Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats

Authors: Yi Shen, Qi Zhang, Yan-bin Wu, Yu-qiong He, Ting Han, Jian-hua Zhang, Liang Zhao, Hsien-yeh Hsu, Hong-tao Song, Bing Lin, Hai-liang Xin, Yun-peng Qi, Qiao-yan Zhang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Iridoid glycosides (IGs), including monotropein (MON) and deacetyl asperulosidic acid (DA) as the main ingredients, are the major chemical components in Morinda officinalis How. (MO) root, possessing various pharmacological properties including anti-osteoporosis, anti-inflammation and anti-rheumatism activities.The aim of the present study was to further elucidate the pharmacological actions of MO by investigating the pharmacokinetics and tissue distribution of IGs in MO.

Methods

An ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS) method was developed and validated for simultaneous determination of MON and DA levels in plasma and various tissues of Wistar rats. MON, DA and acetaminophen (ACE) as the internal standard (IS) were extracted from rat plasma and tissue samples by direct deproteinization with methanol. The rats were administered orally at 1650 mg/kg MO and 25, 50 and 100 mg/kg MO iridoid glycosides (MOIGs) or intravenously at MOIG 25 mg/kg for pharmacokinetic study of MON and DA. In addition, 100 mg/kg MOIG was administered orally for tissue distribution study of MON and DA. Non-compartmental pharmacokinetic profiles were constructed. Tissue distributions were calculated according to the validated methods.

Results

Significant differences in the pharmacokinetic parameters were observed in male and female rats. The AUC0-t, Cmax and bioavailability of MON and DA in female rats were higher than those in male rats. MON and DA mainly distributed in the intestine and stomach after oral administration, and noteworthily high concentrations of MON and DA were detected in the rat hypothalamus.

