Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2013

01-01-2013 | Original Article

PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) in humans: a preliminary study

Authors: Wen-Sheng Huang, San-Yuan Huang, Pei-Shen Ho, Kuo-Hsing Ma, Ya-Yao Huang, Chin-Bin Yeh, Ren-Syuan Liu, Cheng-Yi Cheng, Chyng-Yann Shiue

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 1/2013

Login to get access

Abstract

Purpose

The aim of this study was to assess the feasibility of using 4-[18F]-ADAM as a brain SERT imaging agent in humans.

Methods

Enrolled in the study were 19 healthy Taiwanese subjects (11 men, 8 women; age 33 ± 9 years). The PET data were semiquantitatively analyzed and expressed as specific uptake ratios (SUR) and distribution volume ratios (DVR) using the software package PMOD. The SUR and DVR of 4-[18F]-ADAM in the raphe nucleus (RN), midbrain (MB), thalamus (TH), striatum (STR) and prefrontal cortex (PFC) were determined using the cerebellum (CB) as the reference region.

Results

4-[18F]-ADAM bound to known SERT-rich regions in human brain. The order of the regional brain uptake was MB (RN) > TH > STR > PFC > CB. The DVR (n = 4, t* = 60 min) in the RN, TH, STR and PFC were 3.00 ± 0.50, 2.25 ± 0.45, 2.05 ± 0.31 and 1.40 ± 0.13, respectively. The optimal time for imaging brain SERT with 4-[18F]-ADAM was 120–140 min after injection. At the optimal imaging time, the SURs (n = 15) in the MB, TH, STR, and PFC were 2.25 ± 0.20, 2.28 ± 0.20, 2.12 ± 0.18 and 1.47 ± 0.14, respectively. There were no significant differences in SERT availability between men and women (p < 0.05).

Conclusion

The results of this study showed that 4-[18F]-ADAM was safe for human studies and its distribution in human brain appeared to correlate well with the known distribution of SERT in the human brain. In addition, it had high specific binding and a reasonable optimal time for imaging brain SERT in humans. Thus, 4-[18F]-ADAM may be feasible for assessing the status of brain SERT in humans.
Literature
1.
go back to reference Kish SJ. How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy? Pharmacol Biochem Behav. 2002;71:845–55.PubMedCrossRef Kish SJ. How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy? Pharmacol Biochem Behav. 2002;71:845–55.PubMedCrossRef
2.
go back to reference Siegel A, Roeling TA, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev. 1999;23:359–89.PubMedCrossRef Siegel A, Roeling TA, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev. 1999;23:359–89.PubMedCrossRef
3.
go back to reference Mann J. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology. 1999;21:99S–105.PubMed Mann J. Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology. 1999;21:99S–105.PubMed
4.
go back to reference Meltzer C, Smith G, DeKosky S, et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology. 1998;18:407–30.PubMedCrossRef Meltzer C, Smith G, DeKosky S, et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology. 1998;18:407–30.PubMedCrossRef
5.
go back to reference Jovanovic H, Lundberg J, Karlsson P, et al. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage. 2008;39:1408–19.PubMedCrossRef Jovanovic H, Lundberg J, Karlsson P, et al. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage. 2008;39:1408–19.PubMedCrossRef
6.
go back to reference Pacher P, Kecskemeti V. Trends in the development of new antidepressants. Is there a light at the end of the tunnel? Curr Med Chem. 2004;11:925–43.PubMedCrossRef Pacher P, Kecskemeti V. Trends in the development of new antidepressants. Is there a light at the end of the tunnel? Curr Med Chem. 2004;11:925–43.PubMedCrossRef
7.
go back to reference Brust P, Hesse S, Muller U, Szabo Z. Neuroimaging of the serotonin transporter: possibilities and pitfalls. Curr Psychiatry Rev. 2006;2:111–49.CrossRef Brust P, Hesse S, Muller U, Szabo Z. Neuroimaging of the serotonin transporter: possibilities and pitfalls. Curr Psychiatry Rev. 2006;2:111–49.CrossRef
8.
go back to reference Meyer J. Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci. 2007;32:86–102.PubMed Meyer J. Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci. 2007;32:86–102.PubMed
9.
go back to reference Smith D, Jakobsen S. Molecular tools for assessing human depression by positron emission tomography. Eur Neuropsychopharmacol. 2009;19:611–28.PubMedCrossRef Smith D, Jakobsen S. Molecular tools for assessing human depression by positron emission tomography. Eur Neuropsychopharmacol. 2009;19:611–28.PubMedCrossRef
10.
go back to reference Suehiro M, Ravert HT, Dannals RF, Scheffel U, Wagner Jr HN. Synthesis of a radiotracer for studying serotonin uptake sites with positron emission tomography: [11C]McN–5652–Z. J Labelled Cpd Radiopharm. 1992;31:841–8.CrossRef Suehiro M, Ravert HT, Dannals RF, Scheffel U, Wagner Jr HN. Synthesis of a radiotracer for studying serotonin uptake sites with positron emission tomography: [11C]McN–5652–Z. J Labelled Cpd Radiopharm. 1992;31:841–8.CrossRef
11.
go back to reference Buck A, Gucker PM, Schönbächler RD, et al. Evaluation of serotonergic transporters using PET and [11C](+)McN-5652: assessment of methods. J Cereb Blood Flow Metab. 2000;20:253–62.PubMedCrossRef Buck A, Gucker PM, Schönbächler RD, et al. Evaluation of serotonergic transporters using PET and [11C](+)McN-5652: assessment of methods. J Cereb Blood Flow Metab. 2000;20:253–62.PubMedCrossRef
12.
go back to reference Suehiro M, Greenberg J, Shiue C, Gonzalez C, Dembowski B, Reivich M. Radiosynthesis and biodistribution of the S-[18F]fluoroethyl analog of McN5652. Nucl Med Biol. 1996;23(4):407–12.PubMedCrossRef Suehiro M, Greenberg J, Shiue C, Gonzalez C, Dembowski B, Reivich M. Radiosynthesis and biodistribution of the S-[18F]fluoroethyl analog of McN5652. Nucl Med Biol. 1996;23(4):407–12.PubMedCrossRef
13.
go back to reference Zessin J, Eskola O, Brust P, et al. Synthesis of S-([18F] fluoromethyl)-(+)-McN5652 as a potential PET radioligand for the serotonin transporter. Nucl Med Biol. 2001;28(7):857–63.PubMedCrossRef Zessin J, Eskola O, Brust P, et al. Synthesis of S-([18F] fluoromethyl)-(+)-McN5652 as a potential PET radioligand for the serotonin transporter. Nucl Med Biol. 2001;28(7):857–63.PubMedCrossRef
14.
go back to reference Hesse S, Brust P, Mäding P, et al. Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. Eur J Nucl Med Mol Imaging. 2012;39(6):1001–11.PubMedCrossRef Hesse S, Brust P, Mäding P, et al. Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. Eur J Nucl Med Mol Imaging. 2012;39(6):1001–11.PubMedCrossRef
15.
go back to reference Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of 11C-labeled 2-(phenylthio) araalkylamines. J Med Chem. 2000;43:3103–10.PubMedCrossRef Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of 11C-labeled 2-(phenylthio) araalkylamines. J Med Chem. 2000;43:3103–10.PubMedCrossRef
16.
go back to reference Huang Y, Hwang D, Bae S, et al. A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM). Nucl Med Biol. 2004;31:543–56.PubMedCrossRef Huang Y, Hwang D, Bae S, et al. A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM). Nucl Med Biol. 2004;31:543–56.PubMedCrossRef
17.
go back to reference Tarkiainen J, Vercouillie J, Emond P, et al. Carbon–11 labelling of MADAM in two different positions: a highly selective PET radioligand for the serotonin transporter. J Labelled Cpd Radiopharm. 2001;44:1013–23.CrossRef Tarkiainen J, Vercouillie J, Emond P, et al. Carbon–11 labelling of MADAM in two different positions: a highly selective PET radioligand for the serotonin transporter. J Labelled Cpd Radiopharm. 2001;44:1013–23.CrossRef
18.
go back to reference Jarkas N, Votaw JR, Voll RJ, et al. Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters. Nucl Med Biol. 2005;32:211–24.PubMedCrossRef Jarkas N, Votaw JR, Voll RJ, et al. Carbon-11 HOMADAM: a novel PET radiotracer for imaging serotonin transporters. Nucl Med Biol. 2005;32:211–24.PubMedCrossRef
19.
go back to reference Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S. Positron emission tomography quantification of [11C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab. 2001;21:1342–53.PubMedCrossRef Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S. Positron emission tomography quantification of [11C]-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab. 2001;21:1342–53.PubMedCrossRef
20.
go back to reference Nye JA, Votaw JR, Jarkas N, et al. Compartmental modeling of 11C-HOMADAM binding to the serotonin transporter in the healthy human brain. J Nucl Med. 2008;49:2018–25.PubMedCrossRef Nye JA, Votaw JR, Jarkas N, et al. Compartmental modeling of 11C-HOMADAM binding to the serotonin transporter in the healthy human brain. J Nucl Med. 2008;49:2018–25.PubMedCrossRef
21.
go back to reference Nabulsi N, Williams W, Planeta-Wilson B, et al. The serotonin transporter tracer [11C]AFM provides high specific binding signals in humans. J Nucl Med. 2008;49:80. Nabulsi N, Williams W, Planeta-Wilson B, et al. The serotonin transporter tracer [11C]AFM provides high specific binding signals in humans. J Nucl Med. 2008;49:80.
22.
go back to reference Lundberg J, Odano I, Olsson H, Halldin C, Farde L. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med. 2005;46:1505–15.PubMed Lundberg J, Odano I, Olsson H, Halldin C, Farde L. Quantification of 11C-MADAM binding to the serotonin transporter in the human brain. J Nucl Med. 2005;46:1505–15.PubMed
23.
go back to reference Oya S, Choi SR, Coenen H, Kung HF. New PET imaging agent for the serotonin transporter: [(18)F]ACF (2-[(2-amino-4-chloro-5-fluorophenyl)thio]-N,N-dimethyl-benzenmethanamine). J Med Chem. 2002;45:4716–23PubMedCrossRef Oya S, Choi SR, Coenen H, Kung HF. New PET imaging agent for the serotonin transporter: [(18)F]ACF (2-[(2-amino-4-chloro-5-fluorophenyl)thio]-N,N-dimethyl-benzenmethanamine). J Med Chem. 2002;45:4716–23PubMedCrossRef
24.
go back to reference Shiue GG, Fang P, Shiue CY. Synthesis of N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio) benzylamine as a serotonin transporter imaging agent. Appl Radiat Isot. 2003;58:183–91.PubMedCrossRef Shiue GG, Fang P, Shiue CY. Synthesis of N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio) benzylamine as a serotonin transporter imaging agent. Appl Radiat Isot. 2003;58:183–91.PubMedCrossRef
25.
go back to reference Peng CJ, Huang YY, Huang WS, Shiue CY. An automated synthesis of N,N-dimethyl-2-(2-amino-4-[18F] fluorophenylthio) benzylamine (4-[18F]-ADAM) for imaging serotonin transporters. Appl Radiat Isot. 2008;66:625–31.PubMedCrossRef Peng CJ, Huang YY, Huang WS, Shiue CY. An automated synthesis of N,N-dimethyl-2-(2-amino-4-[18F] fluorophenylthio) benzylamine (4-[18F]-ADAM) for imaging serotonin transporters. Appl Radiat Isot. 2008;66:625–31.PubMedCrossRef
26.
go back to reference Huang YY, Huang WS, Chu TC, Shiue CY. An improved synthesis of 4-[18F]-ADAM, a potent serotonin transporter imaging agent. Appl Radiat Isot. 2009;67:1063–7.PubMedCrossRef Huang YY, Huang WS, Chu TC, Shiue CY. An improved synthesis of 4-[18F]-ADAM, a potent serotonin transporter imaging agent. Appl Radiat Isot. 2009;67:1063–7.PubMedCrossRef
27.
go back to reference Fang P, Shiue GG, Shimazu T, Greenberg JH, Shiue CY. Synthesis and evaluation of N,N-dimethyl-2-(2-amino-5-[18F]fluorophenylthio)benzylamine as a serotonin transporter imaging agent. Appl Radiat Isot. 2004;61:1247–54.PubMedCrossRef Fang P, Shiue GG, Shimazu T, Greenberg JH, Shiue CY. Synthesis and evaluation of N,N-dimethyl-2-(2-amino-5-[18F]fluorophenylthio)benzylamine as a serotonin transporter imaging agent. Appl Radiat Isot. 2004;61:1247–54.PubMedCrossRef
28.
go back to reference Huang Y, Bae SA, Zhu Z, Guo N, Roth BL, Laruelle M. Fluorinated diaryl sulfides as serotonin transporter ligands: synthesis, structure-activity relationship study, and in vivo evaluation of fluorine-18-labeled compounds as PET imaging agents. J Med Chem. 2005;48:2559–70.PubMedCrossRef Huang Y, Bae SA, Zhu Z, Guo N, Roth BL, Laruelle M. Fluorinated diaryl sulfides as serotonin transporter ligands: synthesis, structure-activity relationship study, and in vivo evaluation of fluorine-18-labeled compounds as PET imaging agents. J Med Chem. 2005;48:2559–70.PubMedCrossRef
29.
go back to reference Parhi AK, Wang JL, Oya S, Choi SR, Kung MP, Kung HF. 2-(2′-((Dimethylamino) methyl)-4′-(fluoroalkoxy)-phenylthio)benzenamine derivatives as serotonin transporter imaging agents. J Med Chem. 2007;50:6673–84.PubMedCrossRef Parhi AK, Wang JL, Oya S, Choi SR, Kung MP, Kung HF. 2-(2′-((Dimethylamino) methyl)-4′-(fluoroalkoxy)-phenylthio)benzenamine derivatives as serotonin transporter imaging agents. J Med Chem. 2007;50:6673–84.PubMedCrossRef
30.
go back to reference Garg S, Thopate S, Minton R, Kimberly W, Lynch A, Garg P. 3-Amino-4-(2-((4-[18F]fluorobenzyl)methylamino)methylphenylsulfanyl)benzonitrile, an F-18 fluorobenzyl analogue of DASB: synthesis, in vitro binding, and in vivo biodistribution studies. Bioconjug Chem. 2007;18(5):1612–8.PubMedCrossRef Garg S, Thopate S, Minton R, Kimberly W, Lynch A, Garg P. 3-Amino-4-(2-((4-[18F]fluorobenzyl)methylamino)methylphenylsulfanyl)benzonitrile, an F-18 fluorobenzyl analogue of DASB: synthesis, in vitro binding, and in vivo biodistribution studies. Bioconjug Chem. 2007;18(5):1612–8.PubMedCrossRef
31.
go back to reference Wang JL, Parhi AK, Oya S, Lieberman B, Kung MP, Kung HF. 2-(2′-((Dimethylamino)methyl)-4′-(3-[(18)F]fluoropropoxy)-phenylthio)benzenamine for positron emission tomography imaging of serotonin transporters. Nucl Med Biol. 2008;35:447–58.PubMedCrossRef Wang JL, Parhi AK, Oya S, Lieberman B, Kung MP, Kung HF. 2-(2′-((Dimethylamino)methyl)-4′-(3-[(18)F]fluoropropoxy)-phenylthio)benzenamine for positron emission tomography imaging of serotonin transporters. Nucl Med Biol. 2008;35:447–58.PubMedCrossRef
32.
go back to reference Shiue GG, Choi SR, Fang P, et al. N,N-Dimethyl-2-(2-amino-4-18F-fluorophenylthio)-benzylamine (4-18F-ADAM): an improved PET radioligand for serotonin transporters. J Nucl Med. 2003;44:1890–7.PubMed Shiue GG, Choi SR, Fang P, et al. N,N-Dimethyl-2-(2-amino-4-18F-fluorophenylthio)-benzylamine (4-18F-ADAM): an improved PET radioligand for serotonin transporters. J Nucl Med. 2003;44:1890–7.PubMed
33.
go back to reference Ma KH, Huang WS, Kuo YY, et al. Validation of 4-[18F]-ADAM as a SERT imaging agent using micro-PET and autoradiography. Neuroimage. 2009;45:687–93.PubMedCrossRef Ma KH, Huang WS, Kuo YY, et al. Validation of 4-[18F]-ADAM as a SERT imaging agent using micro-PET and autoradiography. Neuroimage. 2009;45:687–93.PubMedCrossRef
34.
go back to reference Chen YA, Huang WS, Lin YS, et al. Characterization of 4-[18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study. Nucl Med Biol. 2012;39:279–85.PubMedCrossRef Chen YA, Huang WS, Lin YS, et al. Characterization of 4-[18F]-ADAM as an imaging agent for SERT in non-human primate brain using PET: a dynamic study. Nucl Med Biol. 2012;39:279–85.PubMedCrossRef
35.
go back to reference Huang YY, Ma KH, Tseng TW, et al. Biodistribution, toxicity and radiation dosimetry studies of the serotonin transporter radioligand 4-[18F]-ADAM in rats and monkeys. Eur J Nucl Med Mol Imaging. 2010;37:545–55.PubMedCrossRef Huang YY, Ma KH, Tseng TW, et al. Biodistribution, toxicity and radiation dosimetry studies of the serotonin transporter radioligand 4-[18F]-ADAM in rats and monkeys. Eur J Nucl Med Mol Imaging. 2010;37:545–55.PubMedCrossRef
36.
go back to reference Huang W, Huang S, Yeh C, et al. 18F-ADAM PET in healthy and drug-naive depressant subjects. J Nucl Med. 2007;48:261P. Huang W, Huang S, Yeh C, et al. 18F-ADAM PET in healthy and drug-naive depressant subjects. J Nucl Med. 2007;48:261P.
37.
go back to reference Varrone A, Asenbaum S, Borght TV, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.PubMedCrossRef Varrone A, Asenbaum S, Borght TV, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.PubMedCrossRef
38.
go back to reference Kish SJ, Furukawa Y, Chang LJ, et al. Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol. 2005;32:123–8.PubMedCrossRef Kish SJ, Furukawa Y, Chang LJ, et al. Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol. 2005;32:123–8.PubMedCrossRef
39.
go back to reference Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40.PubMedCrossRef Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40.PubMedCrossRef
40.
go back to reference Huang SC, Truong D, Wu HM, et al. An internet-based "kinetic imaging system" (KIS) for MicroPET. Mol Imaging Biol. 2005;7:330–41.PubMedCrossRef Huang SC, Truong D, Wu HM, et al. An internet-based "kinetic imaging system" (KIS) for MicroPET. Mol Imaging Biol. 2005;7:330–41.PubMedCrossRef
41.
go back to reference Laruelle M, Vanisberg M, Maloteaux J. Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry. 1988;24:299–309.PubMedCrossRef Laruelle M, Vanisberg M, Maloteaux J. Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry. 1988;24:299–309.PubMedCrossRef
42.
go back to reference Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40:288–95.PubMed Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40:288–95.PubMed
43.
go back to reference Rosel P, Menchon J, Oros M, et al. Regional distribution of specific high affinity binding sites for 3H-imipramine and 3H-paroxetine in human brain. J Neural Transm. 1997;104:89–96.PubMedCrossRef Rosel P, Menchon J, Oros M, et al. Regional distribution of specific high affinity binding sites for 3H-imipramine and 3H-paroxetine in human brain. J Neural Transm. 1997;104:89–96.PubMedCrossRef
44.
go back to reference Logan J. Strategies for quantifying PET imaging data from tracer studies of brain receptors and enzymes. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. New York: Wiley Online Library; 2003. p. 501–27. Logan J. Strategies for quantifying PET imaging data from tracer studies of brain receptors and enzymes. In: Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. New York: Wiley Online Library; 2003. p. 501–27.
45.
go back to reference Huang Y, Narendran R, Bae S, et al. A PET imaging agent with fast kinetics: synthesis and in vivo evaluation of the serotonin transporter ligand [11C]2-[2-dimethylaminomethylphenylthio)]-5-fluorophenylamine ([11C]AFA). Nucl Med Biol. 2004;31:727–38.PubMedCrossRef Huang Y, Narendran R, Bae S, et al. A PET imaging agent with fast kinetics: synthesis and in vivo evaluation of the serotonin transporter ligand [11C]2-[2-dimethylaminomethylphenylthio)]-5-fluorophenylamine ([11C]AFA). Nucl Med Biol. 2004;31:727–38.PubMedCrossRef
46.
go back to reference Huang Y, Bae SA, Zhu Z, et al. [18F]AFM is a specific PET radiotracer for the serotonin transporters: comparison with [11C]AFM. Neuroimage. 2002;16:S2. Huang Y, Bae SA, Zhu Z, et al. [18F]AFM is a specific PET radiotracer for the serotonin transporters: comparison with [11C]AFM. Neuroimage. 2002;16:S2.
47.
go back to reference Naganawa M, Planeta-Wilson B, Nabulsi N, et al. Quantification of serotonin transporters with [11C]AFM: evaluation of reference region methods. Neuroimage. 2008;41:T28.CrossRef Naganawa M, Planeta-Wilson B, Nabulsi N, et al. Quantification of serotonin transporters with [11C]AFM: evaluation of reference region methods. Neuroimage. 2008;41:T28.CrossRef
48.
go back to reference Huang Y, Hwang DR, Narendran R, et al. Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [11C]McN 5652, [11C]ADAM, [11C]DASB, [11C]DAPA, and [11C]AFM. J Cereb Blood Flow Metab. 2002;22:1377–98.PubMedCrossRef Huang Y, Hwang DR, Narendran R, et al. Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [11C]McN 5652, [11C]ADAM, [11C]DASB, [11C]DAPA, and [11C]AFM. J Cereb Blood Flow Metab. 2002;22:1377–98.PubMedCrossRef
49.
go back to reference Halldin C, Lundberg J, Sóvágó J, et al. [11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse. 2005;58:173–83.PubMedCrossRef Halldin C, Lundberg J, Sóvágó J, et al. [11C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse. 2005;58:173–83.PubMedCrossRef
50.
go back to reference Chou YH, Yang BH, Chung MY, et al. Imaging the serotonin transporter using 123I-ADAM in the human brain. Psychiatry Res. 2009;172:38–43.PubMedCrossRef Chou YH, Yang BH, Chung MY, et al. Imaging the serotonin transporter using 123I-ADAM in the human brain. Psychiatry Res. 2009;172:38–43.PubMedCrossRef
51.
go back to reference Chou YH, Halldin C, Farde L. Clozapine binds preferentially to cortical D1-like dopamine receptors in the primate brain: a PET study. Psychopharmacology. 2006;185:29–35.PubMedCrossRef Chou YH, Halldin C, Farde L. Clozapine binds preferentially to cortical D1-like dopamine receptors in the primate brain: a PET study. Psychopharmacology. 2006;185:29–35.PubMedCrossRef
52.
go back to reference Staley JK, Krishnan-Sarin S, Zoghbi S, et al. Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse. 2001;41:275–84.PubMedCrossRef Staley JK, Krishnan-Sarin S, Zoghbi S, et al. Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse. 2001;41:275–84.PubMedCrossRef
53.
go back to reference Ho P, Ho K, Huang W, Yen C, Shih M, Shen L, Ma K, Huang S. Association study of serotonin transporter availability and SLC6A4 gene polymorphisms in patients with major depression. Psychiatry Res. 2012: in press. Ho P, Ho K, Huang W, Yen C, Shih M, Shen L, Ma K, Huang S. Association study of serotonin transporter availability and SLC6A4 gene polymorphisms in patients with major depression. Psychiatry Res. 2012: in press.
54.
go back to reference Herold N, Uebelhack K, Franke L, et al. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Neural Transm. 2006;113:659–70.PubMedCrossRef Herold N, Uebelhack K, Franke L, et al. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Neural Transm. 2006;113:659–70.PubMedCrossRef
55.
go back to reference Joensuu M, Tolmunen T, Saarinen PI, et al. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [123I] nor-beta-CIT SPECT imaging. Psychiatry Res. 2007;154:125–31.PubMedCrossRef Joensuu M, Tolmunen T, Saarinen PI, et al. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [123I] nor-beta-CIT SPECT imaging. Psychiatry Res. 2007;154:125–31.PubMedCrossRef
Metadata
Title
PET imaging of the brain serotonin transporters (SERT) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) in humans: a preliminary study
Authors
Wen-Sheng Huang
San-Yuan Huang
Pei-Shen Ho
Kuo-Hsing Ma
Ya-Yao Huang
Chin-Bin Yeh
Ren-Syuan Liu
Cheng-Yi Cheng
Chyng-Yann Shiue
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 1/2013
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-012-2250-5

Other articles of this Issue 1/2013

European Journal of Nuclear Medicine and Molecular Imaging 1/2013 Go to the issue