Skip to main content
Top
Published in: Molecular Pain 1/2011

Open Access 01-12-2011 | Short report

Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain

Authors: Sun Kwang Kim, Go Kato, Tatsuya Ishikawa, Junichi Nabekura

Published in: Molecular Pain | Issue 1/2011

Login to get access

Abstract

Background

Postsynaptic dendritic spines in the cortex are highly dynamic, showing rapid morphological changes including elongation/retraction and formation/elimination in response to altered sensory input or neuronal activity, which achieves experience/activity-dependent cortical circuit rewiring. Our previous long-term in vivo two-photon imaging study revealed that spine turnover in the mouse primary somatosensory (S1) cortex markedly increased in an early development phase of neuropathic pain, but was restored in a late maintenance phase of neuropathic pain. However, it remains unknown how spine morphology is altered preceding turnover change and whether gain and loss of presynaptic boutons are changed during neuropathic pain.

Findings

Here we used short-term (2-hour) and long-term (2-week) time-lapse in vivo two-photon imaging of individual spines and boutons in the S1 cortical layer 1 of the transgenic mice expressing GFP in pyramidal neurons following partial sciatic nerve ligation (PSL). We found in the short-term imaging that spine motility (Δ length per 30 min) significantly increased in the development phase of neuropathic pain, but returned to the baseline in the maintenance phase. Moreover, the proportion of immature (thin) and mature (mushroom) spines increased and decreased, respectively, only in the development phase. Long-term imaging data showed that formation and elimination of boutons moderately increased and decreased, respectively, during the first 3 days following PSL and was subsequently restored.

Conclusions

Our results indicate that the S1 synaptic structures are rapidly destabilized and rearranged following PSL and subsequently stabilized in the maintenance phase of neuropathic pain, suggesting a novel therapeutic target in intractable chronic pain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Costigan M, Scholz J, Woolf CJ: Neuropathic pain: A maladadaptive response of the nervous system to damage. Annu Rev Neurosci 2009, 32: 1–32. 10.1146/annurev.neuro.051508.135531PubMedCentralPubMedCrossRef Costigan M, Scholz J, Woolf CJ: Neuropathic pain: A maladadaptive response of the nervous system to damage. Annu Rev Neurosci 2009, 32: 1–32. 10.1146/annurev.neuro.051508.135531PubMedCentralPubMedCrossRef
2.
go back to reference Seifert F, Maihofner C: Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 2009, 66: 375–390. 10.1007/s00018-008-8428-0PubMedCrossRef Seifert F, Maihofner C: Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci 2009, 66: 375–390. 10.1007/s00018-008-8428-0PubMedCrossRef
3.
go back to reference Kim SK, Nabekura J: Rapid synaptic remodelling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci 2011, 31: 5477–5482. 10.1523/JNEUROSCI.0328-11.2011PubMedCrossRef Kim SK, Nabekura J: Rapid synaptic remodelling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci 2011, 31: 5477–5482. 10.1523/JNEUROSCI.0328-11.2011PubMedCrossRef
4.
go back to reference Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000, 28: 41–51. 10.1016/S0896-6273(00)00084-2PubMedCrossRef Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000, 28: 41–51. 10.1016/S0896-6273(00)00084-2PubMedCrossRef
5.
go back to reference Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998, 76: 215–222. 10.1016/S0304-3959(98)00045-1PubMedCrossRef Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998, 76: 215–222. 10.1016/S0304-3959(98)00045-1PubMedCrossRef
6.
go back to reference Murayama M, Perez-Garci E, Nevian T, Bock T, Senn W, Larkum ME: Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 2009, 457: 1137–1141. 10.1038/nature07663PubMedCrossRef Murayama M, Perez-Garci E, Nevian T, Bock T, Senn W, Larkum ME: Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 2009, 457: 1137–1141. 10.1038/nature07663PubMedCrossRef
7.
go back to reference Holtmaat A, Svoboda K: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009, 10: 647–658. 10.1038/nrn2699PubMedCrossRef Holtmaat A, Svoboda K: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009, 10: 647–658. 10.1038/nrn2699PubMedCrossRef
8.
go back to reference Harms KJ, Dunaevsky A: Dendritic spine plasticity: looking beyond development. Brain Res 2007, 1184: 65–71.PubMedCrossRef Harms KJ, Dunaevsky A: Dendritic spine plasticity: looking beyond development. Brain Res 2007, 1184: 65–71.PubMedCrossRef
9.
go back to reference Tropea D, Majewska AK, Garcia R, Sur M: Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex. J Neurosci 2010, 30: 11086–11095. 10.1523/JNEUROSCI.1661-10.2010PubMedCentralPubMedCrossRef Tropea D, Majewska AK, Garcia R, Sur M: Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex. J Neurosci 2010, 30: 11086–11095. 10.1523/JNEUROSCI.1661-10.2010PubMedCentralPubMedCrossRef
10.
go back to reference Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H: Principles of long-term dynamics of dendritic spines. J Neurosci 2008, 28: 13592–13608. 10.1523/JNEUROSCI.0603-08.2008PubMedCentralPubMedCrossRef Yasumatsu N, Matsuzaki M, Miyazaki T, Noguchi J, Kasai H: Principles of long-term dynamics of dendritic spines. J Neurosci 2008, 28: 13592–13608. 10.1523/JNEUROSCI.0603-08.2008PubMedCentralPubMedCrossRef
11.
go back to reference Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999, 399: 66–70. 10.1038/19978PubMedCrossRef Engert F, Bonhoeffer T: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999, 399: 66–70. 10.1038/19978PubMedCrossRef
12.
go back to reference Maletic-Savatic M, Malinow R, Svoboda K: Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 1999, 283: 1923–1927. 10.1126/science.283.5409.1923PubMedCrossRef Maletic-Savatic M, Malinow R, Svoboda K: Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 1999, 283: 1923–1927. 10.1126/science.283.5409.1923PubMedCrossRef
13.
go back to reference Deng J, Dunaevsky A: Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons. Dev Biol 2005, 277: 366–377. 10.1016/j.ydbio.2004.09.028PubMedCrossRef Deng J, Dunaevsky A: Dynamics of dendritic spines and their afferent terminals: spines are more motile than presynaptic boutons. Dev Biol 2005, 277: 366–377. 10.1016/j.ydbio.2004.09.028PubMedCrossRef
14.
go back to reference Majewska AK, Newton JR, Sur M: Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 2006, 26: 3021–3029. 10.1523/JNEUROSCI.4454-05.2006PubMedCrossRef Majewska AK, Newton JR, Sur M: Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 2006, 26: 3021–3029. 10.1523/JNEUROSCI.4454-05.2006PubMedCrossRef
15.
go back to reference Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K: Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 2006, 9: 1117–1124. 10.1038/nn1747PubMedCrossRef Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K: Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 2006, 9: 1117–1124. 10.1038/nn1747PubMedCrossRef
16.
go back to reference Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hübener M, Keck T, Knott G, Lee WA, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L: Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 2009, 4: 1128–1144. 10.1038/nprot.2009.89PubMedCentralPubMedCrossRef Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hübener M, Keck T, Knott G, Lee WA, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L: Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 2009, 4: 1128–1144. 10.1038/nprot.2009.89PubMedCentralPubMedCrossRef
17.
go back to reference Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J: Inter-regional Contribution of Enhanced Activity of the Primary Somatosensory Cortex to the Anterior Cingulate Cortex Accelerates Chronic Pain Behavior. J Neurosci 2011, 31: 7631–7636. 10.1523/JNEUROSCI.0946-11.2011PubMedCrossRef Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J: Inter-regional Contribution of Enhanced Activity of the Primary Somatosensory Cortex to the Anterior Cingulate Cortex Accelerates Chronic Pain Behavior. J Neurosci 2011, 31: 7631–7636. 10.1523/JNEUROSCI.0946-11.2011PubMedCrossRef
18.
go back to reference Takatsuru Y, Fukumoto M, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J: Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 2009, 29: 10081–10086. 10.1523/JNEUROSCI.1638-09.2009PubMedCrossRef Takatsuru Y, Fukumoto M, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J: Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 2009, 29: 10081–10086. 10.1523/JNEUROSCI.1638-09.2009PubMedCrossRef
Metadata
Title
Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain
Authors
Sun Kwang Kim
Go Kato
Tatsuya Ishikawa
Junichi Nabekura
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2011
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-7-87

Other articles of this Issue 1/2011

Molecular Pain 1/2011 Go to the issue