Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models

Authors: Outi Keinänen, Kimberly Fung, Jacob Pourat, Vilma Jallinoja, Delphine Vivier, NagaVara Kishore Pillarsetty, Anu J. Airaksinen, Jason S. Lewis, Brian M. Zeglis, Mirkka Sarparanta

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Pretargeting-based approaches are being investigated for radioimmunoimaging and therapy applications to reduce the effective radiation burden to the patient. To date, only a few studies have used short-lived radioisotopes for pretargeting of antibodies, and such examples with internalizing antibodies are even rarer. Herein, we have investigated pretargeting methodology using inverse electron-demand Diels-Alder (IEDDA) for tracing two clinically relevant, internalizing monoclonal antibodies, cetuximab and trastuzumab.

Results

Bioorthogonal reaction between tetrazine and trans-cyclooctene (TCO) was used for tracing cetuximab and trastuzumab in vivo with a fluorine-18 (t ½ = 109.8 min) labelled tracer. TCO-cetuximab or TCO-trastuzumab was administered 24, 48, or 72 h prior to the injection of tracer to A431 or BT-474 tumour-bearing mice, respectively. With cetuximab, the highest tumour-to-blood ratios were achieved when the lag time between antibody and tracer injections was 72 h. With trastuzumab, no difference was observed between different lag times. For both antibodies, the tumour could be clearly visualized in the PET images with the highest tumour uptake of 3.7 ± 0.1%ID/g for cetuximab and 1.5 ± 0.1%ID/g for trastuzumab as quantified by ex vivo biodistribution. In vivo IEDDA reaction was observed in the blood for both antibodies, but with trastuzumab, this was to a much lower degree than with cetuximab.

Conclusions

We could successfully visualize the tumours by using cetuximab and trastuzumab in pretargeted PET imaging despite the challenging circumstances where the antibody is internalized and there is still some unbound antibody circulating in the blood flow. This clearly demonstrates the potential of a pretargeted approach for targeting internalizing antigens and warrants development of pharmacokinetic optimization of the biorthogonal reactants to this end.
Appendix
Available only for authorised users
Literature
1.
go back to reference Corcoran EB, Hanson RN. Imaging EGFR and HER2 by PET and SPECT: a review. Med Res Rev. 2014;34:596–643.CrossRefPubMed Corcoran EB, Hanson RN. Imaging EGFR and HER2 by PET and SPECT: a review. Med Res Rev. 2014;34:596–643.CrossRefPubMed
2.
go back to reference Houghton JL, Zeglis BM, Abdel-Atti D, Sawada R, Scholz WW, Lewis JS. Pretargeted immunoPET of pancreatic cancer: overcoming circulating antigen and antibody internalization to reduce radiation doses. J Nucl Med. 2016;57:453–9.CrossRefPubMed Houghton JL, Zeglis BM, Abdel-Atti D, Sawada R, Scholz WW, Lewis JS. Pretargeted immunoPET of pancreatic cancer: overcoming circulating antigen and antibody internalization to reduce radiation doses. J Nucl Med. 2016;57:453–9.CrossRefPubMed
3.
go back to reference Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am J Nucl Med Mol Imaging. 2014;4:96–113.PubMedPubMedCentral Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am J Nucl Med Mol Imaging. 2014;4:96–113.PubMedPubMedCentral
4.
go back to reference Meyer JP, Houghton JL, Kozlowski P, Abdel-Atti D, Reiner T, Pillarsetty NV, et al. 18F-based pretargeted PET imaging based on bioorthogonal Diels-Alder click chemistry. Bioconjug Chem. 2016;27:298–301.CrossRefPubMed Meyer JP, Houghton JL, Kozlowski P, Abdel-Atti D, Reiner T, Pillarsetty NV, et al. 18F-based pretargeted PET imaging based on bioorthogonal Diels-Alder click chemistry. Bioconjug Chem. 2016;27:298–301.CrossRefPubMed
5.
go back to reference Hnatowich DJ, Virzi F, Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med. 1987;28:1294–302.PubMed Hnatowich DJ, Virzi F, Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med. 1987;28:1294–302.PubMed
6.
go back to reference Reardan DT, Meares CF, Goodwin DA, McTigue M, David GS, Stone MR, et al. Antibodies against metal chelates. Nature. 1985;316:265–8.CrossRefPubMed Reardan DT, Meares CF, Goodwin DA, McTigue M, David GS, Stone MR, et al. Antibodies against metal chelates. Nature. 1985;316:265–8.CrossRefPubMed
7.
go back to reference Orcutt KD, Slusarczyk AL, Cieslewicz M, Ruiz-Yi B, Bhushan KR, Frangioni JV, et al. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol. 2011;38:223–33.CrossRefPubMed Orcutt KD, Slusarczyk AL, Cieslewicz M, Ruiz-Yi B, Bhushan KR, Frangioni JV, et al. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol. 2011;38:223–33.CrossRefPubMed
8.
go back to reference Kuijpers WH, Bos ES, Kaspersen FM, Veeneman GH, van Boeckel CA. Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem. 1993;4:94–102.CrossRefPubMed Kuijpers WH, Bos ES, Kaspersen FM, Veeneman GH, van Boeckel CA. Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem. 1993;4:94–102.CrossRefPubMed
9.
go back to reference Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, et al. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med. 2013;54:1389–96.CrossRefPubMedPubMedCentral Zeglis BM, Sevak KK, Reiner T, Mohindra P, Carlin SD, Zanzonico P, et al. A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. J Nucl Med. 2013;54:1389–96.CrossRefPubMedPubMedCentral
10.
go back to reference Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, et al. Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm. 2015;12:3575–87.CrossRefPubMedPubMedCentral Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, et al. Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm. 2015;12:3575–87.CrossRefPubMedPubMedCentral
11.
go back to reference Evans HL, Nguyen Q-D, Carroll LS, Kaliszczak M, Twyman FJ, Spivey AC, et al. A bioorthogonal 68Ga-labelling strategy for rapid in vivo imaging. Chem Commun. 2014;50:9557–60.CrossRef Evans HL, Nguyen Q-D, Carroll LS, Kaliszczak M, Twyman FJ, Spivey AC, et al. A bioorthogonal 68Ga-labelling strategy for rapid in vivo imaging. Chem Commun. 2014;50:9557–60.CrossRef
12.
go back to reference García MF, Zhang X, Shah M, Newton-Northup J, Cabral P, Cerecetto H, et al. 99mTc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging. Bioorgan Med Chem. 2016;24:1209–15.CrossRef García MF, Zhang X, Shah M, Newton-Northup J, Cabral P, Cerecetto H, et al. 99mTc-bioorthogonal click chemistry reagent for in vivo pretargeted imaging. Bioorgan Med Chem. 2016;24:1209–15.CrossRef
13.
go back to reference Cook BE, Adumeau P, Membreno R, Carnazza KE, Brand C, Reiner T, et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjug Chem. 2016;27:1789–95.CrossRefPubMedPubMedCentral Cook BE, Adumeau P, Membreno R, Carnazza KE, Brand C, Reiner T, et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjug Chem. 2016;27:1789–95.CrossRefPubMedPubMedCentral
15.
go back to reference Rossin R, Verkerk PR, van den Bosch SM, Vulders RC, Verel I, Lub J, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed. 2010;49:3375–8.CrossRef Rossin R, Verkerk PR, van den Bosch SM, Vulders RC, Verel I, Lub J, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed. 2010;49:3375–8.CrossRef
16.
go back to reference Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed. 2009;48:6974–98.CrossRef Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed. 2009;48:6974–98.CrossRef
17.
go back to reference Sletten EM, Bertozzi CR. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts Chem Res. 2011;44:666–76.CrossRef Sletten EM, Bertozzi CR. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts Chem Res. 2011;44:666–76.CrossRef
18.
go back to reference Knight JC, Mosley M, Uyeda HT, Cong M, Fan F, Faulkner S, et al. In vivo pretargeted imaging of HER2 and TAG-72 expression using the HaloTag enzyme. Mol Pharm. 2017;14:2307–13.CrossRefPubMedPubMedCentral Knight JC, Mosley M, Uyeda HT, Cong M, Fan F, Faulkner S, et al. In vivo pretargeted imaging of HER2 and TAG-72 expression using the HaloTag enzyme. Mol Pharm. 2017;14:2307–13.CrossRefPubMedPubMedCentral
19.