Conclusion

The results of the present study may shed new lights on the biological behavior of MOIGs in vivo, help explain their pharmacological actions, and provide experimental clues for rational clinical use of these IGs extracted from the MO root.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Hsien Y, Ling B, Song HT, Juan L, Yang HY, Qin LP, Zhang QY, Du J. Morinda officinalis how. -Acomprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2018;213:230–55.CrossRef Zhang JH, Xin HL, Xu YM, Shen Y, He YQ, Hsien Y, Ling B, Song HT, Juan L, Yang HY, Qin LP, Zhang QY, Du J. Morinda officinalis how. -Acomprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2018;213:230–55.CrossRef
2.
go back to reference Wang YF, Li YH, Xing SQ, Li Y, Yi LZT, Shang XD, Zhao DF, Bai LQ. Review of experiment research progress in treating deficiency of kidney-yang syndrome by Morinda officinalis how. And its effective components. China J Tradit Chin Med Pharm. 2016;31:5165–7. Wang YF, Li YH, Xing SQ, Li Y, Yi LZT, Shang XD, Zhao DF, Bai LQ. Review of experiment research progress in treating deficiency of kidney-yang syndrome by Morinda officinalis how. And its effective components. China J Tradit Chin Med Pharm. 2016;31:5165–7.
3.
go back to reference Ye WH, Gong MJ, Zou ZJ. Metabonomic study of anti-inflammatory effect of Morinda officinalis How on acute inflammation induced by carrageenan. Pharm Clin Chin Mater Med. 2013;3:22–5. Ye WH, Gong MJ, Zou ZJ. Metabonomic study of anti-inflammatory effect of Morinda officinalis How on acute inflammation induced by carrageenan. Pharm Clin Chin Mater Med. 2013;3:22–5.
4.
go back to reference Chen DL, Yang X, Yang J, Lai GX, Yong TQ, Tang XC, Shuai O, Zhou GL, Xie YZ, Wu QP. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci. 2017;9:403–30.CrossRef Chen DL, Yang X, Yang J, Lai GX, Yong TQ, Tang XC, Shuai O, Zhou GL, Xie YZ, Wu QP. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci. 2017;9:403–30.CrossRef
5.
go back to reference Cheng D, Murtaza G, Ma SY, Li LL, Li XJ, Tian FZ, Zheng JC. LuY. In silico prediction of the anti-depression mechanism of a herbal formula (Tiansi liquid) containing Morinda officinalis and Cuscuta chinensis. Molecules. 2017;22:1614–29.CrossRef Cheng D, Murtaza G, Ma SY, Li LL, Li XJ, Tian FZ, Zheng JC. LuY. In silico prediction of the anti-depression mechanism of a herbal formula (Tiansi liquid) containing Morinda officinalis and Cuscuta chinensis. Molecules. 2017;22:1614–29.CrossRef
6.
go back to reference Lee YK, Bang HJ, Oh JB, Whang WK. Bioassay-guided isolated compounds from Morinda officinalis inhibit Alzheimer’s disease pathologies. Molecules. 2017;22:1638–49.CrossRef Lee YK, Bang HJ, Oh JB, Whang WK. Bioassay-guided isolated compounds from Morinda officinalis inhibit Alzheimer’s disease pathologies. Molecules. 2017;22:1638–49.CrossRef
7.
go back to reference Chen YB, Xue Z. Study on chemical constituents of Morinda officinalis how. Bull Chin Mat Med. 1987;12:27–9.CrossRef Chen YB, Xue Z. Study on chemical constituents of Morinda officinalis how. Bull Chin Mat Med. 1987;12:27–9.CrossRef
8.
go back to reference Choi J, Lee KT, Choi MY, Nam JH, Jung HJ, Park SK, Park HJ. Antinociceptive anti-inflammatory effect of monotropein isolated from the root of Morinda officinalis. Biol Pharm Bull. 2005;28:1915–8.CrossRef Choi J, Lee KT, Choi MY, Nam JH, Jung HJ, Park SK, Park HJ. Antinociceptive anti-inflammatory effect of monotropein isolated from the root of Morinda officinalis. Biol Pharm Bull. 2005;28:1915–8.CrossRef
9.
go back to reference Wang YL, Cui HM, Huang SJ, Li Q, Lei HM. Determination ofmajor iridoid glycosides in Morinda officinalis from different origins and batches by HPLC. J Chin Med Mat. 2011;34:1187–90. Wang YL, Cui HM, Huang SJ, Li Q, Lei HM. Determination ofmajor iridoid glycosides in Morinda officinalis from different origins and batches by HPLC. J Chin Med Mat. 2011;34:1187–90.
10.
go back to reference Zhang ZG, Zhang QY, Yang H, Liu W, Zhang ND, Qin LP, Xin HL. Monotropeinisolated from the roots of Morinda officinalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice. Fitoterapia. 2016;110:166–72.CrossRef Zhang ZG, Zhang QY, Yang H, Liu W, Zhang ND, Qin LP, Xin HL. Monotropeinisolated from the roots of Morinda officinalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice. Fitoterapia. 2016;110:166–72.CrossRef
11.
go back to reference Wang F, Wu LH, Li LF, Chen SY. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes. Int Immunopharmacol. 2014;23:575–80.CrossRef Wang F, Wu LH, Li LF, Chen SY. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes. Int Immunopharmacol. 2014;23:575–80.CrossRef
12.
go back to reference Shin JS, Yun KJ, Chung KS, Seo KH, Park HJ, Cho YW, Baek NI, Jang D, Lee KT. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem Toxicol. 2013;53:263–71.CrossRef Shin JS, Yun KJ, Chung KS, Seo KH, Park HJ, Cho YW, Baek NI, Jang D, Lee KT. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem Toxicol. 2013;53:263–71.CrossRef
13.
go back to reference Zhang JH, Xu YM, He YQ, Song HT, Du J, Zhang QY. Study on determination and extraction of iridoid glycosides from Morinda officinalis. J Pharm Pract. 2017;35:328–33. Zhang JH, Xu YM, He YQ, Song HT, Du J, Zhang QY. Study on determination and extraction of iridoid glycosides from Morinda officinalis. J Pharm Pract. 2017;35:328–33.
14.
go back to reference Li C, Dong J, Tian JC, Deng ZP, Song XJ. LC/MS/MS determination and pharmacokinetic study of iridoid glycosides monotropein and deacetyl asperulosidic acid isomers in rat plasma after oral administration of Morinda officinalis extract. Biomed Chromatogr. 2016;30:163–68.CrossRef Li C, Dong J, Tian JC, Deng ZP, Song XJ. LC/MS/MS determination and pharmacokinetic study of iridoid glycosides monotropein and deacetyl asperulosidic acid isomers in rat plasma after oral administration of Morinda officinalis extract. Biomed Chromatogr. 2016;30:163–68.CrossRef
15.
go back to reference Ganzera M, Sturm S. Recent advances on HPLC/MS in medicinal plant analysis-an update covering 2011-2016. J Pharm Biomed Anal. 2018;147:211–33.CrossRef Ganzera M, Sturm S. Recent advances on HPLC/MS in medicinal plant analysis-an update covering 2011-2016. J Pharm Biomed Anal. 2018;147:211–33.CrossRef
18.
go back to reference Franconi F, Campesi I. Sex impact on biomarkers, pharmacokinetics and pharmacodynamics. Curr Med Chem. 2017;24:2561–75.CrossRef Franconi F, Campesi I. Sex impact on biomarkers, pharmacokinetics and pharmacodynamics. Curr Med Chem. 2017;24:2561–75.CrossRef
19.
go back to reference Wang YL, Huang SJ, Chi DJ, Li Q, Lei HM, Cui HM. Study on stability of main iridoid glucosides from Morinda officinalis radix. China J Exper Tradit Med Form. 2011;17:65–8. Wang YL, Huang SJ, Chi DJ, Li Q, Lei HM, Cui HM. Study on stability of main iridoid glucosides from Morinda officinalis radix. China J Exper Tradit Med Form. 2011;17:65–8.
20.
go back to reference Parquet M, Metman EH, Raizman A, Rambaud JC, Berthaux N, Infante R. Bioavailability, gastrointestinal transit, solubilization and faecal excretion of ursodeoxycholic acid in man. Eur J Clin Investig. 1985;15:171–8.CrossRef Parquet M, Metman EH, Raizman A, Rambaud JC, Berthaux N, Infante R. Bioavailability, gastrointestinal transit, solubilization and faecal excretion of ursodeoxycholic acid in man. Eur J Clin Investig. 1985;15:171–8.CrossRef
21.
go back to reference Zhou H. Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J Clin Pharmacol. 2003;43:211–27.CrossRef Zhou H. Pharmacokinetic strategies in deciphering atypical drug absorption profiles. J Clin Pharmacol. 2003;43:211–27.CrossRef
22.
go back to reference Ogungbenro K, Pertinez H, Aarons L. Empirical and semi-mechanistic modelling of double-peaked pharmacokinetic profile phenomenon due to gastric emptying. AAPS J. 2015;17:227–36.CrossRef Ogungbenro K, Pertinez H, Aarons L. Empirical and semi-mechanistic modelling of double-peaked pharmacokinetic profile phenomenon due to gastric emptying. AAPS J. 2015;17:227–36.CrossRef
23.
go back to reference Chen TJ, Wang W. Morinda officinalis extract repairs cytoxan-impaired spermatogenesis of male rats. Zhonghua Nan Ke Xue. 2015;21:436–42.PubMed Chen TJ, Wang W. Morinda officinalis extract repairs cytoxan-impaired spermatogenesis of male rats. Zhonghua Nan Ke Xue. 2015;21:436–42.PubMed
24.
go back to reference Song B, Wang FJ, Wang W. Effect of aqueous extract from Morinda officinalis F. C. How on microwave-induced hypothalamic-pituitary-testis axis impairment in male Sprague-dawley rats. Evid Based Complement Alternat Med. 2015;2015:1–9. Song B, Wang FJ, Wang W. Effect of aqueous extract from Morinda officinalis F. C. How on microwave-induced hypothalamic-pituitary-testis axis impairment in male Sprague-dawley rats. Evid Based Complement Alternat Med. 2015;2015:1–9.
25.
go back to reference Zhang ZQ, Yuan L, Zhao N, Xu YK, Yang M, Luo ZP. Antidepressant effect of the ethanolic extracts of the roots of Morinda officinalis in rats and mice. Chin Pharm J. 2000;35:739–41. Zhang ZQ, Yuan L, Zhao N, Xu YK, Yang M, Luo ZP. Antidepressant effect of the ethanolic extracts of the roots of Morinda officinalis in rats and mice. Chin Pharm J. 2000;35:739–41.
26.
go back to reference Sun YL. Study on the genotoxicity of Panax, Atractylodes, and Morinda. Master Thesis of Sichuan University 2003. Sichuan Province, China. Sun YL. Study on the genotoxicity of Panax, Atractylodes, and Morinda. Master Thesis of Sichuan University 2003. Sichuan Province, China.
Metadata
Title
Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats
Authors
Yi Shen
Qi Zhang
Yan-bin Wu
Yu-qiong He
Ting Han
Jian-hua Zhang
Liang Zhao
Hsien-yeh Hsu
Hong-tao Song
Bing Lin
Hai-liang Xin
Yun-peng Qi
Qiao-yan Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2351-1

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue