Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 3/2013

01-09-2013 | Original Article

Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells

Authors: Salaheldin S. Hamed, Robert M. Straubinger, William J. Jusko

Published in: Cancer Chemotherapy and Pharmacology | Issue 3/2013

Login to get access

Abstract

Purpose

The standard of care for treating patients with pancreatic adenocarcinomas includes gemcitabine (2′,2′-difluorodeoxycytidine). Gemcitabine primarily elicits its response by stalling the DNA replication forks of cells in the S phase of the cell cycle. To provide a quantitative framework for characterizing the cell cycle and apoptotic effects of gemcitabine, we developed a pharmacodynamic model in which the activation of cell cycle checkpoints or cell death is dependent on gemcitabine exposure.

Methods

Three pancreatic adenocarcinoma cell lines (AsPC-1, BxPC-3, and MiaPaca-2) were exposed to varying concentrations (0–100,000 ng/mL) of gemcitabine over a period of 96 h in order to quantify proliferation kinetics and cell distributions among the cell cycle phases. The model assumes that the drug can inhibit cycle-phase transitioning in each of the 3 phases (G1, S, and G2/M) and can cause apoptosis of cells in G1 and G2/M phases. Fitting was performed using the ADAPT5 program.

Results

The time course of gemcitabine effects was well described by the model, and parameters were estimated with good precision. Model predictions and experimental data show that gemcitabine induces cell cycle arrest in the S phase at low concentrations, whereas higher concentrations induce arrest in all cell cycle phases. Furthermore, apoptotic effects of gemcitabine appear to be minimal and take place at later time points.