go back to reference Hou S, Choi JS, Garcia MA, Xing Y, Chen KJ, Chen YM, et al. Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano. 2016;10:1417–24.CrossRefPubMedPubMedCentral Hou S, Choi JS, Garcia MA, Xing Y, Chen KJ, Chen YM, et al. Pretargeted positron emission tomography imaging that employs supramolecular nanoparticles with in vivo bioorthogonal chemistry. ACS Nano. 2016;10:1417–24.CrossRefPubMedPubMedCentral
20.
go back to reference Yazdani A, Bilton H, Vito A, Genady AR, Rathmann SM, Ahmad Z, et al. A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: a proof of concept study using 99mTc- and 177Lu-labeled tetrazines. J Med Chem. 2016;59:9381–9.CrossRefPubMed Yazdani A, Bilton H, Vito A, Genady AR, Rathmann SM, Ahmad Z, et al. A bone-seeking trans-cyclooctene for pretargeting and bioorthogonal chemistry: a proof of concept study using 99mTc- and 177Lu-labeled tetrazines. J Med Chem. 2016;59:9381–9.CrossRefPubMed
21.
go back to reference Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R. Reactive polymer enables efficient in vivo bioorthogonal chemistry. P Natl Acad Sci USA. 2012;109:4762–7.CrossRef Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R. Reactive polymer enables efficient in vivo bioorthogonal chemistry. P Natl Acad Sci USA. 2012;109:4762–7.CrossRef
22.
go back to reference Billaud EMF, Shahbazali E, Ahamed M, Cleeren F, Noël T, Koole M, et al. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chem Sci. 2017; https://doi.org/10.1039/C6SC02933G. Billaud EMF, Shahbazali E, Ahamed M, Cleeren F, Noël T, Koole M, et al. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels–Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chem Sci. 2017; https://​doi.​org/​10.​1039/​C6SC02933G.
23.
go back to reference Denk C, Svatunek D, Mairinger S, Stanek J, Filip T, Matscheko D, et al. Design, synthesis, and evaluation of a low-molecular-weight 11C-labeled tetrazine for pretargeted PET imaging applying bioorthogonal in vivo click chemistry. Bioconjug Chem. 2016;27:1707–12.CrossRefPubMed Denk C, Svatunek D, Mairinger S, Stanek J, Filip T, Matscheko D, et al. Design, synthesis, and evaluation of a low-molecular-weight 11C-labeled tetrazine for pretargeted PET imaging applying bioorthogonal in vivo click chemistry. Bioconjug Chem. 2016;27:1707–12.CrossRefPubMed
24.
go back to reference Keinänen O, Li XG, Chenna NK, Lumen D, Ott J, Molthoff CF, et al. A new highly reactive and low lipophilicity fluorine-18 labeled tetrazine derivative for pretargeted PET imaging. ACS Med Chem Lett. 2016;7:62–6.CrossRefPubMed Keinänen O, Li XG, Chenna NK, Lumen D, Ott J, Molthoff CF, et al. A new highly reactive and low lipophilicity fluorine-18 labeled tetrazine derivative for pretargeted PET imaging. ACS Med Chem Lett. 2016;7:62–6.CrossRefPubMed
25.
go back to reference Keinänen O, Mäkilä E, Lindgren R, Virtanen H, Liljenbäck H, Oikonen V, et al. Pretargeted PET imaging of trans-cyclooctene modified porous silicon nanoparticles. ACS Omega. 2017;2:62–9.CrossRefPubMedPubMedCentral Keinänen O, Mäkilä E, Lindgren R, Virtanen H, Liljenbäck H, Oikonen V, et al. Pretargeted PET imaging of trans-cyclooctene modified porous silicon nanoparticles. ACS Omega. 2017;2:62–9.CrossRefPubMedPubMedCentral
26.
go back to reference van Duijnhoven SM, Rossin R, van den Bosch SM, Wheatcroft MP, Hudson PJ, Robillard MS. Diabody pretargeting with click chemistry in vivo. J Nucl Med. 2015;56:1422–8.CrossRefPubMed van Duijnhoven SM, Rossin R, van den Bosch SM, Wheatcroft MP, Hudson PJ, Robillard MS. Diabody pretargeting with click chemistry in vivo. J Nucl Med. 2015;56:1422–8.CrossRefPubMed
27.
