Skip to main content
Top
Published in: Heart Failure Reviews 6/2016

Open Access 01-11-2016

Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction

Authors: Kevin L. Sack, Neil H. Davies, Julius M. Guccione, Thomas Franz

Published in: Heart Failure Reviews | Issue 6/2016

Login to get access

Abstract

Predictive computational modelling in biomedical research offers the potential to integrate diverse data, uncover biological mechanisms that are not easily accessible through experimental methods and expose gaps in knowledge requiring further research. Recent developments in computing and diagnostic technologies have initiated the advancement of computational models in terms of complexity and specificity. Consequently, computational modelling can increasingly be utilised as enabling and complementing modality in the clinic—with medical decisions and interventions being personalised. Myocardial infarction and heart failure are amongst the leading causes of death globally despite optimal modern treatment. The development of novel MI therapies is challenging and may be greatly facilitated through predictive modelling. Here, we review the advances in patient-specific modelling of cardiac mechanics, distinguishing specificity in cardiac geometry, myofibre architecture and mechanical tissue properties. Thereafter, the focus narrows to the mechanics of the infarcted heart and treatment of myocardial infarction with particular attention on intramyocardial biomaterial delivery.
Literature
1.
go back to reference WHO (2011) Global status report on noncommunicable diseases 2010: Description of the global burden of NCDs, their risk factors and determinants. World Health Organization, Geneva WHO (2011) Global status report on noncommunicable diseases 2010: Description of the global burden of NCDs, their risk factors and determinants. World Health Organization, Geneva
5.
go back to reference Balasso A, Bauer JS, Liebig T, Dorn F, Zimmer C, Liepsch D, Prothmann S (2015) Evaluation of intra-aneurysmal hemodynamics after flow diverter placement in a patient-specific aneurysm model. Biorheology 51(6):341–354. doi:10.3233/bir-14019 CrossRef Balasso A, Bauer JS, Liebig T, Dorn F, Zimmer C, Liepsch D, Prothmann S (2015) Evaluation of intra-aneurysmal hemodynamics after flow diverter placement in a patient-specific aneurysm model. Biorheology 51(6):341–354. doi:10.​3233/​bir-14019 CrossRef
7.
go back to reference Arts T, Reneman RS, Veenstra PC (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7(3–4):299–318PubMedCrossRef Arts T, Reneman RS, Veenstra PC (1979) A model of the mechanics of the left ventricle. Ann Biomed Eng 7(3–4):299–318PubMedCrossRef
8.
go back to reference Streeter DD Jr, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res 33(6):656–664PubMedCrossRef Streeter DD Jr, Hanna WT (1973) Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res 33(6):656–664PubMedCrossRef
9.
go back to reference Janz RF, Grimm AF (1972) Finite-element model for the mechanical behavior of the left ventricle. Prediction of deformation in the potassium-arrested rat heart. Circ Res 30(2):244–252PubMedCrossRef Janz RF, Grimm AF (1972) Finite-element model for the mechanical behavior of the left ventricle. Prediction of deformation in the potassium-arrested rat heart. Circ Res 30(2):244–252PubMedCrossRef
10.
go back to reference Okajima M, Fujino T, Kobayashi T, Yamada K (1968) Computer simulation of the propagation process in excitation of the ventricles. Circ Res 23(2):203–211PubMedCrossRef Okajima M, Fujino T, Kobayashi T, Yamada K (1968) Computer simulation of the propagation process in excitation of the ventricles. Circ Res 23(2):203–211PubMedCrossRef
11.
go back to reference Wei D (1997) Whole-heart modeling: progress, principles and applications. Prog Biophys Mol Biol 67(1):17–66PubMedCrossRef Wei D (1997) Whole-heart modeling: progress, principles and applications. Prog Biophys Mol Biol 67(1):17–66PubMedCrossRef
12.
go back to reference Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260(4 Pt 2):H1365–1378PubMed Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ (1991) Mathematical model of geometry and fibrous structure of the heart. Am J Physiol 260(4 Pt 2):H1365–1378PubMed
13.
