Skip to main content
Top
Published in: Inflammation 4/2014

01-08-2014

PGC-1α Expression Is Increased in Leukocytes in Experimental Acute Pancreatitis

Authors: Flávia Llimona, Thais Martins de Lima, Ana Iochabel Moretti, Mariana Theobaldo, Jose Jukemura, Irineu Tadeu Velasco, Marcel C. C. Machado, Heraldo Possolo Souza

Published in: Inflammation | Issue 4/2014

Login to get access

Abstract

Severe acute pancreatitis (AP) induces a systemic inflammatory disease that is responsible for high mortality rates, particularly when it is complicated by infection. Therefore, differentiating sepsis from the systemic inflammation caused by AP is a serious clinical challenge. Considering the high metabolic rates of leukocytes in response to stress induced by infection, we hypothesized that the transcription coactivator peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1α), a master regulator of mitochondrial biogenesis and function, would be distinctly expressed during inflammation or infection and, therefore, could constitute a useful marker to differentiate between these two conditions. Rats were subjected to injection of taurocholate into the main pancreatic duct, which caused a severe AP with high amylase levels and white blood cell counts. In these animals, a marked increase in PGC-1α mRNA levels in circulating leukocytes was observed 48 h after the surgical procedure, a time when bacteremia is present. Antibiotic treatment abolished PGC-1α up-regulation. Moreover, PGC-1α expression was higher in peritoneal macrophages from animals subjected to a bacterial insult (cecal ligation and puncture) than in animals with AP. In isolated macrophages, we also observed that PGC-1α expression is more prominent in the presence of a phagocytic stimulus (zymosan) when compared to lipopolysaccharide-induced aseptic inflammation. Moreover, abolishing PGC-1α expression with antisense oligos impaired zymosan phagocytosis. Together, these findings suggest that PGC-1α is differentially expressed during aseptic inflammation and infection and that it is necessary for adequate phagocytosis. These results could be useful in developing new tests for differentiating infection from inflammation for clinical purposes in patients with AP.
Literature
1.
go back to reference Beger, H.G., and B.M. Rau. 2007. Severe acute pancreatitis: clinical course and management. World Journal of Gastroenterology 13: 5043–5051.PubMed Beger, H.G., and B.M. Rau. 2007. Severe acute pancreatitis: clinical course and management. World Journal of Gastroenterology 13: 5043–5051.PubMed
2.
go back to reference Granger, J., and D. Remick. 2005. Acute pancreatitis: models, markers, and mediators. Shock 24(Suppl 1): 45–51.PubMedCrossRef Granger, J., and D. Remick. 2005. Acute pancreatitis: models, markers, and mediators. Shock 24(Suppl 1): 45–51.PubMedCrossRef
3.
go back to reference Grootjans, J., G. Thuijls, F. Verdam, J.P. Derikx, K. Lenaerts, et al. 2010. Non-invasive assessment of barrier integrity and function of the human gut. World Journal of Gastrointestinal Surgery 2: 61–69.PubMedCentralPubMedCrossRef Grootjans, J., G. Thuijls, F. Verdam, J.P. Derikx, K. Lenaerts, et al. 2010. Non-invasive assessment of barrier integrity and function of the human gut. World Journal of Gastrointestinal Surgery 2: 61–69.PubMedCentralPubMedCrossRef
4.
go back to reference Lankisch, P.G. 2010. Treatment of acute pancreatitis: an attempted historical review. Pancreatology 10: 134–141.PubMedCrossRef Lankisch, P.G. 2010. Treatment of acute pancreatitis: an attempted historical review. Pancreatology 10: 134–141.PubMedCrossRef
5.
go back to reference Pezzilli, R., A. Zerbi, V. Di Carlo, C. Bassi, and G.F. Delle Fave. 2010. Practical guidelines for acute pancreatitis. Pancreatology 10: 523–535.PubMedCrossRef Pezzilli, R., A. Zerbi, V. Di Carlo, C. Bassi, and G.F. Delle Fave. 2010. Practical guidelines for acute pancreatitis. Pancreatology 10: 523–535.PubMedCrossRef
6.
go back to reference Nordback, I., J. Sand, R. Saaristo, and H. Paajanen. 2001. Early treatment with antibiotics reduces the need for surgery in acute necrotizing pancreatitis—a single-center randomized study. Journal of Gastrointestinal Surgery 5: 113–118. discussion 118-120.PubMedCrossRef Nordback, I., J. Sand, R. Saaristo, and H. Paajanen. 2001. Early treatment with antibiotics reduces the need for surgery in acute necrotizing pancreatitis—a single-center randomized study. Journal of Gastrointestinal Surgery 5: 113–118. discussion 118-120.PubMedCrossRef
7.
go back to reference Sainio, V., E. Kemppainen, P. Puolakkainen, M. Taavitsainen, L. Kivisaari, et al. 1995. Early antibiotic treatment in acute necrotising pancreatitis. Lancet 346: 663–667.PubMedCrossRef Sainio, V., E. Kemppainen, P. Puolakkainen, M. Taavitsainen, L. Kivisaari, et al. 1995. Early antibiotic treatment in acute necrotising pancreatitis. Lancet 346: 663–667.PubMedCrossRef
8.
go back to reference Jiang, K., W. Huang, X.N. Yang, and Q. Xia. 2012. Present and future of prophylactic antibiotics for severe acute pancreatitis. World Journal of Gastroenterology 18: 279–284.PubMedCentralPubMedCrossRef Jiang, K., W. Huang, X.N. Yang, and Q. Xia. 2012. Present and future of prophylactic antibiotics for severe acute pancreatitis. World Journal of Gastroenterology 18: 279–284.PubMedCentralPubMedCrossRef
9.
go back to reference Heinrich, S., M. Schafer, V. Rousson, and P.A. Clavien. 2006. Evidence-based treatment of acute pancreatitis: a look at established paradigms. Annals of Surgery 243: 154–168.PubMedCentralPubMedCrossRef Heinrich, S., M. Schafer, V. Rousson, and P.A. Clavien. 2006. Evidence-based treatment of acute pancreatitis: a look at established paradigms. Annals of Surgery 243: 154–168.PubMedCentralPubMedCrossRef
10.
go back to reference Azevedo, L.C. 2011. Mitochondrial dysfunction during sepsis. Endocrine, Metabolic & Immune Disorders Drug Targets 10: 214–223.CrossRef Azevedo, L.C. 2011. Mitochondrial dysfunction during sepsis. Endocrine, Metabolic & Immune Disorders Drug Targets 10: 214–223.CrossRef
11.
go back to reference Huebinger, R.M., R. Gomez, D. McGee, L.Y. Chang, J.E. Bender, et al. 2010. Association of mitochondrial allele 4216C with increased risk for sepsis-related organ dysfunction and shock after burn injury. Shock 33: 19–23.PubMedCrossRef Huebinger, R.M., R. Gomez, D. McGee, L.Y. Chang, J.E. Bender, et al. 2010. Association of mitochondrial allele 4216C with increased risk for sepsis-related organ dysfunction and shock after burn injury. Shock 33: 19–23.PubMedCrossRef
12.
go back to reference Levy, R.J. 2007. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28: 24–28.PubMedCrossRef Levy, R.J. 2007. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28: 24–28.PubMedCrossRef
13.
go back to reference Nunnari, J., and A. Suomalainen. 2012. Mitochondria: in sickness and in health. Cell 148: 1145–1159.PubMedCrossRef Nunnari, J., and A. Suomalainen. 2012. Mitochondria: in sickness and in health. Cell 148: 1145–1159.PubMedCrossRef
14.
go back to reference Leone, T.C., J.J. Lehman, B.N. Finck, P.J. Schaeffer, A.R. Wende, et al. 2005. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biology 3: e101.PubMedCentralPubMedCrossRef Leone, T.C., J.J. Lehman, B.N. Finck, P.J. Schaeffer, A.R. Wende, et al. 2005. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biology 3: e101.PubMedCentralPubMedCrossRef
15.
go back to reference Liang, H., and W.F. Ward. 2006. PGC-1alpha: a key regulator of energy metabolism. Advances in Physiology Education 30: 145–151.PubMedCrossRef Liang, H., and W.F. Ward. 2006. PGC-1alpha: a key regulator of energy metabolism. Advances in Physiology Education 30: 145–151.PubMedCrossRef
16.
go back to reference Kawai, M., and C.J. Rosen. 2010. The IGF-I regulatory system and its impact on skeletal and energy homeostasis. Journal of Cellular Biochemistry 111: 14–19.PubMedCentralPubMedCrossRef Kawai, M., and C.J. Rosen. 2010. The IGF-I regulatory system and its impact on skeletal and energy homeostasis. Journal of Cellular Biochemistry 111: 14–19.PubMedCentralPubMedCrossRef
17.
go back to reference Puigserver, P., Z. Wu, C.W. Park, R. Graves, M. Wright, et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.PubMedCrossRef Puigserver, P., Z. Wu, C.W. Park, R. Graves, M. Wright, et al. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.PubMedCrossRef
18.
go back to reference Lin, J., C. Handschin, and B.M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism 1: 361–370.PubMedCrossRef Lin, J., C. Handschin, and B.M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism 1: 361–370.PubMedCrossRef
19.
go back to reference Feige, J.N., and J. Auwerx. 2007. Transcriptional coregulators in the control of energy homeostasis. Trends in Cell Biology 17: 292–301.PubMedCrossRef Feige, J.N., and J. Auwerx. 2007. Transcriptional coregulators in the control of energy homeostasis. Trends in Cell Biology 17: 292–301.PubMedCrossRef
20.
go back to reference Rhee, J., Y. Inoue, J.C. Yoon, P. Puigserver, M. Fan, et al. 2003. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 100: 4012–4017.PubMedCentralPubMedCrossRef Rhee, J., Y. Inoue, J.C. Yoon, P. Puigserver, M. Fan, et al. 2003. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America 100: 4012–4017.PubMedCentralPubMedCrossRef
21.
go back to reference Baar, K., A.R. Wende, T.E. Jones, M. Marison, L.A. Nolte, et al. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb Journal 16: 1879–1886.PubMedCrossRef Baar, K., A.R. Wende, T.E. Jones, M. Marison, L.A. Nolte, et al. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. Faseb Journal 16: 1879–1886.PubMedCrossRef
22.
go back to reference Lehman, J.J., P.M. Barger, A. Kovacs, J.E. Saffitz, D.M. Medeiros, et al. 2000. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. Journal of Clinical Investigation 106: 847–856.PubMedCentralPubMedCrossRef Lehman, J.J., P.M. Barger, A. Kovacs, J.E. Saffitz, D.M. Medeiros, et al. 2000. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. Journal of Clinical Investigation 106: 847–856.PubMedCentralPubMedCrossRef
23.
go back to reference Sweeney, T.E., H.B. Suliman, J.W. Hollingsworth, and C.A. Piantadosi. 2010. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS One 5: e11606.PubMedCentralPubMedCrossRef Sweeney, T.E., H.B. Suliman, J.W. Hollingsworth, and C.A. Piantadosi. 2010. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. PLoS One 5: e11606.PubMedCentralPubMedCrossRef
24.
go back to reference Sweeney, T.E., H.B. Suliman, J.W. Hollingsworth, K.E. Welty-Wolf, and C.A. Piantadosi. 2011. A toll-like receptor 2 pathway regulates the Ppargc1a/b metabolic co-activators in mice with Staphylococcal aureus sepsis. PLoS One 6: e25249.PubMedCentralPubMedCrossRef Sweeney, T.E., H.B. Suliman, J.W. Hollingsworth, K.E. Welty-Wolf, and C.A. Piantadosi. 2011. A toll-like receptor 2 pathway regulates the Ppargc1a/b metabolic co-activators in mice with Staphylococcal aureus sepsis. PLoS One 6: e25249.PubMedCentralPubMedCrossRef
25.
go back to reference Feingold, K., M.S. Kim, J. Shigenaga, A. Moser, and C. Grunfeld. 2004. Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. American Journal of Physiology. Endocrinology and Metabolism 286: E201–E207.PubMedCrossRef Feingold, K., M.S. Kim, J. Shigenaga, A. Moser, and C. Grunfeld. 2004. Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. American Journal of Physiology. Endocrinology and Metabolism 286: E201–E207.PubMedCrossRef
26.
go back to reference Azevedo, L.C. 2010. Mitochondrial dysfunction during sepsis. Endocrine, Metabolic & Immune Disorders Drug Targets 10: 214–223.CrossRef Azevedo, L.C. 2010. Mitochondrial dysfunction during sepsis. Endocrine, Metabolic & Immune Disorders Drug Targets 10: 214–223.CrossRef
27.
go back to reference Lopez-Armada, M.J., R.R. Riveiro-Naveira, C. Vaamonde-Garcia, and M.N. Valcarcel-Ares. 2013. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13: 106–118.PubMedCrossRef Lopez-Armada, M.J., R.R. Riveiro-Naveira, C. Vaamonde-Garcia, and M.N. Valcarcel-Ares. 2013. Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13: 106–118.PubMedCrossRef
28.
go back to reference Rios, E.C., A.I. Moretti, H.P. de Souza, I.T. Velasco, and F.G. Soriano. 2010. Hypertonic saline reduces metalloproteinase expression in liver during pancreatitis. Clinical and Experimental Pharmacology and Physiology 37: 35–39.PubMedCrossRef Rios, E.C., A.I. Moretti, H.P. de Souza, I.T. Velasco, and F.G. Soriano. 2010. Hypertonic saline reduces metalloproteinase expression in liver during pancreatitis. Clinical and Experimental Pharmacology and Physiology 37: 35–39.PubMedCrossRef
29.
go back to reference Machado, M.C., A.M. Coelho, V. Pontieri, S.N. Sampietre, N.A. Molan, et al. 2006. Local and systemic effects of hypertonic solution (NaCl 7.5 %) in experimental acute pancreatitis. Pancreas 32: 80–86.PubMedCrossRef Machado, M.C., A.M. Coelho, V. Pontieri, S.N. Sampietre, N.A. Molan, et al. 2006. Local and systemic effects of hypertonic solution (NaCl 7.5 %) in experimental acute pancreatitis. Pancreas 32: 80–86.PubMedCrossRef
30.
go back to reference Moretti, A.I., E.C. Rios, F.G. Soriano, H.P. de Souza, F. Abatepaulo, et al. 2009. Acute pancreatitis: hypertonic saline increases heat shock proteins 70 and 90 and reduces neutrophil infiltration in lung injury. Pancreas 38: 507–514.PubMedCrossRef Moretti, A.I., E.C. Rios, F.G. Soriano, H.P. de Souza, F. Abatepaulo, et al. 2009. Acute pancreatitis: hypertonic saline increases heat shock proteins 70 and 90 and reduces neutrophil infiltration in lung injury. Pancreas 38: 507–514.PubMedCrossRef
31.
go back to reference Perides, G., G.J. van Acker, J.M. Laukkarinen, and M.L. Steer. 2010. Experimental acute biliary pancreatitis induced by retrograde infusion of bile acids into the mouse pancreatic duct. Nature Protocols 5: 335–341.PubMedCrossRef Perides, G., G.J. van Acker, J.M. Laukkarinen, and M.L. Steer. 2010. Experimental acute biliary pancreatitis induced by retrograde infusion of bile acids into the mouse pancreatic duct. Nature Protocols 5: 335–341.PubMedCrossRef
32.
go back to reference Saha, J.K., J. Xia, J.M. Grondin, S.K. Engle, and J.A. Jakubowski. 2005. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Experimental Biology and Medicine (Maywood, N.J.) 230: 777–784. Saha, J.K., J. Xia, J.M. Grondin, S.K. Engle, and J.A. Jakubowski. 2005. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Experimental Biology and Medicine (Maywood, N.J.) 230: 777–784.
33.
go back to reference Finck, B.N., and D.P. Kelly. 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. Journal of Clinical Investigation 116: 615–622.PubMedCentralPubMedCrossRef Finck, B.N., and D.P. Kelly. 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. Journal of Clinical Investigation 116: 615–622.PubMedCentralPubMedCrossRef
34.
go back to reference Mullaly, S.C., and P. Kubes. 2006. The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. Journal of Immunology 177: 8154–8163.CrossRef Mullaly, S.C., and P. Kubes. 2006. The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. Journal of Immunology 177: 8154–8163.CrossRef
35.
go back to reference Taneja, R., A.P. Sharma, M.B. Hallett, G.P. Findlay, and M.R. Morris. 2008. Immature circulating neutrophils in sepsis have impaired phagocytosis and calcium signaling. Shock 30: 618–622.PubMedCrossRef Taneja, R., A.P. Sharma, M.B. Hallett, G.P. Findlay, and M.R. Morris. 2008. Immature circulating neutrophils in sepsis have impaired phagocytosis and calcium signaling. Shock 30: 618–622.PubMedCrossRef
36.
go back to reference Underhill, D.M., and A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Annual Review of Immunology 20: 825–852.PubMedCrossRef Underhill, D.M., and A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Annual Review of Immunology 20: 825–852.PubMedCrossRef
37.
go back to reference Kumar, H., T. Kawai, and S. Akira. 2009. Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications 388: 621–625.PubMedCrossRef Kumar, H., T. Kawai, and S. Akira. 2009. Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications 388: 621–625.PubMedCrossRef
38.
go back to reference Schilling, J., L. Lai, N. Sambandam, C.E. Dey, T.C. Leone, et al. 2011. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor gamma coactivator-1 signaling. Circulation. Heart Failure 4: 474–482.PubMedCentralPubMedCrossRef Schilling, J., L. Lai, N. Sambandam, C.E. Dey, T.C. Leone, et al. 2011. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor gamma coactivator-1 signaling. Circulation. Heart Failure 4: 474–482.PubMedCentralPubMedCrossRef
39.
go back to reference Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2008. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 44: 411–418.PubMedCrossRef Hickson-Bick, D.L., C. Jones, and L.M. Buja. 2008. Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. Journal of Molecular and Cellular Cardiology 44: 411–418.PubMedCrossRef
41.
go back to reference Knutti, D., D. Kressler, and A. Kralli. 2001. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proceedings of the National Academy of Sciences of the United States of America 98: 9713–9718.PubMedCentralPubMedCrossRef Knutti, D., D. Kressler, and A. Kralli. 2001. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proceedings of the National Academy of Sciences of the United States of America 98: 9713–9718.PubMedCentralPubMedCrossRef
42.
go back to reference Yoon, J.C., P. Puigserver, G. Chen, J. Donovan, Z. Wu, et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131–138.PubMedCrossRef Yoon, J.C., P. Puigserver, G. Chen, J. Donovan, Z. Wu, et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131–138.PubMedCrossRef
43.
go back to reference Puigserver, P., J. Rhee, J. Lin, Z. Wu, J.C. Yoon, et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Molecular Cell 8: 971–982.PubMedCrossRef Puigserver, P., J. Rhee, J. Lin, Z. Wu, J.C. Yoon, et al. 2001. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Molecular Cell 8: 971–982.PubMedCrossRef
44.
go back to reference St-Pierre, J., J. Lin, S. Krauss, P.T. Tarr, R. Yang, et al. 2003. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. Journal of Biological Chemistry 278: 26597–26603.PubMedCrossRef St-Pierre, J., J. Lin, S. Krauss, P.T. Tarr, R. Yang, et al. 2003. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. Journal of Biological Chemistry 278: 26597–26603.PubMedCrossRef
45.
go back to reference Wu, Z., P. Puigserver, U. Andersson, C. Zhang, G. Adelmant, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.PubMedCrossRef Wu, Z., P. Puigserver, U. Andersson, C. Zhang, G. Adelmant, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.PubMedCrossRef
46.
go back to reference Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.PubMedCrossRef Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.PubMedCrossRef
47.
go back to reference Escobar, J., J. Pereda, G. Lopez-Rodas, and J. Sastre. 2012. Redox signaling and histone acetylation in acute pancreatitis. Free Radical Biology and Medicine 52: 819–837.PubMedCrossRef Escobar, J., J. Pereda, G. Lopez-Rodas, and J. Sastre. 2012. Redox signaling and histone acetylation in acute pancreatitis. Free Radical Biology and Medicine 52: 819–837.PubMedCrossRef
48.
go back to reference Puigserver, P., G. Adelmant, Z. Wu, M. Fan, J. Xu, et al. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368–1371.PubMedCrossRef Puigserver, P., G. Adelmant, Z. Wu, M. Fan, J. Xu, et al. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368–1371.PubMedCrossRef
49.
go back to reference Nathens, A.B., J.R. Curtis, R.J. Beale, D.J. Cook, R.P. Moreno, et al. 2004. Management of the critically ill patient with severe acute pancreatitis. Critical Care Medicine 32: 2524–2536.PubMedCrossRef Nathens, A.B., J.R. Curtis, R.J. Beale, D.J. Cook, R.P. Moreno, et al. 2004. Management of the critically ill patient with severe acute pancreatitis. Critical Care Medicine 32: 2524–2536.PubMedCrossRef
50.
go back to reference Beger, H.G., B. Rau, R. Isenmann, M. Schwarz, F. Gansauge, et al. 2005. Antibiotic prophylaxis in severe acute pancreatitis. Pancreatology 5: 10–19.PubMedCrossRef Beger, H.G., B. Rau, R. Isenmann, M. Schwarz, F. Gansauge, et al. 2005. Antibiotic prophylaxis in severe acute pancreatitis. Pancreatology 5: 10–19.PubMedCrossRef
51.
go back to reference Petrov, M.S., V. Chong, and J.A. Windsor. 2011. Infected pancreatic necrosis: not necessarily a late event in acute pancreatitis. World Journal of Gastroenterology 17: 3173–3176.PubMedCentralPubMed Petrov, M.S., V. Chong, and J.A. Windsor. 2011. Infected pancreatic necrosis: not necessarily a late event in acute pancreatitis. World Journal of Gastroenterology 17: 3173–3176.PubMedCentralPubMed
Metadata
Title
PGC-1α Expression Is Increased in Leukocytes in Experimental Acute Pancreatitis
Authors
Flávia Llimona
Thais Martins de Lima
Ana Iochabel Moretti
Mariana Theobaldo
Jose Jukemura
Irineu Tadeu Velasco
Marcel C. C. Machado
Heraldo Possolo Souza
Publication date
01-08-2014
Publisher
Springer US
Published in
Inflammation / Issue 4/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9850-0

Other articles of this Issue 4/2014

Inflammation 4/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.