go back to reference Göstring L, Chew M, Orlova A, Hoiden-Guthenberg I, Wennborg A, Carlsson J, et al. Quantification of internalization of EGFR-binding affibody molecules: methodological aspects. Int J Oncol. 2010;36:757–63.CrossRefPubMed Göstring L, Chew M, Orlova A, Hoiden-Guthenberg I, Wennborg A, Carlsson J, et al. Quantification of internalization of EGFR-binding affibody molecules: methodological aspects. Int J Oncol. 2010;36:757–63.CrossRefPubMed
28.
go back to reference Vincenzi B, Schiavon G, Silletta M, Santini D, Tonini G. The biological properties of cetuximab. Crit Rev Oncol Hemat. 2008;68:93–106.CrossRef Vincenzi B, Schiavon G, Silletta M, Santini D, Tonini G. The biological properties of cetuximab. Crit Rev Oncol Hemat. 2008;68:93–106.CrossRef
29.
go back to reference Zhu W, Okollie B, Artemov D. Controlled internalization of Her-2/neu receptors by cross-linking for targeted delivery. Cancer Biol Ther. 2007;6:1960–6.CrossRefPubMed Zhu W, Okollie B, Artemov D. Controlled internalization of Her-2/neu receptors by cross-linking for targeted delivery. Cancer Biol Ther. 2007;6:1960–6.CrossRefPubMed
30.
go back to reference Austin CD, De Mazière AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell. 2004;15:5268–82.CrossRefPubMedPubMedCentral Austin CD, De Mazière AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell. 2004;15:5268–82.CrossRefPubMedPubMedCentral
31.
go back to reference Neve RM, Nielsen UB, Kirpotin DB, Poul M-A, Marks JD, Benz CC. Biological effects of anti-ErbB2 single chain antibodies selected for internalizing function. Biochem Bioph Res Co. 2001;280:274–9.CrossRef Neve RM, Nielsen UB, Kirpotin DB, Poul M-A, Marks JD, Benz CC. Biological effects of anti-ErbB2 single chain antibodies selected for internalizing function. Biochem Bioph Res Co. 2001;280:274–9.CrossRef
32.
go back to reference Sawada R, Sun S-M, Wu X, Hong F, Ragupathi G, Livingston PO, et al. Human monoclonal antibodies to Sialyl-Lewis (CA19.9) with potent CDC, ADCC and anti-tumor activity. Clin Cancer Res. 2011;17:1024–32.CrossRefPubMedPubMedCentral Sawada R, Sun S-M, Wu X, Hong F, Ragupathi G, Livingston PO, et al. Human monoclonal antibodies to Sialyl-Lewis (CA19.9) with potent CDC, ADCC and anti-tumor activity. Clin Cancer Res. 2011;17:1024–32.CrossRefPubMedPubMedCentral
33.
go back to reference Viola-Villegas NT, Rice SL, Carlin S, Wu X, Evans MJ, Sevak KK, et al. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology. J Nucl Med. 2013;54:1876–82.CrossRefPubMedPubMedCentral Viola-Villegas NT, Rice SL, Carlin S, Wu X, Evans MJ, Sevak KK, et al. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology. J Nucl Med. 2013;54:1876–82.CrossRefPubMedPubMedCentral
34.
go back to reference Ackerman ME, Chalouni C, Schmidt MM, Raman VV, Ritter G, Old LJ, et al. A33 antigen displays persistent surface expression. Cancer Immunol Immun. 2008;57:1017–27.CrossRef Ackerman ME, Chalouni C, Schmidt MM, Raman VV, Ritter G, Old LJ, et al. A33 antigen displays persistent surface expression. Cancer Immunol Immun. 2008;57:1017–27.CrossRef
35.
36.
go back to reference Perk LR, Visser GWM, Vosjan MJWD, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46:1898–906.PubMed Perk LR, Visser GWM, Vosjan MJWD, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46:1898–906.PubMed
37.
go back to reference Ping Li W, Meyer LA, Capretto DA, Sherman CD, Anderson CJ. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm. 2008;23:158–71.CrossRefPubMed Ping Li W, Meyer LA, Capretto DA, Sherman CD, Anderson CJ. Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm. 2008;23:158–71.CrossRefPubMed
38.
go back to reference Holland JP, Caldas-Lopes E, Divilov V, Longo VA, Taldone T, Zatorska D, et al. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS One. 2010;5:e8859.CrossRefPubMedPubMedCentral Holland JP, Caldas-Lopes E, Divilov V, Longo VA, Taldone T, Zatorska D, et al. Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS One. 2010;5:e8859.CrossRefPubMedPubMedCentral
39.
go back to reference Zeglis BM, Mohindra P, Weissmann GI, Divilov V, Hilderbrand SA, Weissleder R, et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry. Bioconjug Chem. 2011;22:2048–59.CrossRefPubMedPubMedCentral Zeglis BM, Mohindra P, Weissmann GI, Divilov V, Hilderbrand SA, Weissleder R, et al. Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry. Bioconjug Chem. 2011;22:2048–59.CrossRefPubMedPubMedCentral
40.
go back to reference Moreau M, Raguin O, Vrigneaud J-M, Collin B, Bernhard C, Tizon X, et al. DOTAGA-trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug Chem. 2012;23:1181–8.CrossRefPubMed Moreau M, Raguin O, Vrigneaud J-M, Collin B, Bernhard C, Tizon X, et al. DOTAGA-trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug Chem. 2012;23:1181–8.CrossRefPubMed
41.
go back to reference Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem. 1994;269:27595–602.PubMed Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem. 1994;269:27595–602.PubMed
42.
go back to reference Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, et al. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med. 2012;53:1625–32.CrossRefPubMed Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, et al. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med. 2012;53:1625–32.CrossRefPubMed
43.
go back to reference Li Z, Cai H, Hassink M, Blackman ML, Brown RC, Conti PS, et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem Commun. 2010;46:8043–5.CrossRef Li Z, Cai H, Hassink M, Blackman ML, Brown RC, Conti PS, et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. Chem Commun. 2010;46:8043–5.CrossRef
44.
go back to reference Rahim MK, Kota R, Haun JB. Enhancing reactivity for bioorthogonal pretargeting by unmasking antibody-conjugated trans-cyclooctenes. Bioconjug Chem. 2015;26:352–60.CrossRefPubMedPubMedCentral Rahim MK, Kota R, Haun JB. Enhancing reactivity for bioorthogonal pretargeting by unmasking antibody-conjugated trans-cyclooctenes. Bioconjug Chem. 2015;26:352–60.CrossRefPubMedPubMedCentral
45.
go back to reference Maggi A, Ruivo E, Fissers J, Vangestel C, Chatterjee S, Joossens J, et al. Development of a novel antibody-tetrazine conjugate for bioorthogonal pretargeting. Org Biomol Chem. 2016;14:7544–51.CrossRefPubMed Maggi A, Ruivo E, Fissers J, Vangestel C, Chatterjee S, Joossens J, et al. Development of a novel antibody-tetrazine conjugate for bioorthogonal pretargeting. Org Biomol Chem. 2016;14:7544–51.CrossRefPubMed
46.
go back to reference Wyffels L, Thomae D, Waldron AM, Fissers J, Dedeurwaerdere S, Van der Veken P, et al. In vivo evaluation of 18F-labeled TCO for pre-targeted PET imaging in the brain. Nucl Med Biol. 2014;41:513–23.CrossRefPubMed Wyffels L, Thomae D, Waldron AM, Fissers J, Dedeurwaerdere S, Van der Veken P, et al. In vivo evaluation of 18F-labeled TCO for pre-targeted PET imaging in the brain. Nucl Med Biol. 2014;41:513–23.CrossRefPubMed
47.
go back to reference Murrey HE, Judkins JC, Am Ende CW, Ballard TE, Fang Y, Riccardi K, et al. Systematic evaluation of bioorthogonal reactions in live cells with clickable HaloTag ligands: implications for intracellular imaging. J Am Chem Soc. 2015;137:11461–75.CrossRefPubMedPubMedCentral Murrey HE, Judkins JC, Am Ende CW, Ballard TE, Fang Y, Riccardi K, et al. Systematic evaluation of bioorthogonal reactions in live cells with clickable HaloTag ligands: implications for intracellular imaging. J Am Chem Soc. 2015;137:11461–75.CrossRefPubMedPubMedCentral
48.
go back to reference Blizzard RJ, Backus DR, Brown W, Bazewicz CG, Li Y, Mehl RA. Ideal bioorthogonal reactions using a site-specifically encoded tetrazine amino acid. J Am Chem Soc. 2015;137:10044–7.CrossRefPubMed Blizzard RJ, Backus DR, Brown W, Bazewicz CG, Li Y, Mehl RA. Ideal bioorthogonal reactions using a site-specifically encoded tetrazine amino acid. J Am Chem Soc. 2015;137:10044–7.CrossRefPubMed
49.
go back to reference Wang M, Svatunek D, Rohlfing K, Liu Y, Wang H, Giglio B, et al. Conformationally strained trans-cyclooctene (sTCO) enables the rapid construction of 18F-PET probes via tetrazine ligation. Theranostics. 2016;6:887–95.CrossRefPubMedPubMedCentral Wang M, Svatunek D, Rohlfing K, Liu Y, Wang H, Giglio B, et al. Conformationally strained trans-cyclooctene (sTCO) enables the rapid construction of 18F-PET probes via tetrazine ligation. Theranostics. 2016;6:887–95.CrossRefPubMedPubMedCentral
50.
go back to reference Taylor MT, Blackman ML, Dmitrenko O, Fox JM. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. J Am Chem Soc. 2011;133:9646–9.CrossRefPubMedPubMedCentral Taylor MT, Blackman ML, Dmitrenko O, Fox JM. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. J Am Chem Soc. 2011;133:9646–9.CrossRefPubMedPubMedCentral
51.
go back to reference Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl RA, Chin JW, et al. Conformationally strained trans-cyclooctene with improved stability and excellent reactivity in tetrazine ligation. Chem Sci. 2014;5:3770–6.CrossRefPubMedPubMedCentral Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl RA, Chin JW, et al. Conformationally strained trans-cyclooctene with improved stability and excellent reactivity in tetrazine ligation. Chem Sci. 2014;5:3770–6.CrossRefPubMedPubMedCentral
52.
go back to reference Antunes P, Ginj M, Walter MA, Chen J, Reubi J-C, Maecke HR. Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem. 2007;18:84–92.CrossRefPubMed Antunes P, Ginj M, Walter MA, Chen J, Reubi J-C, Maecke HR. Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem. 2007;18:84–92.CrossRefPubMed
53.
go back to reference García Garayoa E, Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwé DA, et al. Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem. 2008;19:2409–16.CrossRefPubMed García Garayoa E, Schweinsberg C, Maes V, Brans L, Bläuenstein P, Tourwé DA, et al. Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem. 2008;19:2409–16.CrossRefPubMed
54.
go back to reference Rossin R, Lappchen T, van den Bosch SM, Laforest R, Robillard MS. Diels-Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J Nucl Med. 2013;54:1989–95.CrossRefPubMed Rossin R, Lappchen T, van den Bosch SM, Laforest R, Robillard MS. Diels-Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J Nucl Med. 2013;54:1989–95.CrossRefPubMed
55.
go back to reference Rossin R, van Duijnhoven SM, Lappchen T, van den Bosch SM, Robillard MS. Trans-cyclooctene tag with improved properties for tumor pretargeting with the Diels-Alder reaction. Mol Pharm. 2014;11:3090–6.CrossRefPubMed Rossin R, van Duijnhoven SM, Lappchen T, van den Bosch SM, Robillard MS. Trans-cyclooctene tag with improved properties for tumor pretargeting with the Diels-Alder reaction. Mol Pharm. 2014;11:3090–6.CrossRefPubMed
Metadata
Title
Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models
Authors
Outi Keinänen
Kimberly Fung
Jacob Pourat
Vilma Jallinoja
Delphine Vivier
NagaVara Kishore Pillarsetty
Anu J. Airaksinen
Jason S. Lewis
Brian M. Zeglis
Mirkka Sarparanta
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0344-6

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue