Skip to main content
Top
Published in: Molecular Pain 1/2011

Open Access 01-12-2011 | Research

Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

Authors: Michael E Hildebrand, Janette Mezeyova, Paula L Smith, Michael W Salter, Elizabeth Tringham, Terrance P Snutch

Published in: Molecular Pain | Issue 1/2011

Login to get access

Abstract

Background

Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn.

Results

Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms.

Conclusions

Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Catterall WA, Goldin AL, Waxman SG: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005, 57: 397–409. 10.1124/pr.57.4.4PubMedCrossRef Catterall WA, Goldin AL, Waxman SG: International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005, 57: 397–409. 10.1124/pr.57.4.4PubMedCrossRef
2.
go back to reference Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH, Wood JN: The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 2008, 321: 702–705. 10.1126/science.1156916PubMedCrossRef Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH, Wood JN: The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 2008, 321: 702–705. 10.1126/science.1156916PubMedCrossRef
3.
go back to reference Dib-Hajj SD, Cummins TR, Black JA, Waxman SG: Sodium channels in normal and pathological pain. Annu Rev Neurosci 2010, 33: 325–347. 10.1146/annurev-neuro-060909-153234PubMedCrossRef Dib-Hajj SD, Cummins TR, Black JA, Waxman SG: Sodium channels in normal and pathological pain. Annu Rev Neurosci 2010, 33: 325–347. 10.1146/annurev-neuro-060909-153234PubMedCrossRef
4.
5.
go back to reference Momin A, Wood JN: Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol 2008, 18: 383–388. 10.1016/j.conb.2008.08.017PubMedCrossRef Momin A, Wood JN: Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol 2008, 18: 383–388. 10.1016/j.conb.2008.08.017PubMedCrossRef
6.
go back to reference Clare JJ: Targeting voltage-gated sodium channels for pain therapy. Expert Opin Investig Drugs 2010, 19: 45–62. 10.1517/13543780903435340PubMedCrossRef Clare JJ: Targeting voltage-gated sodium channels for pain therapy. Expert Opin Investig Drugs 2010, 19: 45–62. 10.1517/13543780903435340PubMedCrossRef
7.
go back to reference Zuliani V, Rivara M, Fantini M, Costantino G: Sodium channel blockers for neuropathic pain. Expert Opin Ther Pat 2010, 20: 755–779. 10.1517/13543771003774118PubMedCrossRef Zuliani V, Rivara M, Fantini M, Costantino G: Sodium channel blockers for neuropathic pain. Expert Opin Ther Pat 2010, 20: 755–779. 10.1517/13543771003774118PubMedCrossRef
8.
go back to reference Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG: Upregulation of sodium channel Na V 1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 2003, 23: 8881–8892.PubMed Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG: Upregulation of sodium channel Na V 1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 2003, 23: 8881–8892.PubMed
9.
go back to reference Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG: Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004, 24: 4832–4839. 10.1523/JNEUROSCI.0300-04.2004PubMedCrossRef Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG: Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 2004, 24: 4832–4839. 10.1523/JNEUROSCI.0300-04.2004PubMedCrossRef
10.
go back to reference Lindia JA, Kohler MG, Martin WJ, Abbadie C: Relationship between sodium channel Na V 1.3 expression and neuropathic pain behavior in rats. Pain 2005, 117: 145–153. 10.1016/j.pain.2005.05.027PubMedCrossRef Lindia JA, Kohler MG, Martin WJ, Abbadie C: Relationship between sodium channel Na V 1.3 expression and neuropathic pain behavior in rats. Pain 2005, 117: 145–153. 10.1016/j.pain.2005.05.027PubMedCrossRef
11.
go back to reference Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, Wood JN: Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2006, 2: 33. 10.1186/1744-8069-2-33PubMedCentralPubMedCrossRef Nassar MA, Baker MD, Levato A, Ingram R, Mallucci G, McMahon SB, Wood JN: Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2006, 2: 33. 10.1186/1744-8069-2-33PubMedCentralPubMedCrossRef