go back to reference Stevens C, Remme E, LeGrice I, Hunter P (2003) Ventricular mechanics in diastole: material parameter sensitivity. J Biomech 36(5):737–748PubMedCrossRef Stevens C, Remme E, LeGrice I, Hunter P (2003) Ventricular mechanics in diastole: material parameter sensitivity. J Biomech 36(5):737–748PubMedCrossRef
17.
go back to reference Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardio-thorac Surg 32(2):231–249. doi:10.1016/j.ejcts.2007.03.032 CrossRef Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardio-thorac Surg 32(2):231–249. doi:10.​1016/​j.​ejcts.​2007.​03.​032 CrossRef
20.
go back to reference Lombaert H, Peyrat JM, Croisille P, Rapacchi S, Fanton L, Cheriet F, Clarysse P, Magnin I, Delingette H, Ayache N (2012) Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans Med Imaging 31(7):1436–1447. doi:10.1109/TMI.2012.2192743 PubMedCrossRef Lombaert H, Peyrat JM, Croisille P, Rapacchi S, Fanton L, Cheriet F, Clarysse P, Magnin I, Delingette H, Ayache N (2012) Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans Med Imaging 31(7):1436–1447. doi:10.​1109/​TMI.​2012.​2192743 PubMedCrossRef
21.
go back to reference Wang HM, Gao H, Luo XY, Berry C, Griffith BE, Ogden RW, Wang TJ (2013) Structure-based finite strain modelling of the human left ventricle in diastole. Int J Numer Methods Biomed Eng 29(1):83–103. doi:10.1002/cnm.2497 CrossRef Wang HM, Gao H, Luo XY, Berry C, Griffith BE, Ogden RW, Wang TJ (2013) Structure-based finite strain modelling of the human left ventricle in diastole. Int J Numer Methods Biomed Eng 29(1):83–103. doi:10.​1002/​cnm.​2497 CrossRef
22.
go back to reference Genet M, Lee LC, Nguyen R, Haraldsson H, Acevedo-Bolton G, Zhang Z, Ge L, Ordovas K, Kozerke S, Guccione JM (2014) Distribution of normal human left ventricular myofiber stress at end-diastole and end-systole-a target for in silico design of heart failure treatments. J Appl Physiol 117(2):142–152. doi:10.1152/japplphysiol.00255.2014 PubMedPubMedCentralCrossRef Genet M, Lee LC, Nguyen R, Haraldsson H, Acevedo-Bolton G, Zhang Z, Ge L, Ordovas K, Kozerke S, Guccione JM (2014) Distribution of normal human left ventricular myofiber stress at end-diastole and end-systole-a target for in silico design of heart failure treatments. J Appl Physiol 117(2):142–152. doi:10.​1152/​japplphysiol.​00255.​2014 PubMedPubMedCentralCrossRef
25.
28.
go back to reference Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–1907. doi:10.1152/ajpheart.00041.2005 PubMedCrossRef Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline SA, Yu X (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 289(5):H1898–1907. doi:10.​1152/​ajpheart.​00041.​2005 PubMedCrossRef
30.
go back to reference Eriksson TS, Prassl AJ, Plank G, Holzapfel GA (2013) Modeling the dispersion in electromechanically coupled myocardium. Int J Numer Methods Biomed Eng 29(11):1267–1284. doi:10.1002/cnm.2575 CrossRef Eriksson TS, Prassl AJ, Plank G, Holzapfel GA (2013) Modeling the dispersion in electromechanically coupled myocardium. Int J Numer Methods Biomed Eng 29(11):1267–1284. doi:10.​1002/​cnm.​2575 CrossRef
31.
36.
go back to reference Kerckhoffs RC, Faris OP, Bovendeerd PH, Prinzen FW, Smits K, McVeigh ER, Arts T (2003) Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J Cardiovasc Electrophysiol 14(10 Suppl):S188–195PubMedCrossRef Kerckhoffs RC, Faris OP, Bovendeerd PH, Prinzen FW, Smits K, McVeigh ER, Arts T (2003) Timing of depolarization and contraction in the paced canine left ventricle: model and experiment. J Cardiovasc Electrophysiol 14(10 Suppl):S188–195PubMedCrossRef
37.
go back to reference Usyk T, McCulloch A (2003) Computational methods for soft tissue biomechanics. In: Holzapfel G, Ogden R (eds) Biomechanics of soft tissue in cardiovascular systems, vol 441. International Centre for Mechanical Sciences. Springer Vienna, pp 273–342. doi:10.1007/978-3-7091-2736-0_7 Usyk T, McCulloch A (2003) Computational methods for soft tissue biomechanics. In: Holzapfel G, Ogden R (eds) Biomechanics of soft tissue in cardiovascular systems, vol 441. International Centre for Mechanical Sciences. Springer Vienna, pp 273–342. doi:10.​1007/​978-3-7091-2736-0_​7
38.
go back to reference Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Ser A Math Phys Eng Sci 367(1902):3445–3475. doi:10.1098/rsta.2009.0091 CrossRef Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Ser A Math Phys Eng Sci 367(1902):3445–3475. doi:10.​1098/​rsta.​2009.​0091 CrossRef
40.
41.
go back to reference Guccione JM, Waldman LK, McCulloch AD (1993) Mechanics of active contraction in cardiac muscle: part II–cylindrical models of the systolic left ventricle. J Biomech Eng 115(1):82–90PubMedCrossRef Guccione JM, Waldman LK, McCulloch AD (1993) Mechanics of active contraction in cardiac muscle: part II–cylindrical models of the systolic left ventricle. J Biomech Eng 115(1):82–90PubMedCrossRef
42.
go back to reference Usyk TP, Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elasticity 61(1–3):143–164. doi:10.1023/A:1010883920374 CrossRef Usyk TP, Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elasticity 61(1–3):143–164. doi:10.​1023/​A:​1010883920374 CrossRef
43.
go back to reference Lee LC, Ge L, Zhang Z, Pease M, Nikolic SD, Mishra R, Ratcliffe MB, Guccione JM (2014) Patient-specific finite element modeling of the Cardiokinetix Parachute® device: effects on left ventricular wall stress and function. Med Biol Eng Comput 52(6):557–566. doi:10.1007/s11517-014-1159-5 PubMedPubMedCentralCrossRef Lee LC, Ge L, Zhang Z, Pease M, Nikolic SD, Mishra R, Ratcliffe MB, Guccione JM (2014) Patient-specific finite element modeling of the Cardiokinetix Parachute® device: effects on left ventricular wall stress and function. Med Biol Eng Comput 52(6):557–566. doi:10.​1007/​s11517-014-1159-5 PubMedPubMedCentralCrossRef
45.
go back to reference Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int J Numer Methods Biomed Eng 28(6–7):761–788. doi:10.1002/cnm.2473 CrossRef Rossi S, Ruiz-Baier R, Pavarino LF, Quarteroni A (2012) Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int J Numer Methods Biomed Eng 28(6–7):761–788. doi:10.​1002/​cnm.​2473 CrossRef
46.
go back to reference Berberoğlu E, Solmaz HO, Göktepe S (2014) Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur J Mech A Solids 48:60–73CrossRef Berberoğlu E, Solmaz HO, Göktepe S (2014) Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur J Mech A Solids 48:60–73CrossRef
47.
go back to reference Göktepe S, Kuhl E (2009) Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput Mech 45(2–3):227–243. doi:10.1007/s00466-009-0434-z Göktepe S, Kuhl E (2009) Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput Mech 45(2–3):227–243. doi:10.​1007/​s00466-009-0434-z
48.
go back to reference Lafortune P, Aris R, Vazquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: parallel finite element formulation. Int J Numer Methods Biomed Eng 28(1):72–86. doi:10.1002/Cnm.1494 CrossRef Lafortune P, Aris R, Vazquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: parallel finite element formulation. Int J Numer Methods Biomed Eng 28(1):72–86. doi:10.​1002/​Cnm.​1494 CrossRef
50.
go back to reference Kerckhoffs RC, Bovendeerd PH, Kotte JC, Prinzen FW, Smits K, Arts T (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann Biomed Eng 31(5):536–547. doi:10.1114/1.1566447 PubMedCrossRef Kerckhoffs RC, Bovendeerd PH, Kotte JC, Prinzen FW, Smits K, Arts T (2003) Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann Biomed Eng 31(5):536–547. doi:10.​1114/​1.​1566447 PubMedCrossRef
52.
go back to reference Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89(2):336–343. doi:10.1093/cvr/cvq318 PubMedCrossRef Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP (2011) Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovasc Res 89(2):336–343. doi:10.​1093/​cvr/​cvq318 PubMedCrossRef
53.
go back to reference Rosolen AM, Ordas S, Vazquez M, Frangi AF (2006) Numerical schemes for the simulation of three-dimensional cardiac electrical propagation in patient-specific ventricular geometries. Paper presented at the European conference on computational fluid dynamics ECCOMAS CFD 2006 Rosolen AM, Ordas S, Vazquez M, Frangi AF (2006) Numerical schemes for the simulation of three-dimensional cardiac electrical propagation in patient-specific ventricular geometries. Paper presented at the European conference on computational fluid dynamics ECCOMAS CFD 2006
54.
go back to reference Sun K, Stander N, Jhun CS, Zhang Z, Suzuki T, Wang GY, Saeed M, Wallace AW, Tseng EE, Baker AJ, Saloner D, Einstein DR, Ratcliffe MB, Guccione JM (2009) A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng 131(11):111001. doi:10.1115/1.3148464 PubMedPubMedCentralCrossRef Sun K, Stander N, Jhun CS, Zhang Z, Suzuki T, Wang GY, Saeed M, Wallace AW, Tseng EE, Baker AJ, Saloner D, Einstein DR, Ratcliffe MB, Guccione JM (2009) A computationally efficient formal optimization of regional myocardial contractility in a sheep with left ventricular aneurysm. J Biomech Eng 131(11):111001. doi:10.​1115/​1.​3148464 PubMedPubMedCentralCrossRef
58.
59.
go back to reference Xi J, Lamata P, Niederer S, Land S, Shi W, Zhuang X, Ourselin S, Duckett SG, Shetty AK, Rinaldi CA, Rueckert D, Razavi R, Smith NP (2013) The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med Image Anal 17(2):133–146. doi:10.1016/j.media.2012.08.001 PubMedCrossRef Xi J, Lamata P, Niederer S, Land S, Shi W, Zhuang X, Ourselin S, Duckett SG, Shetty AK, Rinaldi CA, Rueckert D, Razavi R, Smith NP (2013) The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med Image Anal 17(2):133–146. doi:10.​1016/​j.​media.​2012.​08.​001 PubMedCrossRef
60.
go back to reference Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill DLG, Chapelle D, Razavi R (2006) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 10(4):642–656PubMedCrossRef Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, Hill DLG, Chapelle D, Razavi R (2006) Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 10(4):642–656PubMedCrossRef
61.
go back to reference Lee WN, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE (2007) Theoretical quality assessment of myocardial elastography with in vivo validation. IEEE Trans Ultrason Ferroelectr Freq Control 54(11):2233–2245PubMedCrossRef Lee WN, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE (2007) Theoretical quality assessment of myocardial elastography with in vivo validation. IEEE Trans Ultrason Ferroelectr Freq Control 54(11):2233–2245PubMedCrossRef
62.
go back to reference Mojsejenko D, McGarvey JR, Dorsey SM, Gorman JH 3rd, Burdick JA, Pilla JJ, Gorman RC, Wenk JF (2015) Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech Model Mechanobiol 14(3):633–647. doi:10.1007/s10237-014-0627-z PubMedCrossRef Mojsejenko D, McGarvey JR, Dorsey SM, Gorman JH 3rd, Burdick JA, Pilla JJ, Gorman RC, Wenk JF (2015) Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech Model Mechanobiol 14(3):633–647. doi:10.​1007/​s10237-014-0627-z PubMedCrossRef
63.
go back to reference McGarvey JR, Mojsejenko D, Dorsey SM, Nikou A, Burdick JA, Gorman JH III, Jackson BM, Pilla JJ, Gorman RC, Wenk JF (2015) Temporal changes in infarct material properties: an in vivo assessment using magnetic resonance imaging and finite element simulations. Ann Thorac Surg 100(2):582–590. doi:10.1016/j.athoracsur.2015.03.015 PubMedCrossRef McGarvey JR, Mojsejenko D, Dorsey SM, Nikou A, Burdick JA, Gorman JH III, Jackson BM, Pilla JJ, Gorman RC, Wenk JF (2015) Temporal changes in infarct material properties: an in vivo assessment using magnetic resonance imaging and finite element simulations. Ann Thorac Surg 100(2):582–590. doi:10.​1016/​j.​athoracsur.​2015.​03.​015 PubMedCrossRef
66.
go back to reference Shimkunas R, Zhang Z, Wenk JF, Soleimani M, Khazalpour M, Acevedo-Bolton G, Wang G, Saloner D, Mishra R, Wallace AW (2013) Left ventricular myocardial contractility is depressed in the borderzone after posterolateral myocardial infarction. Ann Thorac Surg 95(5):1619–1625PubMedPubMedCentralCrossRef Shimkunas R, Zhang Z, Wenk JF, Soleimani M, Khazalpour M, Acevedo-Bolton G, Wang G, Saloner D, Mishra R, Wallace AW (2013) Left ventricular myocardial contractility is depressed in the borderzone after posterolateral myocardial infarction. Ann Thorac Surg 95(5):1619–1625PubMedPubMedCentralCrossRef
68.
go back to reference Bogen DK, Rabinowitz SA, Needleman A, McMahon TA, Abelmann WH (1980) An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res 47(5):728–741PubMedCrossRef Bogen DK, Rabinowitz SA, Needleman A, McMahon TA, Abelmann WH (1980) An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res 47(5):728–741PubMedCrossRef
70.
go back to reference Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK (2001) Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 71(2):654–662PubMedCrossRef Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK (2001) Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 71(2):654–662PubMedCrossRef
71.
go back to reference Kerckhoffs RC, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1):1–18. doi:10.1007/s10439-006-9212-7 PubMedCrossRef Kerckhoffs RC, Neal ML, Gu Q, Bassingthwaighte JB, Omens JH, McCulloch AD (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1):1–18. doi:10.​1007/​s10439-006-9212-7 PubMedCrossRef
72.
go back to reference Aikawa Y, Rohde L, Plehn J, Greaves SC, Menapace F, Arnold MO, Rouleau JL, Pfeffer MA, Lee RT, Solomon SD (2001) Regional wall stress predicts ventricular remodeling after anteroseptal myocardial infarction in the Healing and Early Afterload Reducing Trial (HEART): an echocardiography-based structural analysis. Am Heart J 141(2):234–242PubMedCrossRef Aikawa Y, Rohde L, Plehn J, Greaves SC, Menapace F, Arnold MO, Rouleau JL, Pfeffer MA, Lee RT, Solomon SD (2001) Regional wall stress predicts ventricular remodeling after anteroseptal myocardial infarction in the Healing and Early Afterload Reducing Trial (HEART): an echocardiography-based structural analysis. Am Heart J 141(2):234–242PubMedCrossRef
73.
go back to reference Ratcliffe MB, Hong J, Salahieh A, Ruch S, Wallace AW (1998) The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis. J Thorac Cardiovasc Surg 116(4):566–577PubMedCrossRef Ratcliffe MB, Hong J, Salahieh A, Ruch S, Wallace AW (1998) The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis. J Thorac Cardiovasc Surg 116(4):566–577PubMedCrossRef
75.
go back to reference Lee LC, Wenk JF, Zhong L, Klepach D, Zhang Z, Ge L, Ratcliffe MB, Zohdi TI, Hsu E, Navia JL, Kassab GS, Guccione JM (2013) Analysis of patient-specific surgical ventricular restoration: importance of an ellipsoidal left ventricular geometry for diastolic and systolic function. J Appl Physiol 115(1):136–144. doi:10.1152/japplphysiol.00662.2012 (1985) PubMedPubMedCentralCrossRef Lee LC, Wenk JF, Zhong L, Klepach D, Zhang Z, Ge L, Ratcliffe MB, Zohdi TI, Hsu E, Navia JL, Kassab GS, Guccione JM (2013) Analysis of patient-specific surgical ventricular restoration: importance of an ellipsoidal left ventricular geometry for diastolic and systolic function. J Appl Physiol 115(1):136–144. doi:10.​1152/​japplphysiol.​00662.​2012 (1985) PubMedPubMedCentralCrossRef
76.
77.
go back to reference Athanasuleas CL, Stanley AW Jr, Buckberg GD, Dor V, DiDonato M, Blackstone EH (2001) Surgical anterior ventricular endocardial restoration (SAVER) in the dilated remodeled ventricle after anterior myocardial infarction. RESTORE group. reconstructive endoventricular surgery, returning torsion original radius elliptical shape to the LV. J Am Coll Cardiol 37(5):1199–1209PubMedCrossRef Athanasuleas CL, Stanley AW Jr, Buckberg GD, Dor V, DiDonato M, Blackstone EH (2001) Surgical anterior ventricular endocardial restoration (SAVER) in the dilated remodeled ventricle after anterior myocardial infarction. RESTORE group. reconstructive endoventricular surgery, returning torsion original radius elliptical shape to the LV. J Am Coll Cardiol 37(5):1199–1209PubMedCrossRef
78.
go back to reference Guccione JM, Salahieh A, Moonly SM, Kortsmit J, Wallace AW, Ratcliffe MB (2003) Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study. Ann Thorac Surg 76(4):1171–1180 (discussion 1180) PubMedCrossRef Guccione JM, Salahieh A, Moonly SM, Kortsmit J, Wallace AW, Ratcliffe MB (2003) Myosplint decreases wall stress without depressing function in the failing heart: a finite element model study. Ann Thorac Surg 76(4):1171–1180 (discussion 1180) PubMedCrossRef
80.
go back to reference Mazzaferri EL Jr, Gradinac S, Sagic D, Otasevic P, Hasan AK, Goff TL, Sievert H, Wunderlich N, Nikolic SD, Abraham WT (2012) Percutaneous left ventricular partitioning in patients with chronic heart failure and a prior anterior myocardial infarction: results of the percutaneous ventricular restoration in chronic heart failure patients trial. Am Heart J 163(5):812–820. doi:10.1016/j.ahj.2012.02.013 (e811) PubMedCrossRef Mazzaferri EL Jr, Gradinac S, Sagic D, Otasevic P, Hasan AK, Goff TL, Sievert H, Wunderlich N, Nikolic SD, Abraham WT (2012) Percutaneous left ventricular partitioning in patients with chronic heart failure and a prior anterior myocardial infarction: results of the percutaneous ventricular restoration in chronic heart failure patients trial. Am Heart J 163(5):812–820. doi:10.​1016/​j.​ahj.​2012.​02.​013 (e811) PubMedCrossRef
81.
go back to reference Rim Y, McPherson DD, Kim H (2014) Mitral valve function following ischemic cardiomyopathy: a biomechanical perspective. Bio-Med Mater Eng 24(1):7–13. doi:10.3233/bme-130777 Rim Y, McPherson DD, Kim H (2014) Mitral valve function following ischemic cardiomyopathy: a biomechanical perspective. Bio-Med Mater Eng 24(1):7–13. doi:10.​3233/​bme-130777
86.
90.
go back to reference Dobner S, Bezuidenhout D, Govender P, Zilla P, Davies N (2009) A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J Cardiac Fail 15(7):629–636CrossRef Dobner S, Bezuidenhout D, Govender P, Zilla P, Davies N (2009) A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling. J Cardiac Fail 15(7):629–636CrossRef
91.
go back to reference Sabbah HN, Wang M, Gupta RC, Rastogi S, Ilsar I, Sabbah MS, Kohli S, Helgerson S, Lee RJ (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail 1(3):252–258PubMedPubMedCentralCrossRef Sabbah HN, Wang M, Gupta RC, Rastogi S, Ilsar I, Sabbah MS, Kohli S, Helgerson S, Lee RJ (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail 1(3):252–258PubMedPubMedCentralCrossRef
92.
go back to reference Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo N, Gorman JH III, Pilla JJ, Gorman RC, Wenk JF, Burdick JA (2015) MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 69:65–75. doi:10.1016/j.biomaterials.2015.08.011 PubMedCrossRef Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo N, Gorman JH III, Pilla JJ, Gorman RC, Wenk JF, Burdick JA (2015) MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 69:65–75. doi:10.​1016/​j.​biomaterials.​2015.​08.​011 PubMedCrossRef
96.
go back to reference Legner D, Skatulla S, Mbew J, Rama RR, Reddy BD, Sansour C, Davies NH, Franz T (2014) Studying the influence of hydrogel injections into the infarcted left ventricle using the element-free Galerkin method. Int J Numer Methods Biomed Eng 30(3):416–429. doi:10.1002/cnm.2610 CrossRef Legner D, Skatulla S, Mbew J, Rama RR, Reddy BD, Sansour C, Davies NH, Franz T (2014) Studying the influence of hydrogel injections into the infarcted left ventricle using the element-free Galerkin method. Int J Numer Methods Biomed Eng 30(3):416–429. doi:10.​1002/​cnm.​2610 CrossRef
97.
go back to reference Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107(25):11507–11512PubMedPubMedCentralCrossRef Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107(25):11507–11512PubMedPubMedCentralCrossRef
98.
go back to reference Kichula ET, Wang H, Dorsey SM, Szczesny SE, Elliott DM, Burdick JA, Wenk JF (2014) Experimental and computational investigation of altered mechanical properties in myocardium after hydrogel injection. Ann Biomed Eng 42(7):1546–1556. doi:10.1007/s10439-013-0937-9 PubMedCrossRef Kichula ET, Wang H, Dorsey SM, Szczesny SE, Elliott DM, Burdick JA, Wenk JF (2014) Experimental and computational investigation of altered mechanical properties in myocardium after hydrogel injection. Ann Biomed Eng 42(7):1546–1556. doi:10.​1007/​s10439-013-0937-9 PubMedCrossRef
99.
go back to reference Wenk JF, Wall ST, Peterson RC, Helgerson SL, Sabbah HN, Burger M, Stander N, Ratcliffe MB, Guccione JM (2009) A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J Biomech Eng 131(12):121011. doi:10.1115/1.4000165 PubMedCrossRef Wenk JF, Wall ST, Peterson RC, Helgerson SL, Sabbah HN, Burger M, Stander N, Ratcliffe MB, Guccione JM (2009) A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J Biomech Eng 131(12):121011. doi:10.​1115/​1.​4000165 PubMedCrossRef
100.
go back to reference Miller R, Davies NH, Kortsmit J, Zilla P, Franz T (2013) Outcomes of myocardial infarction hydrogel injection therapy in the human left ventricle dependent on injectate distribution. Int J Numer Methods Biomed Eng 29(8):870–884. doi:10.1002/cnm.2551 CrossRef Miller R, Davies NH, Kortsmit J, Zilla P, Franz T (2013) Outcomes of myocardial infarction hydrogel injection therapy in the human left ventricle dependent on injectate distribution. Int J Numer Methods Biomed Eng 29(8):870–884. doi:10.​1002/​cnm.​2551 CrossRef
101.
go back to reference Kortsmit J, Davies NH, Miller R, Zilla P, Franz T (2013) Computational predictions of improved of wall mechanics and function of the infarcted left ventricle at early and late remodelling stages: comparison of layered and bulk hydrogel injectates. Adv Biomech Appl 1(1):41–55CrossRef Kortsmit J, Davies NH, Miller R, Zilla P, Franz T (2013) Computational predictions of improved of wall mechanics and function of the infarcted left ventricle at early and late remodelling stages: comparison of layered and bulk hydrogel injectates. Adv Biomech Appl 1(1):41–55CrossRef
102.
go back to reference Kortsmit J, Davies NH, Miller R, Macadangdang JR, Zilla P, Franz T (2013) The effect of hydrogel injection on cardiac function and myocardial mechanics in a computational post-infarction model. Comput Methods Biomech Biomed Eng 16(11):1185–1195. doi:10.1080/10255842.2012.656611 CrossRef Kortsmit J, Davies NH, Miller R, Macadangdang JR, Zilla P, Franz T (2013) The effect of hydrogel injection on cardiac function and myocardial mechanics in a computational post-infarction model. Comput Methods Biomech Biomed Eng 16(11):1185–1195. doi:10.​1080/​10255842.​2012.​656611 CrossRef
103.
go back to reference Sirry MS, Davies NH, Kadner K, Dubuis L, Saleh MG, Meintjes EM, Spottiswoode BS, Zilla P, Franz T (2015) Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations. Comput Methods Biomech Biomed Eng 18(3):325–331. doi:10.1080/10255842.2013.793765 CrossRef Sirry MS, Davies NH, Kadner K, Dubuis L, Saleh MG, Meintjes EM, Spottiswoode BS, Zilla P, Franz T (2015) Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations. Comput Methods Biomech Biomed Eng 18(3):325–331. doi:10.​1080/​10255842.​2013.​793765 CrossRef
107.
108.
go back to reference Lee LC, Genet M, Acevedo-Bolton G, Ordovas K, Guccione JM, Kuhl E (2014) A computational model that predicts reverse growth in response to mechanical unloading. Biomech Model Mechanobiol. doi:10.1007/s10237-014-0598-0 Lee LC, Genet M, Acevedo-Bolton G, Ordovas K, Guccione JM, Kuhl E (2014) A computational model that predicts reverse growth in response to mechanical unloading. Biomech Model Mechanobiol. doi:10.​1007/​s10237-014-0598-0
111.
go back to reference Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 110(14):5588–5593PubMedPubMedCentralCrossRef Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 110(14):5588–5593PubMedPubMedCentralCrossRef
112.
go back to reference Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604PubMedPubMedCentralCrossRef Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604PubMedPubMedCentralCrossRef
113.
go back to reference Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465PubMedCrossRef Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–465PubMedCrossRef
114.
go back to reference Amado LC, Saliaris AP, Schuleri KH, John MS, Xie J-S, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102(32):11474–11479PubMedPubMedCentralCrossRef Amado LC, Saliaris AP, Schuleri KH, John MS, Xie J-S, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 102(32):11474–11479PubMedPubMedCentralCrossRef
115.
go back to reference Baillargeon B, Costa I, Leach J, Lee L, Genet M, Toutain A, Wenk J, Rausch M, Rebelo N, Acevedo-Bolton G, Kuhl E, Navia J, Guccione J (2015) Human cardiac function simulator for the optimal design of a novel annuloplasty ring with a sub-valvular element for correction of ischemic mitral regurgitation. Cardiovasc Eng Tech 6(2):105–116. doi:10.1007/s13239-015-0216-z CrossRef Baillargeon B, Costa I, Leach J, Lee L, Genet M, Toutain A, Wenk J, Rausch M, Rebelo N, Acevedo-Bolton G, Kuhl E, Navia J, Guccione J (2015) Human cardiac function simulator for the optimal design of a novel annuloplasty ring with a sub-valvular element for correction of ischemic mitral regurgitation. Cardiovasc Eng Tech 6(2):105–116. doi:10.​1007/​s13239-015-0216-z CrossRef
Metadata
Title
Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction
Authors
Kevin L. Sack
Neil H. Davies
Julius M. Guccione
Thomas Franz
Publication date
01-11-2016
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 6/2016
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-016-9528-9

Other articles of this Issue 6/2016

Heart Failure Reviews 6/2016 Go to the issue