Proc Soc Exp Biol Med 76:297–299CrossRefPubMed
18.
19.
go back to reference Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates Inc., Sunderland Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates Inc., Sunderland
20.
go back to reference Lipicky RJ, Gilbert DL, Stillman IM (1972) Diphenylhydantoin inhibition of sodium conductance in squid giant axon. Proc Natl Acad Sci USA 69(7):1758–1760CrossRefPubMedPubMedCentral Lipicky RJ, Gilbert DL, Stillman IM (1972) Diphenylhydantoin inhibition of sodium conductance in squid giant axon. Proc Natl Acad Sci USA 69(7):1758–1760CrossRefPubMedPubMedCentral
22.
go back to reference Beneski DA, Catterall WA (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci USA 77:639–643CrossRefPubMedPubMedCentral Beneski DA, Catterall WA (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci USA 77:639–643CrossRefPubMedPubMedCentral
23.
go back to reference Catterall WA (2000) From Ionic currents to molecular review mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25CrossRefPubMed Catterall WA (2000) From Ionic currents to molecular review mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25CrossRefPubMed
24.
go back to reference Willow M, Kuenzel EA, Catterall WA (1984) Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 25(2):228–234PubMed Willow M, Kuenzel EA, Catterall WA (1984) Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 25(2):228–234PubMed
25.
go back to reference Matsuki N, Quandt FN, Ten Eick RE, Yeh JZ (1984) Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther 228(2):523–530PubMed Matsuki N, Quandt FN, Ten Eick RE, Yeh JZ (1984) Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J Pharmacol Exp Ther 228(2):523–530PubMed
26.
go back to reference Courtney KR, Etter EF (1983) Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur J Pharmacol 88(1):1–9CrossRefPubMed Courtney KR, Etter EF (1983) Modulated anticonvulsant block of sodium channels in nerve and muscle. Eur J Pharmacol 88(1):1–9CrossRefPubMed
27.
go back to reference Qiao X, Sun G, Clare JJ, Werkman TR, Wadman WJ (2014) Properties of human brain sodium channel alpha-subunits expressed in HEK293 cells and their modulation by carbamazepine, phenytoin and lamotrigine. Br J Pharmacol 171(4):1054–1067CrossRefPubMedPubMedCentral Qiao X, Sun G, Clare JJ, Werkman TR, Wadman WJ (2014) Properties of human brain sodium channel alpha-subunits expressed in HEK293 cells and their modulation by carbamazepine, phenytoin and lamotrigine. Br J Pharmacol 171(4):1054–1067CrossRefPubMedPubMedCentral
28.
go back to reference Terragni B, Scalmani P, Colombo E, Franceschetti S, Mantegazza M (2016) Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons. Neuropharmacology 110(Pt A):223–236CrossRefPubMed Terragni B, Scalmani P, Colombo E, Franceschetti S, Mantegazza M (2016) Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons. Neuropharmacology 110(Pt A):223–236CrossRefPubMed
29.
go back to reference Smith NE, Corry B (2016) Mutant bacterial sodium channels as models for local anesthetic block of eukaryotic proteins. Channels (Austin) 10(3):225–237CrossRef Smith NE, Corry B (2016) Mutant bacterial sodium channels as models for local anesthetic block of eukaryotic proteins. Channels (Austin) 10(3):225–237CrossRef
30.
go back to reference Silver K, Soderlund DM (2005) State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides. Neurotoxicology 26(3):397–406CrossRefPubMed Silver K, Soderlund DM (2005) State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides. Neurotoxicology 26(3):397–406CrossRefPubMed
31.
go back to reference Nelson M, Yang M, Millican-Slater R, Brackenbury WJ (2015) Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 6(32):32914–32929CrossRefPubMedPubMedCentral Nelson M, Yang M, Millican-Slater R, Brackenbury WJ (2015) Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 6(32):32914–32929CrossRefPubMedPubMedCentral
32.
go back to reference Boerma RS, Braun KP, van den Broek MP (2016) Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 13(1):192–197CrossRefPubMed Boerma RS, Braun KP, van den Broek MP (2016) Remarkable phenytoin sensitivity in 4 children with SCN8A-related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 13(1):192–197CrossRefPubMed
33.
go back to reference Black JA, Liu S, Waxman SG (2009) Sodium channel activity modulates multiple functions in microglia. Glia 57(10):1072–1081CrossRefPubMed Black JA, Liu S, Waxman SG (2009) Sodium channel activity modulates multiple functions in microglia. Glia 57(10):1072–1081CrossRefPubMed
34.
go back to reference Zhao F, Li X, Jin L (2016) Development of a rapid throughput assay for identification of hNav1.7 antagonist using unique efficacious sodium channel agonist, antillatoxin. Mar Drugs 14(2):36CrossRefPubMedCentral Zhao F, Li X, Jin L (2016) Development of a rapid throughput assay for identification of hNav1.7 antagonist using unique efficacious sodium channel agonist, antillatoxin. Mar Drugs 14(2):36CrossRefPubMedCentral
35.
go back to reference Patejdl R, Leroux AC, Noack T (2015) Phenytoin inhibits contractions of rat gastrointestinal and portal vein smooth muscle by inhibiting calcium entry. Neurogastroenterol Motil 27(10):1453–1465CrossRefPubMed Patejdl R, Leroux AC, Noack T (2015) Phenytoin inhibits contractions of rat gastrointestinal and portal vein smooth muscle by inhibiting calcium entry. Neurogastroenterol Motil 27(10):1453–1465CrossRefPubMed
36.
go back to reference Chou MY, Lee CY, Liou HH, Pan CY (2014) Phenytoin attenuates the hyper-exciting neurotransmission in cultured embryonic cortical neurons. Neuropharmacology 83:54–61CrossRefPubMed Chou MY, Lee CY, Liou HH, Pan CY (2014) Phenytoin attenuates the hyper-exciting neurotransmission in cultured embryonic cortical neurons. Neuropharmacology 83:54–61CrossRefPubMed
37.
go back to reference Deisz RA, Lux HD (1977) Diphenylhydantoin prolongs postsynaptic inhibition and iontophoretic GABA action in the crayfish stretch receptor. Neurosci Lett 5(3–4):199–203CrossRefPubMed Deisz RA, Lux HD (1977) Diphenylhydantoin prolongs postsynaptic inhibition and iontophoretic GABA action in the crayfish stretch receptor. Neurosci Lett 5(3–4):199–203CrossRefPubMed
38.
go back to reference Ayala GF, Lin S, Johnston D (1977) The mechanism of action of diphenylhydantoin or invertebrate neurons. Effects on basic membrane properties. Brain Res 121(2):245–258CrossRefPubMed Ayala GF, Lin S, Johnston D (1977) The mechanism of action of diphenylhydantoin or invertebrate neurons. Effects on basic membrane properties. Brain Res 121(2):245–258CrossRefPubMed
39.
go back to reference Connors BW (1981) A comparison of the effects of pentobarbital and diphenylhydantoin on the GABA sensitivity and excitability of adult sensory ganglion cells. Brain Res 207(2):357–369CrossRefPubMed Connors BW (1981) A comparison of the effects of pentobarbital and diphenylhydantoin on the GABA sensitivity and excitability of adult sensory ganglion cells. Brain Res 207(2):357–369CrossRefPubMed
40.
go back to reference Granger P, Biton B, Faure C (1995) Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol 47(6):1189–1196PubMed Granger P, Biton B, Faure C (1995) Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol 47(6):1189–1196PubMed
41.
go back to reference Kimball OP, Horan TN (1939) The use of Dilantin in the treatment of epilepsy. Ann Intern Med 13:787–793CrossRef Kimball OP, Horan TN (1939) The use of Dilantin in the treatment of epilepsy. Ann Intern Med 13:787–793CrossRef
42.
go back to reference Shapiro M (1957) Preprinted abstract, annual meeting, Internat Assn for Dental Research. In: Shafer WG (1960) Effect of dilantin sodium on growth of human fibroblast-like cell cultures. Exp Biol Med 104(2):198–201 Shapiro M (1957) Preprinted abstract, annual meeting, Internat Assn for Dental Research. In: Shafer WG (1960) Effect of dilantin sodium on growth of human fibroblast-like cell cultures. Exp Biol Med 104(2):198–201
43.
go back to reference Shapiro M (1958) Acceleration of gingival wound healing in non-epileptic patients receiving diphenylhydantoin sodium (dilantin, epanutin). Exp Med Surg 16(1):41–53PubMed Shapiro M (1958) Acceleration of gingival wound healing in non-epileptic patients receiving diphenylhydantoin sodium (dilantin, epanutin). Exp Med Surg 16(1):41–53PubMed
44.
go back to reference Bhatia A, Prakash S (2004) Topical phenytoin for wound healing. Dermatol Online 10(1):5 Bhatia A, Prakash S (2004) Topical phenytoin for wound healing. Dermatol Online 10(1):5
Metadata
Title
Phenytoin: a step by step insight into its multiple mechanisms of action—80 years of mechanistic studies in neuropharmacology
Author
Jan M. Keppel Hesselink
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 9/2017
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-017-8465-4

Other articles of this Issue 9/2017

Journal of Neurology 9/2017 Go to the issue