12.
go back to reference Drdla R, Sandkuhler J: Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol Pain 2008, 4: 18. 10.1186/1744-8069-4-18PubMedCentralPubMedCrossRef Drdla R, Sandkuhler J: Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo. Mol Pain 2008, 4: 18. 10.1186/1744-8069-4-18PubMedCentralPubMedCrossRef
13.
go back to reference D'Mello R, Dickenson AH: Spinal cord mechanisms of pain. Br J Anaesth 2008, 101: 8–16. 10.1093/bja/aen088PubMedCrossRef D'Mello R, Dickenson AH: Spinal cord mechanisms of pain. Br J Anaesth 2008, 101: 8–16. 10.1093/bja/aen088PubMedCrossRef
14.
go back to reference Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769. 10.1126/science.288.5472.1765PubMedCrossRef Woolf CJ, Salter MW: Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769. 10.1126/science.288.5472.1765PubMedCrossRef
15.
go back to reference Williams SR, Mitchell SJ: Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 2008, 11: 790–798. 10.1038/nn.2137PubMedCrossRef Williams SR, Mitchell SJ: Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 2008, 11: 790–798. 10.1038/nn.2137PubMedCrossRef
16.
go back to reference Safronov BV, Wolff M, Vogel W: Functional distribution of three types of Na + channel on soma and processes of dorsal horn neurones of rat spinal cord. J Physiol 1997,503(Pt 2):371–385.PubMedCentralPubMedCrossRef Safronov BV, Wolff M, Vogel W: Functional distribution of three types of Na + channel on soma and processes of dorsal horn neurones of rat spinal cord. J Physiol 1997,503(Pt 2):371–385.PubMedCentralPubMedCrossRef
17.
go back to reference Melnick IV, Santos SF, Szokol K, Szucs P, Safronov BV: Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. J Neurophysiol 2004, 91: 646–655.PubMedCrossRef Melnick IV, Santos SF, Szokol K, Szucs P, Safronov BV: Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. J Neurophysiol 2004, 91: 646–655.PubMedCrossRef
18.
go back to reference Hildebrand ME, Smith P, Bladen C, Eduljee C, Xie JY, Chen L, Fee-Maki M, Doering CJ, Mezeyova J, Zhu Y, Belardetti F, Pajouhesh H, Parker D, Arneric SP, Parmar M, Porreca F, Tringham E, Zamponi GW, Snutch TP: A novel slow inactivation specific ion channel modulator attenuates neuropathic pain. Pain 2011, 152: 833–843. 10.1016/j.pain.2010.12.035PubMedCrossRef Hildebrand ME, Smith P, Bladen C, Eduljee C, Xie JY, Chen L, Fee-Maki M, Doering CJ, Mezeyova J, Zhu Y, Belardetti F, Pajouhesh H, Parker D, Arneric SP, Parmar M, Porreca F, Tringham E, Zamponi GW, Snutch TP: A novel slow inactivation specific ion channel modulator attenuates neuropathic pain. Pain 2011, 152: 833–843. 10.1016/j.pain.2010.12.035PubMedCrossRef
19.
go back to reference Sather W, Dieudonne S, MacDonald JF, Ascher P: Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 1992, 450: 643–672.PubMedCentralPubMedCrossRef Sather W, Dieudonne S, MacDonald JF, Ascher P: Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol 1992, 450: 643–672.PubMedCentralPubMedCrossRef
20.
go back to reference Singh A, Hildebrand ME, Garcia E, Snutch TP: The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 2010, 160: 1464–1475.PubMedCentralPubMedCrossRef Singh A, Hildebrand ME, Garcia E, Snutch TP: The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol 2010, 160: 1464–1475.PubMedCentralPubMedCrossRef
21.
go back to reference Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007, 579: 1–14. 10.1113/jphysiol.2006.121483PubMedCentralPubMedCrossRef Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007, 579: 1–14. 10.1113/jphysiol.2006.121483PubMedCentralPubMedCrossRef
22.
go back to reference Sheets PL, Heers C, Stoehr T, Cummins TR: Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther 2008, 326: 89–99. 10.1124/jpet.107.133413PubMedCrossRef Sheets PL, Heers C, Stoehr T, Cummins TR: Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther 2008, 326: 89–99. 10.1124/jpet.107.133413PubMedCrossRef
23.
go back to reference Lorenzo LE, Ramien M, St Louis M, De Koninck Y, Ribeiro-da-Silva A: Postnatal changes in the Rexed lamination and markers of nociceptive afferents in the superficial dorsal horn of the rat. J Comp Neurol 2008, 508: 592–604. 10.1002/cne.21691PubMedCrossRef Lorenzo LE, Ramien M, St Louis M, De Koninck Y, Ribeiro-da-Silva A: Postnatal changes in the Rexed lamination and markers of nociceptive afferents in the superficial dorsal horn of the rat. J Comp Neurol 2008, 508: 592–604. 10.1002/cne.21691PubMedCrossRef
24.
go back to reference Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG: Na V 1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 2001, 21: 5952–5961.PubMed Cummins TR, Aglieco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG: Na V 1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 2001, 21: 5952–5961.PubMed
25.
go back to reference Prescott SA, De Koninck Y: Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002, 539: 817–836. 10.1113/jphysiol.2001.013437PubMedCentralPubMedCrossRef Prescott SA, De Koninck Y: Four cell types with distinctive membrane properties and morphologies in lamina I of the spinal dorsal horn of the adult rat. J Physiol 2002, 539: 817–836. 10.1113/jphysiol.2001.013437PubMedCentralPubMedCrossRef
26.
go back to reference Dib-Hajj SD, Black JA, Waxman SG: Voltage-gated sodium channels: therapeutic targets for pain. Pain Med 2009, 10: 1260–1269. 10.1111/j.1526-4637.2009.00719.xPubMedCrossRef Dib-Hajj SD, Black JA, Waxman SG: Voltage-gated sodium channels: therapeutic targets for pain. Pain Med 2009, 10: 1260–1269. 10.1111/j.1526-4637.2009.00719.xPubMedCrossRef
27.
go back to reference Ong BH, Tomaselli GF, Balser JR: A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 2000, 116: 653–662. 10.1085/jgp.116.5.653PubMedCentralPubMedCrossRef Ong BH, Tomaselli GF, Balser JR: A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 2000, 116: 653–662. 10.1085/jgp.116.5.653PubMedCentralPubMedCrossRef
28.
go back to reference Vedantham V, Cannon SC: Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na + channels. J Gen Physiol 1998, 111: 83–93. 10.1085/jgp.111.1.83PubMedCentralPubMedCrossRef Vedantham V, Cannon SC: Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na + channels. J Gen Physiol 1998, 111: 83–93. 10.1085/jgp.111.1.83PubMedCentralPubMedCrossRef
29.
go back to reference Blair NT, Bean BP: Role of tetrodotoxin-resistant Na+ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. J Neurosci 2003, 23: 10338–10350.PubMed Blair NT, Bean BP: Role of tetrodotoxin-resistant Na+ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. J Neurosci 2003, 23: 10338–10350.PubMed
30.
go back to reference Kuo CC, Bean BP: Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 1994, 46: 716–725.PubMed Kuo CC, Bean BP: Slow binding of phenytoin to inactivated sodium channels in rat hippocampal neurons. Mol Pharmacol 1994, 46: 716–725.PubMed
31.
go back to reference Fazan R, Whiteis CA, Chapleau MW, Abboud FM, Bielefeldt K: Slow inactivation of sodium currents in the rat nodose neurons. Auton Neurosci 2001, 87: 209–216. 10.1016/S1566-0702(00)00281-2PubMedCrossRef Fazan R, Whiteis CA, Chapleau MW, Abboud FM, Bielefeldt K: Slow inactivation of sodium currents in the rat nodose neurons. Auton Neurosci 2001, 87: 209–216. 10.1016/S1566-0702(00)00281-2PubMedCrossRef
32.
go back to reference Fleidervish IA, Friedman A, Gutnick MJ: Slow inactivation of Na + current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 1996,493(Pt 1):83–97.PubMedCentralPubMedCrossRef Fleidervish IA, Friedman A, Gutnick MJ: Slow inactivation of Na + current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 1996,493(Pt 1):83–97.PubMedCentralPubMedCrossRef
33.
go back to reference Prescott SA, Sejnowski TJ, De Koninck Y: Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Mol Pain 2006, 2: 32. 10.1186/1744-8069-2-32PubMedCentralPubMedCrossRef Prescott SA, Sejnowski TJ, De Koninck Y: Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain. Mol Pain 2006, 2: 32. 10.1186/1744-8069-2-32PubMedCentralPubMedCrossRef
34.
go back to reference Gold MS, Reichling DB, Shuster MJ, Levine JD: Hyperalgesic agents increase a tetrodotoxin-resistant Na + current in nociceptors. Proc Natl Acad Sci USA 1996, 93: 1108–1112. 10.1073/pnas.93.3.1108PubMedCentralPubMedCrossRef Gold MS, Reichling DB, Shuster MJ, Levine JD: Hyperalgesic agents increase a tetrodotoxin-resistant Na + current in nociceptors. Proc Natl Acad Sci USA 1996, 93: 1108–1112. 10.1073/pnas.93.3.1108PubMedCentralPubMedCrossRef
35.
go back to reference Fukuoka T, Kobayashi K, Noguchi K: Laminae-specific distribution of alpha-subunits of voltage-gated sodium channels in the adult rat spinal cord. Neuroscience 2010, 169: 994–1006. 10.1016/j.neuroscience.2010.05.058PubMedCrossRef Fukuoka T, Kobayashi K, Noguchi K: Laminae-specific distribution of alpha-subunits of voltage-gated sodium channels in the adult rat spinal cord. Neuroscience 2010, 169: 994–1006. 10.1016/j.neuroscience.2010.05.058PubMedCrossRef
36.
go back to reference Smith RD, Goldin AL: Functional analysis of the rat I sodium channel in xenopus oocytes. J Neurosci 1998, 18: 811–820.PubMed Smith RD, Goldin AL: Functional analysis of the rat I sodium channel in xenopus oocytes. J Neurosci 1998, 18: 811–820.PubMed
37.
go back to reference Rush AM, Dib-Hajj SD, Waxman SG: Electrophysiological properties of two axonal sodium channels, Na V 1.2 and Na V 1.6, expressed in mouse spinal sensory neurones. J Physiol 2005, 564: 803–815. 10.1113/jphysiol.2005.083089PubMedCentralPubMedCrossRef Rush AM, Dib-Hajj SD, Waxman SG: Electrophysiological properties of two axonal sodium channels, Na V 1.2 and Na V 1.6, expressed in mouse spinal sensory neurones. J Physiol 2005, 564: 803–815. 10.1113/jphysiol.2005.083089PubMedCentralPubMedCrossRef
38.
go back to reference Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG: Distinct repriming and closed-state inactivation kinetics of Na V 1.6 and Na V 1.7 sodium channels in mouse spinal sensory neurons. J Physiol 2003, 551: 741–750. 10.1113/jphysiol.2003.047357PubMedCentralPubMedCrossRef Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG: Distinct repriming and closed-state inactivation kinetics of Na V 1.6 and Na V 1.7 sodium channels in mouse spinal sensory neurons. J Physiol 2003, 551: 741–750. 10.1113/jphysiol.2003.047357PubMedCentralPubMedCrossRef
39.
go back to reference Beckh S, Noda M, Lubbert H, Numa S: Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 1989, 8: 3611–3616.PubMedCentralPubMed Beckh S, Noda M, Lubbert H, Numa S: Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 1989, 8: 3611–3616.PubMedCentralPubMed
40.
go back to reference Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG: Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res 1997, 45: 71–82.PubMedCrossRef Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG: Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res 1997, 45: 71–82.PubMedCrossRef
41.
go back to reference Lindia JA, Abbadie C: Distribution of the voltage gated sodium channel Na V 1.3-like immunoreactivity in the adult rat central nervous system. Brain Res 2003, 960: 132–141. 10.1016/S0006-8993(02)03802-7PubMedCrossRef Lindia JA, Abbadie C: Distribution of the voltage gated sodium channel Na V 1.3-like immunoreactivity in the adult rat central nervous system. Brain Res 2003, 960: 132–141. 10.1016/S0006-8993(02)03802-7PubMedCrossRef
42.
go back to reference Walsh MA, Graham BA, Brichta AM, Callister RJ: Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons. J Neurophysiol 2009, 101: 1800–1812. 10.1152/jn.90755.2008PubMedCrossRef Walsh MA, Graham BA, Brichta AM, Callister RJ: Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons. J Neurophysiol 2009, 101: 1800–1812. 10.1152/jn.90755.2008PubMedCrossRef
43.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT Method. Methods 2001, 25: 402–408. 10.1006/meth.2001.1262PubMedCrossRef Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT Method. Methods 2001, 25: 402–408. 10.1006/meth.2001.1262PubMedCrossRef
Metadata
Title
Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons
Authors
Michael E Hildebrand
Janette Mezeyova
Paula L Smith
Michael W Salter
Elizabeth Tringham
Terrance P Snutch
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Pain / Issue 1/2011
Electronic ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-7-67

Other articles of this Issue 1/2011

Molecular Pain 1/2011 Go to the issue