Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2020

Open Access 01-11-2020 | Pharmacokinetics | Original Research Article

Population Modelling of Dexmedetomidine Pharmacokinetics and Haemodynamic Effects After Intravenous and Subcutaneous Administration

Authors: Muhammad W. Ashraf, Panu Uusalo, Mika Scheinin, Teijo I. Saari

Published in: Clinical Pharmacokinetics | Issue 11/2020

Login to get access

Abstract

Background and Objective

Dexmedetomidine is a potent agonist of α2-adrenoceptors causing dose-dependent sedation in humans. Intravenous dexmedetomidine is commonly used perioperatively, but an extravascular route of administration would be favoured in palliative care. Subcutaneous infusions provide desired therapeutic plasma concentrations with fewer unwanted effects as compared with intravenous dosing. We aimed to develop semi-mechanistic population models for predicting pharmacokinetic and pharmacodynamic profiles of dexmedetomidine after intravenous and subcutaneous dosing.

Methods

Non-linear mixed-effects modelling was performed using previously collected concentration and haemodynamic effects data from ten (eight in the intravenous phase) healthy human subjects, aged 19–27 years, receiving 1 µg/kg of intravenous or subcutaneous dexmedetomidine during a 10-min infusion.

Results

The absorption of dexmedetomidine from the subcutaneous injection site, and distribution to local subcutaneous fat tissue was modelled using a semi-physiological approach consisting of a depot and fat compartment, while a two-compartment mammillary model explained further disposition. Dexmedetomidine-induced reductions in plasma norepinephrine concentrations were accurately described by an indirect response model. For blood pressure models, the net effect was specified as hyper- and hypotensive effects of dexmedetomidine due to vasoconstriction on peripheral arteries and sympatholysis mediated via the central nervous system, respectively. A heart rate model combined the dexmedetomidine-induced sympatholytic effect, and input from the central nervous system, predicted from arterial blood pressure levels. Internal evaluation confirmed the predictive performance of the final models, as well as the accuracy of the parameter estimates with narrow confidence intervals.

Conclusions

Our final model precisely describes dexmedetomidine pharmacokinetics and accurately predicts dexmedetomidine-induced sympatholysis and other pharmacodynamic effects. After subcutaneous dosing, dexmedetomidine is taken up into subcutaneous fat tissue, but our simulations indicate that accumulation of dexmedetomidine in this compartment is insignificant.

ClinicalTrials.org

NCT02724098 and EudraCT 2015-004698-34
Appendix
Available only for authorised users
Literature
1.
go back to reference Bodnar J. A review of agents for palliative sedation/continuous deep sedation: pharmacology and practical applications. J Pain Palliat Care Pharmacother. 2017;31:16–37.CrossRef Bodnar J. A review of agents for palliative sedation/continuous deep sedation: pharmacology and practical applications. J Pain Palliat Care Pharmacother. 2017;31:16–37.CrossRef
2.
go back to reference Garetto F, Cancelli F, Rossi R, Maltoni M. Palliative sedation for the terminally ill patient. CNS Drugs. 2018;32:951–61.CrossRef Garetto F, Cancelli F, Rossi R, Maltoni M. Palliative sedation for the terminally ill patient. CNS Drugs. 2018;32:951–61.CrossRef
3.
go back to reference Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;26:335–46. Weerink MAS, Struys MMRF, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;26:335–46.
4.
go back to reference Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–36.CrossRef Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–36.CrossRef
5.
go back to reference Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115:171–82.CrossRef Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115:171–82.CrossRef
6.
go back to reference Uusalo P, Al-Ramahi D, Tilli I, Aantaa RA, Scheinin M, Saari TI. Subcutaneously administered dexmedetomidine is efficiently absorbed and is associated with attenuated cardiovascular effects in healthy volunteers. Eur J Clin Pharmacol. 2018;74:1047–54.CrossRef Uusalo P, Al-Ramahi D, Tilli I, Aantaa RA, Scheinin M, Saari TI. Subcutaneously administered dexmedetomidine is efficiently absorbed and is associated with attenuated cardiovascular effects in healthy volunteers. Eur J Clin Pharmacol. 2018;74:1047–54.CrossRef
7.
go back to reference Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.CrossRef Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.CrossRef
8.
go back to reference Lodenius Å, Ebberyd A, Hårdemark Cedborg A, Hagel E, Mkrtchian S, Christensson E, et al. Sedation with dexmedetomidine or propofol impairs hypoxic control of breathing in healthy male volunteers: a nonblinded, randomized crossover study. Anesthesiology. 2016;125:700–15.CrossRef Lodenius Å, Ebberyd A, Hårdemark Cedborg A, Hagel E, Mkrtchian S, Christensson E, et al. Sedation with dexmedetomidine or propofol impairs hypoxic control of breathing in healthy male volunteers: a nonblinded, randomized crossover study. Anesthesiology. 2016;125:700–15.CrossRef
9.
go back to reference Yoo H, Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, et al. Mechanism-based population pharmacokinetic and pharmacodynamic modeling of intravenous and intranasal dexmedetomidine in healthy subjects. Eur J Clin Pharmacol. 2015;71:1197–207.CrossRef Yoo H, Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, et al. Mechanism-based population pharmacokinetic and pharmacodynamic modeling of intravenous and intranasal dexmedetomidine in healthy subjects. Eur J Clin Pharmacol. 2015;71:1197–207.CrossRef
10.
go back to reference Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Dexmedetomidine pharmacokinetic-pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation. Br J Anaesth. 2017;119:200–10.CrossRef Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Dexmedetomidine pharmacokinetic-pharmacodynamic modelling in healthy volunteers: 1. Influence of arousal on bispectral index and sedation. Br J Anaesth. 2017;119:200–10.CrossRef
11.
go back to reference Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119:211–20.CrossRef Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KMEM, Absalom AR, Vereecke HEM, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119:211–20.CrossRef
12.
go back to reference Li A, Yuen VM, Goulay-Dufaÿ S, Sheng Y, Standing JF, Kwok PCL, et al. Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. Br J Anaesth. 2018;120:960–8.CrossRef Li A, Yuen VM, Goulay-Dufaÿ S, Sheng Y, Standing JF, Kwok PCL, et al. Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. Br J Anaesth. 2018;120:960–8.CrossRef
13.
go back to reference Talke P, Anderson BJ. Pharmacokinetics and pharmacodynamics of dexmedetomidine-induced vasoconstriction in healthy volunteers. Br J Clin Pharmacol. 2018;84:1364–72.CrossRef Talke P, Anderson BJ. Pharmacokinetics and pharmacodynamics of dexmedetomidine-induced vasoconstriction in healthy volunteers. Br J Clin Pharmacol. 2018;84:1364–72.CrossRef
14.
go back to reference Pérez-Guillé M-G, Toledo-López A, Rivera-Espinosa L, Alemon-Medina R, Murata C, Lares-Asseff I, et al. Population pharmacokinetics and pharmacodynamics of dexmedetomidine in children undergoing ambulatory surgery. Anesth Analg. 2018;127(3):716–23.CrossRef Pérez-Guillé M-G, Toledo-López A, Rivera-Espinosa L, Alemon-Medina R, Murata C, Lares-Asseff I, et al. Population pharmacokinetics and pharmacodynamics of dexmedetomidine in children undergoing ambulatory surgery. Anesth Analg. 2018;127(3):716–23.CrossRef
15.
go back to reference Greenberg RG, Wu H, Laughon M, Capparelli E, Rowe S, Zimmerman KO, et al. Population pharmacokinetics of dexmedetomidine in infants. J Clin Pharmacol. 2017;57:1174–82.CrossRef Greenberg RG, Wu H, Laughon M, Capparelli E, Rowe S, Zimmerman KO, et al. Population pharmacokinetics of dexmedetomidine in infants. J Clin Pharmacol. 2017;57:1174–82.CrossRef
16.
go back to reference Liu H-C, Lian Q-Q, Wu F-F, Wang C-Y, Sun W, Zheng L-D, et al. Population pharmacokinetics of dexmedetomidine after short intravenous infusion in Chinese children. Eur J Drug Metab Pharmacokinet. 2017;42:201–11.CrossRef Liu H-C, Lian Q-Q, Wu F-F, Wang C-Y, Sun W, Zheng L-D, et al. Population pharmacokinetics of dexmedetomidine after short intravenous infusion in Chinese children. Eur J Drug Metab Pharmacokinet. 2017;42:201–11.CrossRef
17.
go back to reference Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108:460–8.CrossRef Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108:460–8.CrossRef
18.
go back to reference Välitalo PA, Ahtola-Sätilä T, Wighton A, Sarapohja T, Pohjanjousi P, Garratt C. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin Drug Investig. 2013;33:579–87.CrossRef Välitalo PA, Ahtola-Sätilä T, Wighton A, Sarapohja T, Pohjanjousi P, Garratt C. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin Drug Investig. 2013;33:579–87.CrossRef
19.
go back to reference Ji QC, Zhou JY, Gonzales RJ, Gage EM, El-Shourbagy TA. Simultaneous quantitation of dexmedetomidine and glucuronide metabolites (G-Dex-1 and G-Dex-2) in human plasma utilizing liquid chromatography with tandem mass spectrometric detection. Rapid Commun Mass Spectrom. 2004;18:1753–60.CrossRef Ji QC, Zhou JY, Gonzales RJ, Gage EM, El-Shourbagy TA. Simultaneous quantitation of dexmedetomidine and glucuronide metabolites (G-Dex-1 and G-Dex-2) in human plasma utilizing liquid chromatography with tandem mass spectrometric detection. Rapid Commun Mass Spectrom. 2004;18:1753–60.CrossRef
20.
go back to reference Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ. NONMEM 7.4.3 users guides (1989-2018). Hanover, MD: ICON Development Solutions; 2018. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ. NONMEM 7.4.3 users guides (1989-2018). Hanover, MD: ICON Development Solutions; 2018.
21.
go back to reference Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN): a Perl module for NONMEM related programming. Comput Methods Progr Biomed. 2004;75:85–94.CrossRef Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN): a Perl module for NONMEM related programming. Comput Methods Progr Biomed. 2004;75:85–94.CrossRef
23.
go back to reference Frechen S, Junge L, Saari TI, Suleiman AA, Rokitta D, Neuvonen PJ, et al. A semiphysiological population pharmacokinetic model for dynamic inhibition of liver and gut wall cytochrome P450 3A by voriconazole. Clin Pharmacokinet. 2013;52:763–81.CrossRef Frechen S, Junge L, Saari TI, Suleiman AA, Rokitta D, Neuvonen PJ, et al. A semiphysiological population pharmacokinetic model for dynamic inhibition of liver and gut wall cytochrome P450 3A by voriconazole. Clin Pharmacokinet. 2013;52:763–81.CrossRef
24.
go back to reference Ashraf MW, Peltoniemi MA, Olkkola KT, Neuvonen PJ, Saari TI. Semimechanistic population pharmacokinetic model to predict the drug-drug interaction between S-ketamine and ticlopidine in healthy human volunteers. CPT Pharmacomet Syst Pharmacol. 2018;7:687–97.CrossRef Ashraf MW, Peltoniemi MA, Olkkola KT, Neuvonen PJ, Saari TI. Semimechanistic population pharmacokinetic model to predict the drug-drug interaction between S-ketamine and ticlopidine in healthy human volunteers. CPT Pharmacomet Syst Pharmacol. 2018;7:687–97.CrossRef
25.
go back to reference Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.CrossRef Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacomet Syst Pharmacol. 2017;6:87–109.CrossRef
26.
go back to reference Dosne A-G, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43:583–96.CrossRef Dosne A-G, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43:583–96.CrossRef
27.
go back to reference Acharya C, Hooker AC, Türkyılmaz GY, Jönsson S, Karlsson MO. A diagnostic tool for population models using non-compartmental analysis: the ncappc package for R. Comput Methods Progr Biomed. 2016;127:83–93.CrossRef Acharya C, Hooker AC, Türkyılmaz GY, Jönsson S, Karlsson MO. A diagnostic tool for population models using non-compartmental analysis: the ncappc package for R. Comput Methods Progr Biomed. 2016;127:83–93.CrossRef
28.
go back to reference Linares OA, Jacquez JA, Zech LA, Smith MJ, Sanfield JA, Morrow LA, et al. Norepinephrine metabolism in humans: kinetic analysis and model. J Clin Investig. 1987;80:1332–411.CrossRef Linares OA, Jacquez JA, Zech LA, Smith MJ, Sanfield JA, Morrow LA, et al. Norepinephrine metabolism in humans: kinetic analysis and model. J Clin Investig. 1987;80:1332–411.CrossRef
30.
go back to reference Flexman AM, Wong H, Riggs KW, Shih T, Garcia PA, Vacas S, et al. Enzyme-inducing anticonvulsants increase plasma clearance of dexmedetomidine: a pharmacokinetic and pharmacodynamic study. Anesthesiology. 2014;120:1118–25.CrossRef Flexman AM, Wong H, Riggs KW, Shih T, Garcia PA, Vacas S, et al. Enzyme-inducing anticonvulsants increase plasma clearance of dexmedetomidine: a pharmacokinetic and pharmacodynamic study. Anesthesiology. 2014;120:1118–25.CrossRef
31.
go back to reference Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, Scheinin M, et al. Bioavailability of dexmedetomidine after intranasal administration. Eur J Clin Pharmacol. 2011;67:825–31.CrossRef Iirola T, Vilo S, Manner T, Aantaa R, Lahtinen M, Scheinin M, et al. Bioavailability of dexmedetomidine after intranasal administration. Eur J Clin Pharmacol. 2011;67:825–31.CrossRef
32.
go back to reference Uusalo P, Guillaume S, Siren S, Manner T, Vilo S, Scheinin M, et al. Pharmacokinetics and sedative effects of intranasal dexmedetomidine in ambulatory pediatric patients. Anesth Analg. 2020;130:949–57.CrossRef Uusalo P, Guillaume S, Siren S, Manner T, Vilo S, Scheinin M, et al. Pharmacokinetics and sedative effects of intranasal dexmedetomidine in ambulatory pediatric patients. Anesth Analg. 2020;130:949–57.CrossRef
33.
go back to reference Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21:457–78.CrossRef Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21:457–78.CrossRef
34.
go back to reference Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–42.CrossRef Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology. 1992;77:1134–42.CrossRef
35.
go back to reference Dyck JB, Maze M, Haack C, Vuorilehto L, Shafer SL. The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78:813–20.CrossRef Dyck JB, Maze M, Haack C, Vuorilehto L, Shafer SL. The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology. 1993;78:813–20.CrossRef
36.
go back to reference Kallio A, Scheinin M, Koulu M, Ponkilainen R, Ruskoaho H, Viinamäki O, et al. Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther. 1989;46:33–42.CrossRef Kallio A, Scheinin M, Koulu M, Ponkilainen R, Ruskoaho H, Viinamäki O, et al. Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther. 1989;46:33–42.CrossRef
37.
go back to reference Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273:803–5.CrossRef Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273:803–5.CrossRef
38.
go back to reference Talke P, Stapelfeldt C, Lobo E, Brown R, Scheinin M, Snapir A. Effect of alpha2B-adrenoceptor polymorphism on peripheral vasoconstriction in healthy volunteers. Anesthesiology. 2005;102:536–42.CrossRef Talke P, Stapelfeldt C, Lobo E, Brown R, Scheinin M, Snapir A. Effect of alpha2B-adrenoceptor polymorphism on peripheral vasoconstriction in healthy volunteers. Anesthesiology. 2005;102:536–42.CrossRef
39.
go back to reference Talke P, Lobo E, Brown R. Systemically administeredalpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology. 2003;99:65–70.CrossRef Talke P, Lobo E, Brown R. Systemically administeredalpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology. 2003;99:65–70.CrossRef
Metadata
Title
Population Modelling of Dexmedetomidine Pharmacokinetics and Haemodynamic Effects After Intravenous and Subcutaneous Administration
Authors
Muhammad W. Ashraf
Panu Uusalo
Mika Scheinin
Teijo I. Saari
Publication date
01-11-2020
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2020
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-020-00900-3

Other articles of this Issue 11/2020

Clinical Pharmacokinetics 11/2020 Go to the issue