Conclusion

The pharmacodynamic model developed provides a quantitative, mechanistic interpretation of gemcitabine efficacy in 3 pancreatic cancer cell lines, and provides useful insights for rational selection of chemotherapeutic agents for combination therapy.
Literature
1.
go back to reference Hui YF, Reitz J (1997) Gemcitabine: a cytidine analogue active against solid tumors. Am J Health Syst Pharm 54:162–170PubMed Hui YF, Reitz J (1997) Gemcitabine: a cytidine analogue active against solid tumors. Am J Health Syst Pharm 54:162–170PubMed
2.
go back to reference Hilbig A, Oettle H (2008) Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev Anticancer Ther 8:511–523PubMedCrossRef Hilbig A, Oettle H (2008) Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev Anticancer Ther 8:511–523PubMedCrossRef
3.
go back to reference Heinemann V, Hertel LV, Grindey GB, Plunkett W (1988) Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-b-arabinofuranosylcytosine. Cancer Res 48:4024–4031PubMed Heinemann V, Hertel LV, Grindey GB, Plunkett W (1988) Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-b-arabinofuranosylcytosine. Cancer Res 48:4024–4031PubMed
4.
go back to reference Carpenelli G, Bucci G, D’Agnano I, Canese R, Caroli F, Raus L, Brunetti E, Giannarelli E, Podo F, Carapella CM (2006) Gemcitabine treatment of experimental C6 glioma: the effects on cell cycle and apoptotic rate. Anticancer Res 26:3017–3024 Carpenelli G, Bucci G, D’Agnano I, Canese R, Caroli F, Raus L, Brunetti E, Giannarelli E, Podo F, Carapella CM (2006) Gemcitabine treatment of experimental C6 glioma: the effects on cell cycle and apoptotic rate. Anticancer Res 26:3017–3024
5.
go back to reference Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93:401–408PubMedCrossRef Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93:401–408PubMedCrossRef
6.
go back to reference Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose–time–response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895PubMedCrossRef Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose–time–response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895PubMedCrossRef
7.
go back to reference Jusko WJ (1973) A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. J Pharmacokinet Biopharm 1:175–200CrossRef Jusko WJ (1973) A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. J Pharmacokinet Biopharm 1:175–200CrossRef
8.
go back to reference Gardner SN (2000) A mechanistic, predictive model of dose–response curves for cell cycle phase-specific and -nonspecific drugs. Cancer Res 60:1417–1425PubMed Gardner SN (2000) A mechanistic, predictive model of dose–response curves for cell cycle phase-specific and -nonspecific drugs. Cancer Res 60:1417–1425PubMed
9.
go back to reference Basse B, Baguley BC, Marshall ES, Joseph WR, van Brunt B, Wake G, Wall DJ (2004) Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel. J Math Biol 49:329–357PubMedCrossRef Basse B, Baguley BC, Marshall ES, Joseph WR, van Brunt B, Wake G, Wall DJ (2004) Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel. J Math Biol 49:329–357PubMedCrossRef
10.
go back to reference Kozusko F, Chen P, Grant SG, Day BW, Panetta JC (2001) A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin A. Math Biosci 170:1–16PubMedCrossRef Kozusko F, Chen P, Grant SG, Day BW, Panetta JC (2001) A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin A. Math Biosci 170:1–16PubMedCrossRef
11.
go back to reference Panetta JC, Evans WE, Cheok MH (2006) Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells. Br J Cancer 94:93–100PubMedCrossRef Panetta JC, Evans WE, Cheok MH (2006) Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells. Br J Cancer 94:93–100PubMedCrossRef
12.
go back to reference Gardner SN (2002) Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol 214:181–207PubMedCrossRef Gardner SN (2002) Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol 214:181–207PubMedCrossRef
13.
go back to reference D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles
14.
go back to reference Florian JA, Eiseman JL, Parker RS (2005) Accounting for quiescent cells in tumour growth and cancer treatment. Syst Biol (Stevenage) 152:185–192CrossRef Florian JA, Eiseman JL, Parker RS (2005) Accounting for quiescent cells in tumour growth and cancer treatment. Syst Biol (Stevenage) 152:185–192CrossRef
15.
go back to reference Sherer E, Hannemann RE, Rundell A, Ramkrishna D (2006) Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models. J Theor Biol 240:648–661PubMedCrossRef Sherer E, Hannemann RE, Rundell A, Ramkrishna D (2006) Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models. J Theor Biol 240:648–661PubMedCrossRef
16.
go back to reference Hamed SS, Roth CM (2001) Mathematical modeling to distinguish cell cycle arrest and cell killing in chemotherapeutic concentration response curves. J Pharmacokinet Pharmacodyn 38:385–403CrossRef Hamed SS, Roth CM (2001) Mathematical modeling to distinguish cell cycle arrest and cell killing in chemotherapeutic concentration response curves. J Pharmacokinet Pharmacodyn 38:385–403CrossRef
17.
go back to reference Batista LF, Roos WP, Kaina B, Menck CF (2009) p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal. Mol Cancer Res 7:237–246PubMedCrossRef Batista LF, Roos WP, Kaina B, Menck CF (2009) p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal. Mol Cancer Res 7:237–246PubMedCrossRef
18.
go back to reference Ruan S, Okcu MF, Ren JP, Chiao P, Andreeff M, Levin V, Zhang W (1998) Overexpressed WAF1/Cip1 renders glioblastoma cells resistant to chemotherapy agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin. Cancer Res 58:1538–1543PubMed Ruan S, Okcu MF, Ren JP, Chiao P, Andreeff M, Levin V, Zhang W (1998) Overexpressed WAF1/Cip1 renders glioblastoma cells resistant to chemotherapy agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin. Cancer Res 58:1538–1543PubMed
19.
go back to reference Xu GW, Nutt CL, Zlatescu MC, Keeney M, Chin-Yee I, Cairncross JG (2001) Inactivation of p53 sensitizes U87MG glioma to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 61:4155–4159PubMed Xu GW, Nutt CL, Zlatescu MC, Keeney M, Chin-Yee I, Cairncross JG (2001) Inactivation of p53 sensitizes U87MG glioma to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 61:4155–4159PubMed
20.
go back to reference Damia G, Broggini M (2004) Improving the selectivity of cancer treatments by interfering with cell response pathways. Eur J Cancer 40:2550–2559PubMedCrossRef Damia G, Broggini M (2004) Improving the selectivity of cancer treatments by interfering with cell response pathways. Eur J Cancer 40:2550–2559PubMedCrossRef
21.
go back to reference Damia G, Broggini M (2004) Cell cycle checkpoint proteins and cellular response to treatment by anticancer agents. Cell Cycle 3:46–50PubMedCrossRef Damia G, Broggini M (2004) Cell cycle checkpoint proteins and cellular response to treatment by anticancer agents. Cell Cycle 3:46–50PubMedCrossRef
22.
go back to reference Senderowicz AM (2004) Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol 16:670–678PubMedCrossRef Senderowicz AM (2004) Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol 16:670–678PubMedCrossRef
23.
go back to reference Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRef Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRef
24.
go back to reference Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–1248PubMedCrossRef Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–1248PubMedCrossRef
25.
go back to reference Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439PubMedCrossRef Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439PubMedCrossRef
26.
go back to reference Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von Hoff DD, Mousses S (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43PubMedCrossRef Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von Hoff DD, Mousses S (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43PubMedCrossRef
27.
go back to reference Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F (2003) Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 57:1075–1083PubMedCrossRef Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F (2003) Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 57:1075–1083PubMedCrossRef
28.
go back to reference Chandler NM, Canete JJ, Callery MP (2004) Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 8:1072–1078PubMedCrossRef Chandler NM, Canete JJ, Callery MP (2004) Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 8:1072–1078PubMedCrossRef
29.
go back to reference Arora S, Bhardwaj A, Srivastava SK, Singh S, McClellan S, Wang B, Singh AP (2011) Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One 6:e21573PubMedCrossRef Arora S, Bhardwaj A, Srivastava SK, Singh S, McClellan S, Wang B, Singh AP (2011) Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One 6:e21573PubMedCrossRef
30.
go back to reference Holcomb B, Yip-Schneider MT, Matos JM, Dixon J, Kennard J, Mahomed J, Shanmugam R, Sebolt-Leopold J, Schmidt CM (2008) Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based targeting strategies. J Gastrointest Surg 12:288–296PubMedCrossRef Holcomb B, Yip-Schneider MT, Matos JM, Dixon J, Kennard J, Mahomed J, Shanmugam R, Sebolt-Leopold J, Schmidt CM (2008) Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based targeting strategies. J Gastrointest Surg 12:288–296PubMedCrossRef
31.
go back to reference Matsumoto K, Nagahara T, Okano J, Murawaki Y (2008) The growth inhibition of hepatocellular and cholangiocellular carcinoma cells by gemcitabine and the roles of extracellular signal-regulated and checkpoint kinases. Oncol Rep 20:863–872PubMed Matsumoto K, Nagahara T, Okano J, Murawaki Y (2008) The growth inhibition of hepatocellular and cholangiocellular carcinoma cells by gemcitabine and the roles of extracellular signal-regulated and checkpoint kinases. Oncol Rep 20:863–872PubMed
32.
go back to reference Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65:6835–6842PubMedCrossRef Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65:6835–6842PubMedCrossRef
33.
go back to reference Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regression selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17:2799–27806PubMedCrossRef Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regression selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17:2799–27806PubMedCrossRef
34.
go back to reference Walton MI, Eve PD, Hayes A, Valenti M, De Haven Brandon A, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynoud FI, Williams DH, Reader JC, Collins I, Garrett MD (2010) The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther 9:89–100PubMedCrossRef Walton MI, Eve PD, Hayes A, Valenti M, De Haven Brandon A, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynoud FI, Williams DH, Reader JC, Collins I, Garrett MD (2010) The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther 9:89–100PubMedCrossRef
35.
go back to reference Xu H, Cheung IY, Wei XX, Tran H, Gao X, Cheung NK (2011) Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G(1) checkpoint-defective neuroblastoma. Int J Cancer 129:153–162 Xu H, Cheung IY, Wei XX, Tran H, Gao X, Cheung NK (2011) Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G(1) checkpoint-defective neuroblastoma. Int J Cancer 129:153–162
36.
go back to reference Tonkinson JL, Worzalla JF, Tseng CH, Mendelsohn LG (1999) Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res 59:3671–3676PubMed Tonkinson JL, Worzalla JF, Tseng CH, Mendelsohn LG (1999) Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res 59:3671–3676PubMed
37.
go back to reference Pratt SE, Durland-Busbice S, Shepard RL, Donoho GP, Starling JJ, Wickremsinhe ER, Perkinks EJ, Dantzig AH (2013) Efficacy of low-dose oral metronomic dosing of the prodrug of gemcitabine, LY2334737, in human xenografts. Mol Cancer Ther 12:481–490PubMedCrossRef Pratt SE, Durland-Busbice S, Shepard RL, Donoho GP, Starling JJ, Wickremsinhe ER, Perkinks EJ, Dantzig AH (2013) Efficacy of low-dose oral metronomic dosing of the prodrug of gemcitabine, LY2334737, in human xenografts. Mol Cancer Ther 12:481–490PubMedCrossRef
38.
go back to reference Sakamoto H, Kitano M, Suetomi Y, Takeyama Y, Ohyanagi H, Nakai T, Yasuda C, Kudo M (2006) Comparison of standard-dose and low-dose gemcitabine regimens in pancreatic adenocarcinoma patients: a prospective randomized trial. J Gastroenterol 41:70–76PubMedCrossRef Sakamoto H, Kitano M, Suetomi Y, Takeyama Y, Ohyanagi H, Nakai T, Yasuda C, Kudo M (2006) Comparison of standard-dose and low-dose gemcitabine regimens in pancreatic adenocarcinoma patients: a prospective randomized trial. J Gastroenterol 41:70–76PubMedCrossRef
39.
go back to reference Tempero M, Plunkett W, van Haperen VR, Hainsworth J, Hochester H, Lenzi R, Abbruzzese J (2003) Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol 21:3402–3408PubMedCrossRef Tempero M, Plunkett W, van Haperen VR, Hainsworth J, Hochester H, Lenzi R, Abbruzzese J (2003) Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol 21:3402–3408PubMedCrossRef
40.
go back to reference Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reicheld S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461PubMedCrossRef Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reicheld S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461PubMedCrossRef
41.
go back to reference Venkatasubramanian R, Henson MA, Forbes NS (2008) Integrating cell-cycle progression, drug penetration and energy metabolism to identify improved cancer therapeutic strategies. J Theor Biol 253:98–117PubMedCrossRef Venkatasubramanian R, Henson MA, Forbes NS (2008) Integrating cell-cycle progression, drug penetration and energy metabolism to identify improved cancer therapeutic strategies. J Theor Biol 253:98–117PubMedCrossRef
42.
go back to reference Ribba B, Colin T, Schnell S (2006) A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 3:7PubMedCrossRef Ribba B, Colin T, Schnell S (2006) A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 3:7PubMedCrossRef
Metadata
Title
Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells
Authors
Salaheldin S. Hamed
Robert M. Straubinger
William J. Jusko
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Cancer Chemotherapy and Pharmacology / Issue 3/2013
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-013-2226-6

Other articles of this Issue 3/2013

Cancer Chemotherapy and Pharmacology 3/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine