Skip to main content
Top
Published in: Current Cardiology Reports 8/2015

Open Access 01-08-2015 | Nuclear Cardiology (V Dilsizian, Section Editor)

PET Imaging of the Human Nicotinic Cholinergic Pathway in Atherosclerosis

Authors: Matthias Bauwens, Felix M. Mottaghy, Jan Bucerius

Published in: Current Cardiology Reports | Issue 8/2015

Login to get access

Abstract

During the past years, non-neuronal vascular nicotinic acetylcholine receptors (nAChRs) increasingly have gained interest in cardiovascular research, as they are known to mediate the deleterious effects of nicotine and nitrosamines, components of tobacco smoke, on the vasculature. Because smoking is a major risk factor for the development of atherosclerosis, it is obvious that understanding the pathophysiologic role of nAChRs in the atherosclerotic disease process, as well as in the development of new diagnostic and therapeutic nAChR-related options, has become more important. Accordingly, we briefly summarize the pathophysiologic role of vascular nAChRs in the atherosclerotic disease process. We also provide an overview of currently available nAChR positron emission tomography (PET) tracers and their performance in the noninvasive imaging of vascular nAChRs, as well as potential nAChR PET tracers that might be an option for vascular nAChR PET imaging in the future.
Literature
1.
go back to reference Tarkin JM, Rudd JH. Techniques for noninvasive molecular imaging of atherosclerotic plaque. Nat Rev Cardiol. 2014;12(2):79.PubMedCrossRef Tarkin JM, Rudd JH. Techniques for noninvasive molecular imaging of atherosclerotic plaque. Nat Rev Cardiol. 2014;12(2):79.PubMedCrossRef
2.
go back to reference Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35(42):2950–9.PubMedCrossRef Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J. 2014;35(42):2950–9.PubMedCrossRef
3.
go back to reference Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.PubMedCrossRef Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.PubMedCrossRef
4.••
go back to reference Santanam N, Thornhill BA, Lau JK, et al. Nicotinic acetylcholine receptor signaling in atherogenesis. Atherosclerosis. 2012;225(2):264–73. This recent review of nAChRs in atherosclerosis summarizes the proatherogenic effects mediated by vascular nAChRs and discusses the pathophysiologic effects of different nAChR subunits in plaque growth, progression, and neovascularization.PubMedCrossRef Santanam N, Thornhill BA, Lau JK, et al. Nicotinic acetylcholine receptor signaling in atherogenesis. Atherosclerosis. 2012;225(2):264–73. This recent review of nAChRs in atherosclerosis summarizes the proatherogenic effects mediated by vascular nAChRs and discusses the pathophysiologic effects of different nAChR subunits in plaque growth, progression, and neovascularization.PubMedCrossRef
5.
go back to reference Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992;140(2):301–16.PubMedCentralPubMed Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992;140(2):301–16.PubMedCentralPubMed
6.
go back to reference Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49(21):2073–80.PubMedCrossRef Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49(21):2073–80.PubMedCrossRef
7.
go back to reference Egleton RD, Brown KC, Dasgupta P. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther. 2009;121(2):205–23.PubMedCrossRef Egleton RD, Brown KC, Dasgupta P. Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther. 2009;121(2):205–23.PubMedCrossRef
8.
go back to reference Lindstrom J. Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol. 1997;15(2):193–222.PubMedCrossRef Lindstrom J. Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol. 1997;15(2):193–222.PubMedCrossRef
9.
go back to reference Itier V, Bertrand D. Neuronal nicotinic receptors: from protein structure to function. FEBS Lett. 2001;504(3):118–25.PubMedCrossRef Itier V, Bertrand D. Neuronal nicotinic receptors: from protein structure to function. FEBS Lett. 2001;504(3):118–25.PubMedCrossRef
10.
go back to reference Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74(6):363–96.PubMedCrossRef Gotti C, Clementi F. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 2004;74(6):363–96.PubMedCrossRef
11.
go back to reference Lukas RJ. Heterogeneity of high-affinity nicotinic [3H]acetylcholine binding sites. J Pharmacol Exp Ther. 1990;253(1):51–7.PubMed Lukas RJ. Heterogeneity of high-affinity nicotinic [3H]acetylcholine binding sites. J Pharmacol Exp Ther. 1990;253(1):51–7.PubMed
12.
go back to reference Glowatzki E, Fuchs PA. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science. 2000;288(5475):2366–8.PubMedCrossRef Glowatzki E, Fuchs PA. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science. 2000;288(5475):2366–8.PubMedCrossRef
13.
go back to reference Schmaljohann J, Gundisch D, Minnerop M, et al. A simple and fast method for the preparation of n.c.a. 2-[18F]F-A85380 for human use. Appl Radiat Isot. 2005;63(4):433–5.PubMedCrossRef Schmaljohann J, Gundisch D, Minnerop M, et al. A simple and fast method for the preparation of n.c.a. 2-[18F]F-A85380 for human use. Appl Radiat Isot. 2005;63(4):433–5.PubMedCrossRef
14.
go back to reference Schmaljohann J, Gundisch D, Minnerop M, et al. In vitro evaluation of nicotinic acetylcholine receptors with 2-[18F]F-A85380 in Parkinson’s disease. Nucl Med Biol. 2006;33(3):305–9.PubMedCrossRef Schmaljohann J, Gundisch D, Minnerop M, et al. In vitro evaluation of nicotinic acetylcholine receptors with 2-[18F]F-A85380 in Parkinson’s disease. Nucl Med Biol. 2006;33(3):305–9.PubMedCrossRef
15.
go back to reference Kendziorra K, Wolf H, Meyer PM, et al. Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging. 2010;38(3):515–25.PubMedCrossRef Kendziorra K, Wolf H, Meyer PM, et al. Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging. 2010;38(3):515–25.PubMedCrossRef
16.
go back to reference Wada T, Naito M, Kenmochi H, Tsuneki H, Sasaoka T. Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells. Endocrinology. 2007;148(2):790–9.PubMedCrossRef Wada T, Naito M, Kenmochi H, Tsuneki H, Sasaoka T. Chronic nicotine exposure enhances insulin-induced mitogenic signaling via up-regulation of alpha7 nicotinic receptors in isolated rat aortic smooth muscle cells. Endocrinology. 2007;148(2):790–9.PubMedCrossRef
17.
go back to reference Albaugh G, Bellavance E, Strande L, Heinburger S, Hewitt CW, Alexander JB. Nicotine induces mononuclear leukocyte adhesion and expression of adhesion molecules, VCAM and ICAM, in endothelial cells in vitro. Ann Vasc Surg. 2004;18(3):302–7.PubMedCrossRef Albaugh G, Bellavance E, Strande L, Heinburger S, Hewitt CW, Alexander JB. Nicotine induces mononuclear leukocyte adhesion and expression of adhesion molecules, VCAM and ICAM, in endothelial cells in vitro. Ann Vasc Surg. 2004;18(3):302–7.PubMedCrossRef
18.
go back to reference Schedel A, Thornton S, Schloss P, Kluter H, Bugert P. Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler Thromb Vasc Biol. 2010;31(4):928–34.PubMedCrossRef Schedel A, Thornton S, Schloss P, Kluter H, Bugert P. Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler Thromb Vasc Biol. 2010;31(4):928–34.PubMedCrossRef
19.
go back to reference Zhang G, Kernan KA, Thomas A, et al. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem. 2009;284(42):29050–64.PubMedCentralPubMedCrossRef Zhang G, Kernan KA, Thomas A, et al. A novel signaling pathway: fibroblast nicotinic receptor alpha1 binds urokinase and promotes renal fibrosis. J Biol Chem. 2009;284(42):29050–64.PubMedCentralPubMedCrossRef
20.
go back to reference Tithof PK, Elgayyar M, Schuller HM, Barnhill M, Andrews R. 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a nicotine derivative, induces apoptosis of endothelial cells. Am J Physiol Heart Circ Physiol. 2001;281(5):H1946–54.PubMed Tithof PK, Elgayyar M, Schuller HM, Barnhill M, Andrews R. 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a nicotine derivative, induces apoptosis of endothelial cells. Am J Physiol Heart Circ Physiol. 2001;281(5):H1946–54.PubMed
21.
go back to reference Dasgupta P, Chellappan SP. Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle. 2006;5(20):2324–8.PubMedCrossRef Dasgupta P, Chellappan SP. Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle. 2006;5(20):2324–8.PubMedCrossRef
22.
go back to reference Shin VY, Wu WK, Chu KM, et al. Functional role of beta-adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol Sci. 2007;96(1):21–9.PubMedCrossRef Shin VY, Wu WK, Chu KM, et al. Functional role of beta-adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol Sci. 2007;96(1):21–9.PubMedCrossRef
23.
go back to reference Li S, Zhao T, Xin H, et al. Nicotinic acetylcholine receptor alpha7 subunit mediates migration of vascular smooth muscle cells toward nicotine. J Pharmacol Sci. 2004;94(3):334–8.PubMedCrossRef Li S, Zhao T, Xin H, et al. Nicotinic acetylcholine receptor alpha7 subunit mediates migration of vascular smooth muscle cells toward nicotine. J Pharmacol Sci. 2004;94(3):334–8.PubMedCrossRef
24.
go back to reference Di Luozzo G, Pradhan S, Dhadwal AK, Chen A, Ueno H, Sumpio BE. Nicotine induces mitogen-activated protein kinase dependent vascular smooth muscle cell migration. Atherosclerosis. 2005;178(2):271–7.PubMedCrossRef Di Luozzo G, Pradhan S, Dhadwal AK, Chen A, Ueno H, Sumpio BE. Nicotine induces mitogen-activated protein kinase dependent vascular smooth muscle cell migration. Atherosclerosis. 2005;178(2):271–7.PubMedCrossRef
25.
go back to reference Kanda Y, Watanabe Y. Nicotine-induced vascular endothelial growth factor release via the EGFR-ERK pathway in rat vascular smooth muscle cells. Life Sci. 2007;80(15):1409–14.PubMedCrossRef Kanda Y, Watanabe Y. Nicotine-induced vascular endothelial growth factor release via the EGFR-ERK pathway in rat vascular smooth muscle cells. Life Sci. 2007;80(15):1409–14.PubMedCrossRef
26.
go back to reference Stein JJ, Seymour KA, Maier KG, Gahtan V. The effects of nicotine on vascular smooth muscle cell chemotaxis induced by thrombospondin-1 and fibronectin. Am J Surg. 2011;202(5):545–8.PubMedCrossRef Stein JJ, Seymour KA, Maier KG, Gahtan V. The effects of nicotine on vascular smooth muscle cell chemotaxis induced by thrombospondin-1 and fibronectin. Am J Surg. 2011;202(5):545–8.PubMedCrossRef
27.
go back to reference Cucina A, Fuso A, Coluccia P, Cavallaro A. Nicotine inhibits apoptosis and stimulates proliferation in aortic smooth muscle cells through a functional nicotinic acetylcholine receptor. J Surg Res. 2008;150(2):227–35.PubMedCrossRef Cucina A, Fuso A, Coluccia P, Cavallaro A. Nicotine inhibits apoptosis and stimulates proliferation in aortic smooth muscle cells through a functional nicotinic acetylcholine receptor. J Surg Res. 2008;150(2):227–35.PubMedCrossRef
28.
go back to reference Heeschen C, Jang JJ, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7(7):833–9.PubMedCrossRef Heeschen C, Jang JJ, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med. 2001;7(7):833–9.PubMedCrossRef
30.
go back to reference Vazquez-Padron RI, Mateu D, Rodriguez-Menocal L, Wei Y, Webster KA, Pham SM. Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovasc Res. 2010;88(2):296–303.PubMedCentralPubMedCrossRef Vazquez-Padron RI, Mateu D, Rodriguez-Menocal L, Wei Y, Webster KA, Pham SM. Novel role of Egr-1 in nicotine-related neointimal formation. Cardiovasc Res. 2010;88(2):296–303.PubMedCentralPubMedCrossRef
31.
go back to reference Jacob T, Clouden N, Hingorani A, Ascher E. The effect of cotinine on telomerase activity in human vascular smooth muscle cells. J Cardiovasc Surg (Torino). 2009;50(3):345–9. Jacob T, Clouden N, Hingorani A, Ascher E. The effect of cotinine on telomerase activity in human vascular smooth muscle cells. J Cardiovasc Surg (Torino). 2009;50(3):345–9.
32.
go back to reference MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol. 2012;9(3):172–84.PubMedCrossRef MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol. 2012;9(3):172–84.PubMedCrossRef
33.
go back to reference Cucina A, Sapienza P, Corvino V, et al. Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-beta 1. Surgery. 2000;127(3):316–22.PubMedCrossRef Cucina A, Sapienza P, Corvino V, et al. Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-beta 1. Surgery. 2000;127(3):316–22.PubMedCrossRef
34.
go back to reference Cucina A, Sapienza P, Corvino V, et al. Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells. Surgery. 2000;127(1):72–8.PubMedCrossRef Cucina A, Sapienza P, Corvino V, et al. Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells. Surgery. 2000;127(1):72–8.PubMedCrossRef
36.
go back to reference Wu JC, Chruscinski A, De Jesus Perez VA, et al. Cholinergic modulation of angiogenesis: role of the 7 nicotinic acetylcholine receptor. J Cell Biochem. 2009;108(2):433–46.PubMedCentralPubMedCrossRef Wu JC, Chruscinski A, De Jesus Perez VA, et al. Cholinergic modulation of angiogenesis: role of the 7 nicotinic acetylcholine receptor. J Cell Biochem. 2009;108(2):433–46.PubMedCentralPubMedCrossRef
37.
38.
go back to reference Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation. 2003;107(4):604–11.PubMedCrossRef Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation. 2003;107(4):604–11.PubMedCrossRef
39.
go back to reference Antoni G, Langstrom B. Radiopharmaceuticals: molecular imaging using positron emission tomography. Handb Exp Pharmacol. 2008;(185 Pt 1):177–201. Antoni G, Langstrom B. Radiopharmaceuticals: molecular imaging using positron emission tomography. Handb Exp Pharmacol. 2008;(185 Pt 1):177–201.
40.
go back to reference Brust P, Peters D, Deuther-Conrad W. Development of radioligands for the imaging of alpha7 nicotinic acetylcholine receptors with positron emission tomography. Curr Drug Targets. 2012;13(5):594–601.PubMedCrossRef Brust P, Peters D, Deuther-Conrad W. Development of radioligands for the imaging of alpha7 nicotinic acetylcholine receptors with positron emission tomography. Curr Drug Targets. 2012;13(5):594–601.PubMedCrossRef
41.
go back to reference Hagooly A, Rossin R, Welch MJ. Small molecule receptors as imaging targets. Handb Exp Pharmacol. 2008;(185 Pt 2):93–129. Hagooly A, Rossin R, Welch MJ. Small molecule receptors as imaging targets. Handb Exp Pharmacol. 2008;(185 Pt 2):93–129.
42.
go back to reference Heiss WD, Herholz K. Brain receptor imaging. J Nucl Med. 2006;47(2):302–12.PubMed Heiss WD, Herholz K. Brain receptor imaging. J Nucl Med. 2006;47(2):302–12.PubMed
43.
go back to reference Spanoudaki VC, Ziegler SI. PET & SPECT instrumentation. Handb Exp Pharmacol. 2008;(185 Pt 1):53–74. Spanoudaki VC, Ziegler SI. PET & SPECT instrumentation. Handb Exp Pharmacol. 2008;(185 Pt 1):53–74.
45.
go back to reference Xi W, Tian M, Zhang H. Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res. 2011;70(2):133–43.PubMedCrossRef Xi W, Tian M, Zhang H. Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res. 2011;70(2):133–43.PubMedCrossRef
46.
go back to reference Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci. 2010;31(9):411–7.PubMedCrossRef Lancelot S, Zimmer L. Small-animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol Sci. 2010;31(9):411–7.PubMedCrossRef
47.
go back to reference Heiss WD, Habedank B, Klein JC, et al. Metabolic rates in small brain nuclei determined by high-resolution PET. J Nucl Med. 2004;45(11):1811–5.PubMed Heiss WD, Habedank B, Klein JC, et al. Metabolic rates in small brain nuclei determined by high-resolution PET. J Nucl Med. 2004;45(11):1811–5.PubMed
48.
go back to reference Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S69–85.PubMedCrossRef Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S69–85.PubMedCrossRef
49.
go back to reference Sattler B, Kranz M, Starke A, Wilke S, Donat CK, Deuther-Conrad W, et al. Internal dose assessment of (−)-18F-flubatine, comparing animal model datasets of mice and piglets with first-in-human results. J Nucl Med. 2014;55(11):1885–92. Sattler B, Kranz M, Starke A, Wilke S, Donat CK, Deuther-Conrad W, et al. Internal dose assessment of (−)-18F-flubatine, comparing animal model datasets of mice and piglets with first-in-human results. J Nucl Med. 2014;55(11):1885–92.
50.••
go back to reference Patt M, Becker GA, Grossmann U, et al. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (−)-[(18)F]Flubatine in humans. Nucl Med Biol. 2014;41(6):489–94. In this paper, Patt et al. demonstrate the applicability of (−)-[ 18 F]flubatine in visualization of (brain) α4β2 receptor in humans. Patt M, Becker GA, Grossmann U, et al. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (−)-[(18)F]Flubatine in humans. Nucl Med Biol. 2014;41(6):489–94. In this paper, Patt et al. demonstrate the applicability of (−)-[ 18 F]flubatine in visualization of (brain) α4β2 receptor in humans.
51.
go back to reference Smits R, Fischer S, Hiller A, et al. Synthesis and biological evaluation of both enantiomers of [(18)F]flubatine, promising radiotracers with fast kinetics for the imaging of alpha4beta2-nicotinic acetylcholine receptors. Bioorg Med Chem. 2013;22(2):804–12.PubMedCrossRef Smits R, Fischer S, Hiller A, et al. Synthesis and biological evaluation of both enantiomers of [(18)F]flubatine, promising radiotracers with fast kinetics for the imaging of alpha4beta2-nicotinic acetylcholine receptors. Bioorg Med Chem. 2013;22(2):804–12.PubMedCrossRef
52.
go back to reference Fischer S, Hiller A, Smits R, et al. Radiosynthesis of racemic and enantiomerically pure (−)-[18F]flubatine—a promising PET radiotracer for neuroimaging of alpha4beta2 nicotinic acetylcholine receptors. Appl Radiat Isot. 2013;74:128–36.PubMedCrossRef Fischer S, Hiller A, Smits R, et al. Radiosynthesis of racemic and enantiomerically pure (−)-[18F]flubatine—a promising PET radiotracer for neuroimaging of alpha4beta2 nicotinic acetylcholine receptors. Appl Radiat Isot. 2013;74:128–36.PubMedCrossRef
53.
go back to reference Brust P, van den Hoff J, Steinbach J. Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull. 2014;30(5):777–811.PubMedCrossRef Brust P, van den Hoff J, Steinbach J. Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull. 2014;30(5):777–811.PubMedCrossRef
54.••
go back to reference Rötering S, Deuther-Conrad W, Cumming P, et al. Imaging of alpha7 nicotinic acetylcholine receptors in brain and cerebral vasculature of juvenile pigs with [(18)F]NS14490. EJNMMI Res. 2014;4:43. In this publication, the authors show that α7-nAChR tracers, although developed for imaging in the brain, also may be used to visualize vascular acetylcholine receptor.PubMedCentralPubMedCrossRef Rötering S, Deuther-Conrad W, Cumming P, et al. Imaging of alpha7 nicotinic acetylcholine receptors in brain and cerebral vasculature of juvenile pigs with [(18)F]NS14490. EJNMMI Res. 2014;4:43. In this publication, the authors show that α7-nAChR tracers, although developed for imaging in the brain, also may be used to visualize vascular acetylcholine receptor.PubMedCentralPubMedCrossRef
55.
go back to reference Rötering S, Scheunemann M, Fischer S, et al. Radiosynthesis and first evaluation in mice of [(18)F]NS14490 for molecular imaging of alpha7 nicotinic acetylcholine receptors. Bioorg Med Chem. 2013;21(9):2635–42.PubMedCrossRef Rötering S, Scheunemann M, Fischer S, et al. Radiosynthesis and first evaluation in mice of [(18)F]NS14490 for molecular imaging of alpha7 nicotinic acetylcholine receptors. Bioorg Med Chem. 2013;21(9):2635–42.PubMedCrossRef
56.
go back to reference Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2-deoxy-2-[18F]fluoro-D-glucose- A85380-PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol. 2006;95(2):105–9.PubMedCrossRef Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2-deoxy-2-[18F]fluoro-D-glucose- A85380-PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol. 2006;95(2):105–9.PubMedCrossRef
57.••
go back to reference Bucerius J, Manka C, Schmaljohann J, et al. Feasibility of [18F]-2-Fluoro-A85380-PET imaging of human vascular nicotinic acetylcholine receptors in vivo. JACC Cardiovasc Imaging. 2012;5(5):528–36. This is the first publication to show the feasibility of using PET imaging in vivo to detect human vascular nAChRs noninvasively.PubMedCentralPubMedCrossRef Bucerius J, Manka C, Schmaljohann J, et al. Feasibility of [18F]-2-Fluoro-A85380-PET imaging of human vascular nicotinic acetylcholine receptors in vivo. JACC Cardiovasc Imaging. 2012;5(5):528–36. This is the first publication to show the feasibility of using PET imaging in vivo to detect human vascular nAChRs noninvasively.PubMedCentralPubMedCrossRef
58.
go back to reference Cooke JP. Imaging vascular nicotine receptors: a new window onto vascular disease. JACC Cardiovasc Imaging. 2012;5(5):537–9.PubMedCrossRef Cooke JP. Imaging vascular nicotine receptors: a new window onto vascular disease. JACC Cardiovasc Imaging. 2012;5(5):537–9.PubMedCrossRef
59.
go back to reference Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berlin). 2006;188(4):509–20.CrossRef Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berlin). 2006;188(4):509–20.CrossRef
60.
go back to reference Kadir A, Darreh-Shori T, Almkvist O, et al. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging. 2008;29(8):1204–17.PubMedCrossRef Kadir A, Darreh-Shori T, Almkvist O, et al. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging. 2008;29(8):1204–17.PubMedCrossRef
61.
go back to reference Kadir A, Darreh-Shori T, Almkvist O, Wall A, Langstrom B, Nordberg A. Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berlin). 2007;191(4):1005–14.CrossRef Kadir A, Darreh-Shori T, Almkvist O, Wall A, Langstrom B, Nordberg A. Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berlin). 2007;191(4):1005–14.CrossRef
62.
go back to reference Nordberg A, Hartvig P, Lilja A, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect. 1990;2(3):215–24.PubMedCrossRef Nordberg A, Hartvig P, Lilja A, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect. 1990;2(3):215–24.PubMedCrossRef
63.
go back to reference Pichika R, Easwaramoorthy B, Collins D, et al. Nicotinic alpha4beta2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol. 2006;33(3):295–304.PubMedCrossRef Pichika R, Easwaramoorthy B, Collins D, et al. Nicotinic alpha4beta2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol. 2006;33(3):295–304.PubMedCrossRef
64.
go back to reference Pichika R, Easwaramoorthy B, Christian BT, et al. Nicotinic alpha4beta2 receptor imaging agents. Part III. Synthesis and biological evaluation of 3-(2-(S)-azetidinylmethoxy)-5-(3'-18F-fluoropropyl)pyridine (18F-nifzetidine). Nucl Med Biol. 2011;38(8):1183–92.PubMedCentralPubMedCrossRef Pichika R, Easwaramoorthy B, Christian BT, et al. Nicotinic alpha4beta2 receptor imaging agents. Part III. Synthesis and biological evaluation of 3-(2-(S)-azetidinylmethoxy)-5-(3'-18F-fluoropropyl)pyridine (18F-nifzetidine). Nucl Med Biol. 2011;38(8):1183–92.PubMedCentralPubMedCrossRef
65.
go back to reference Pichika R, Kuruvilla SA, Patel N, et al. Nicotinic alpha4beta2 receptor imaging agents. Part IV. Synthesis and biological evaluation of 3-(2-(S)-3,4-dehydropyrrolinyl methoxy)-5-(3'-(1)(8)F-fluoropropyl)pyridine ((1)(8)F-Nifrolene) using PET. Nucl Med Biol. 2012;40(1):117–25.PubMedCentralPubMedCrossRef Pichika R, Kuruvilla SA, Patel N, et al. Nicotinic alpha4beta2 receptor imaging agents. Part IV. Synthesis and biological evaluation of 3-(2-(S)-3,4-dehydropyrrolinyl methoxy)-5-(3'-(1)(8)F-fluoropropyl)pyridine ((1)(8)F-Nifrolene) using PET. Nucl Med Biol. 2012;40(1):117–25.PubMedCentralPubMedCrossRef
66.
go back to reference Mukhin AG, Kimes AS, Chefer SI, et al. Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2-18F-FA-85380. J Nucl Med. 2008;49(10):1628–35.PubMedCentralPubMedCrossRef Mukhin AG, Kimes AS, Chefer SI, et al. Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2-18F-FA-85380. J Nucl Med. 2008;49(10):1628–35.PubMedCentralPubMedCrossRef
67.
go back to reference Staley JK, van Dyck CH, Weinzimmer D, et al. 123I-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: feasibility and reproducibility. J Nucl Med. 2005;46(9):1466–72.PubMed Staley JK, van Dyck CH, Weinzimmer D, et al. 123I-5-IA-85380 SPECT measurement of nicotinic acetylcholine receptors in human brain by the constant infusion paradigm: feasibility and reproducibility. J Nucl Med. 2005;46(9):1466–72.PubMed
68.
go back to reference Ogawa M, Tsukada H, Hatano K, Ouchi Y, Saji H, Magata Y. Central in vivo nicotinic acetylcholine receptor imaging agents for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Biol Pharm Bull. 2009;32(3):337–40.PubMedCrossRef Ogawa M, Tsukada H, Hatano K, Ouchi Y, Saji H, Magata Y. Central in vivo nicotinic acetylcholine receptor imaging agents for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Biol Pharm Bull. 2009;32(3):337–40.PubMedCrossRef
69.
go back to reference Valette H, Xiao Y, Peyronneau MA, et al. 18F-ZW-104: a new radioligand for imaging neuronal nicotinic acetylcholine receptors—in vitro binding properties and PET studies in baboons. J Nucl Med. 2009;50(8):1349–55.PubMedCrossRef Valette H, Xiao Y, Peyronneau MA, et al. 18F-ZW-104: a new radioligand for imaging neuronal nicotinic acetylcholine receptors—in vitro binding properties and PET studies in baboons. J Nucl Med. 2009;50(8):1349–55.PubMedCrossRef
70.
go back to reference Gao Y, Kuwabara H, Spivak CE, et al. Discovery of (−)-7-methyl-2-exo-[3'-(6-[18F]fluoropyridin-2-yl)-5'-pyridinyl]-7-azabicyclo[2.2.1]heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (alpha4beta2-nAChR) with optimal positron emission tomography imaging properties. J Med Chem. 2008;51(15):4751–64.PubMedCrossRef Gao Y, Kuwabara H, Spivak CE, et al. Discovery of (−)-7-methyl-2-exo-[3'-(6-[18F]fluoropyridin-2-yl)-5'-pyridinyl]-7-azabicyclo[2.2.1]heptane, a radiolabeled antagonist for cerebral nicotinic acetylcholine receptor (alpha4beta2-nAChR) with optimal positron emission tomography imaging properties. J Med Chem. 2008;51(15):4751–64.PubMedCrossRef
71.
go back to reference Horti AG, Gao Y, Kuwabara H, Dannals RF. Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci. 2008;86(15–16):575–84. Horti AG, Gao Y, Kuwabara H, Dannals RF. Development of radioligands with optimized imaging properties for quantification of nicotinic acetylcholine receptors by positron emission tomography. Life Sci. 2008;86(15–16):575–84.
72.
go back to reference Wong DF, Kuwabara H, Kim J, et al. PET imaging of high-affinity alpha4beta2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med. 2013;54(8):1308–14.PubMedCrossRef Wong DF, Kuwabara H, Kim J, et al. PET imaging of high-affinity alpha4beta2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J Nucl Med. 2013;54(8):1308–14.PubMedCrossRef
73.
go back to reference Meyer PM, Tiepolt S, Barthel H, Hesse S, Sabri O. Radioligand imaging of alpha4beta2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease. Q J Nucl Med Mol Imaging. 2014;58(4):376–86.PubMed Meyer PM, Tiepolt S, Barthel H, Hesse S, Sabri O. Radioligand imaging of alpha4beta2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease. Q J Nucl Med Mol Imaging. 2014;58(4):376–86.PubMed
74.
go back to reference Villemagne VL, Horti A, Scheffel U, et al. Imaging nicotinic acetylcholine receptors with fluorine-18-FPH, an epibatidine analog. J Nucl Med. 1997;38(11):1737–41.PubMed Villemagne VL, Horti A, Scheffel U, et al. Imaging nicotinic acetylcholine receptors with fluorine-18-FPH, an epibatidine analog. J Nucl Med. 1997;38(11):1737–41.PubMed
75.
go back to reference Horti AG, Chefer SI, Mukhin AG, et al. 6-[18F]fluoro-A-85380, a novel radioligand for in vivo imaging of central nicotinic acetylcholine receptors. Life Sci. 2000;67(4):463–9.PubMedCrossRef Horti AG, Chefer SI, Mukhin AG, et al. 6-[18F]fluoro-A-85380, a novel radioligand for in vivo imaging of central nicotinic acetylcholine receptors. Life Sci. 2000;67(4):463–9.PubMedCrossRef
76.
go back to reference Horti AG, Ravert HT, Gao Y, et al. Synthesis and evaluation of new radioligands [(11)C]A-833834 and [(11)C]A-752274 for positron-emission tomography of alpha7-nicotinic acetylcholine receptors. Nucl Med Biol. 2013;40(3):395–402.PubMedCentralPubMedCrossRef Horti AG, Ravert HT, Gao Y, et al. Synthesis and evaluation of new radioligands [(11)C]A-833834 and [(11)C]A-752274 for positron-emission tomography of alpha7-nicotinic acetylcholine receptors. Nucl Med Biol. 2013;40(3):395–402.PubMedCentralPubMedCrossRef
77.
go back to reference Toyohara J, Ishiwata K, Sakata M, et al. In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS One. 2010;5(2):e8961.PubMedCentralPubMedCrossRef Toyohara J, Ishiwata K, Sakata M, et al. In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys. PLoS One. 2010;5(2):e8961.PubMedCentralPubMedCrossRef
78.
go back to reference Gao Y, Ravert HT, Valentine H, et al. 5-(5-(6-[(11)C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)pyridin-2-yl)-1H-indole as a potential PET radioligand for imaging cerebral alpha7-nAChR in mice. Bioorg Med Chem. 2012;20(12):3698–702.PubMedCentralPubMedCrossRef Gao Y, Ravert HT, Valentine H, et al. 5-(5-(6-[(11)C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)pyridin-2-yl)-1H-indole as a potential PET radioligand for imaging cerebral alpha7-nAChR in mice. Bioorg Med Chem. 2012;20(12):3698–702.PubMedCentralPubMedCrossRef
79.
go back to reference Ogawa M, Nishiyama S, Tsukada H, et al. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor alpha7 subtype. Nucl Med Biol. 2010;37(3):347–55.PubMedCrossRef Ogawa M, Nishiyama S, Tsukada H, et al. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor alpha7 subtype. Nucl Med Biol. 2010;37(3):347–55.PubMedCrossRef
80.
go back to reference Sakata M, Wu J, Toyohara J, et al. Biodistribution and radiation dosimetry of the alpha7 nicotinic acetylcholine receptor ligand [11C]CHIBA-1001 in humans. Nucl Med Biol. 2011;38(3):443–8.PubMedCrossRef Sakata M, Wu J, Toyohara J, et al. Biodistribution and radiation dosimetry of the alpha7 nicotinic acetylcholine receptor ligand [11C]CHIBA-1001 in humans. Nucl Med Biol. 2011;38(3):443–8.PubMedCrossRef
81.
go back to reference Wu J, Toyohara J, Tanibuchi Y, et al. Pharmacological characterization of [(125)I]CHIBA-1006 binding, a new radioligand for alpha7 nicotinic acetylcholine receptors, to rat brain membranes. Brain Res. 2010;1360:130–7.PubMedCrossRef Wu J, Toyohara J, Tanibuchi Y, et al. Pharmacological characterization of [(125)I]CHIBA-1006 binding, a new radioligand for alpha7 nicotinic acetylcholine receptors, to rat brain membranes. Brain Res. 2010;1360:130–7.PubMedCrossRef
82.
go back to reference Hashimoto K, Ishima T, Fujita Y, et al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective alpha7 nicotinic receptor agonist SSR180711. Biol Psychiatry. 2008;63(1):92–7.PubMedCrossRef Hashimoto K, Ishima T, Fujita Y, et al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective alpha7 nicotinic receptor agonist SSR180711. Biol Psychiatry. 2008;63(1):92–7.PubMedCrossRef
83.
go back to reference Toyohara J, Sakata M, Wu J, et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping alpha7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009;23(3):301–9.PubMedCrossRef Toyohara J, Sakata M, Wu J, et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping alpha7 nicotinic receptors by positron emission tomography. Ann Nucl Med. 2009;23(3):301–9.PubMedCrossRef
84.
go back to reference Deuther-Conrad W, Fischer S, Hiller A, et al. Assessment of alpha7 nicotinic acetylcholine receptor availability in juvenile pig brain with [(1)(8)F]NS10743. Eur J Nucl Med Mol Imaging. 2011;38(8):1541–9.PubMedCrossRef Deuther-Conrad W, Fischer S, Hiller A, et al. Assessment of alpha7 nicotinic acetylcholine receptor availability in juvenile pig brain with [(1)(8)F]NS10743. Eur J Nucl Med Mol Imaging. 2011;38(8):1541–9.PubMedCrossRef
85.
go back to reference Deuther-Conrad W, Fischer S, Hiller A, et al. Molecular imaging of alpha7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging. 2009;36(5):791–800.PubMedCrossRef Deuther-Conrad W, Fischer S, Hiller A, et al. Molecular imaging of alpha7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur J Nucl Med Mol Imaging. 2009;36(5):791–800.PubMedCrossRef
86.
go back to reference Wong DF, Kuwabara H, Pomper M, et al. Human brain imaging of alpha7 nAChR with [(18)F]ASEM: a new PET radiotracer for neuropsychiatry and determination of drug occupancy. Mol Imaging Biol. 2014;16(5):730–8.PubMedCrossRef Wong DF, Kuwabara H, Pomper M, et al. Human brain imaging of alpha7 nAChR with [(18)F]ASEM: a new PET radiotracer for neuropsychiatry and determination of drug occupancy. Mol Imaging Biol. 2014;16(5):730–8.PubMedCrossRef
87.
go back to reference Gao Y, Kellar KJ, Yasuda RP, et al. Derivatives of dibenzothiophene for positron emission tomography imaging of alpha7-nicotinic acetylcholine receptors. J Med Chem. 2013;56(19):7574–89.PubMedCrossRef Gao Y, Kellar KJ, Yasuda RP, et al. Derivatives of dibenzothiophene for positron emission tomography imaging of alpha7-nicotinic acetylcholine receptors. J Med Chem. 2013;56(19):7574–89.PubMedCrossRef
88.
go back to reference Ettrup A, Mikkelsen JD, Lehel S, et al. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements. J Nucl Med. 2011;52(9):1449–56.PubMedCrossRef Ettrup A, Mikkelsen JD, Lehel S, et al. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements. J Nucl Med. 2011;52(9):1449–56.PubMedCrossRef
89.
go back to reference Rötering S, Deuther-Conrad W, Cumming P, et al. Imaging of α7 nicotinic acetylcholine receptors in brain and cerebral vasculature of juvenile pigs with [18F] NS14490. EJNMMI Res. 2014;4:43.PubMedCentralPubMedCrossRef Rötering S, Deuther-Conrad W, Cumming P, et al. Imaging of α7 nicotinic acetylcholine receptors in brain and cerebral vasculature of juvenile pigs with [18F] NS14490. EJNMMI Res. 2014;4:43.PubMedCentralPubMedCrossRef
Metadata
Title
PET Imaging of the Human Nicotinic Cholinergic Pathway in Atherosclerosis
Authors
Matthias Bauwens
Felix M. Mottaghy
Jan Bucerius
Publication date
01-08-2015
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 8/2015
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-015-0614-8

Other articles of this Issue 8/2015

Current Cardiology Reports 8/2015 Go to the issue

Invasive Electrophysiology and Pacing (EK Heist, Section Editor)

Pacing the Heart with Genes: Recent Progress in Biological Pacing

New Therapies for Cardiovascular Disease (KW Mahaffey, Section Editor)

Antiplatelet Therapy During PCI for Patients with Stable Angina and Atrial Fibrillation

Invasive Electrophysiology and Pacing (EK Heist, Section Editor)

Management of Ventricular Arrhythmias in Patients with Mechanical Ventricular Support Devices

Peripheral Vascular Disease (MR Jaff, Section Editor)

Nonatherosclerotic PAD: Approach to Exertional Pain in the Lower Extremities