Skip to main content
Top
Published in: American Journal of Cardiovascular Drugs 6/2005

01-11-2005 | Review Article

Peroxisome Proliferator-Activated Receptor-β and its Agonists in Hypertension and Atherosclerosis

Mechanisms and Clinical Implications

Authors: Carmen M. Halabi, Dr Curt D. Sigmund

Published in: American Journal of Cardiovascular Drugs | Issue 6/2005

Login to get access

Abstract

Cardiovascular diseases are the leading cause of morbidity and mortality in the US. Proper management and/ or prevention of atherosclerosis and hypertension, two complex and chronic disorders, would significantly reduce the risk for cardiovascular events such as myocardial infarction and stroke, but this requires an understanding of the mechanisms underlying their development and progression. Whereas a great deal has been learned and applied toward the management of these disorders, especially hypertension, morbidity and mortality remains unacceptably high, most likely because there are disease-causing mechanisms that have yet to be fully recognized. Understanding these disease mechanisms is necessary so that novel management strategies can be developed. One of these novel mechanisms centers on peroxisome proliferator-activated receptor (PPAR)-β. PPAR-β is a member of the nuclear receptor superfamily of ligand-activated transcription factors known to play a role in glucose homeostasis and adipocyte differentiation and, more recently, has been shown to have anti-inflammatory, antiatherogenic, and antihypertensive effects. Thiazolidinediones, a class of drugs used in the treatment of type 2 diabetes mellitus, are high-affinity ligands for PPAR-β. In this review, the anti-inflammatory, anti-atherosclerotic, and anti-hypertensive mechanisms by which PPAR-β and its agonists are thought to exert protective effects on the cardiovascular system are discussed. Ongoing clinical trials using PPAR-β activators for the management of cardiovascular diseases, especially in patients with type 2 diabetes mellitus, are summarized.
Literature
2.
3.
go back to reference Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50.PubMedCrossRef Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50.PubMedCrossRef
4.
go back to reference Hsueh WA, Bruemmer D. Peroxisome proliferator-activated receptor β: implications for cardiovascular disease. Hypertension 2004; 43(2): 297–305.PubMedCrossRef Hsueh WA, Bruemmer D. Peroxisome proliferator-activated receptor β: implications for cardiovascular disease. Hypertension 2004; 43(2): 297–305.PubMedCrossRef
5.
go back to reference Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 2004; 94(9): 1168–78.PubMedCrossRef Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 2004; 94(9): 1168–78.PubMedCrossRef
6.
go back to reference Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes Relat Metab Disord 2003; 27 Suppl. 3: S17–21.PubMedCrossRef Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes Relat Metab Disord 2003; 27 Suppl. 3: S17–21.PubMedCrossRef
7.
go back to reference Schiffrin EL, Amiri F, Benkirane K, et al. Peroxisome proliferator-activated receptors: vascular and cardiac effects in hypertension. Hypertension 2003; 42(4): 664–8.PubMedCrossRef Schiffrin EL, Amiri F, Benkirane K, et al. Peroxisome proliferator-activated receptors: vascular and cardiac effects in hypertension. Hypertension 2003; 42(4): 664–8.PubMedCrossRef
8.
go back to reference Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992; 68(5): 879–87.PubMedCrossRef Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992; 68(5): 879–87.PubMedCrossRef
9.
go back to reference Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994; 91(15): 7355–9.PubMedCrossRef Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994; 91(15): 7355–9.PubMedCrossRef
10.
go back to reference Neve BP, Fruchart JC, Staels B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000; 60(8): 1245–50.PubMedCrossRef Neve BP, Fruchart JC, Staels B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000; 60(8): 1245–50.PubMedCrossRef
11.
go back to reference Puddu P, Puddu GM, Muscari A. Peroxisome proliferator-activated receptors: are they involved in atherosclerosis progression? Int J Cardiol 2003; 90(2–3): 133–40.PubMedCrossRef Puddu P, Puddu GM, Muscari A. Peroxisome proliferator-activated receptors: are they involved in atherosclerosis progression? Int J Cardiol 2003; 90(2–3): 133–40.PubMedCrossRef
12.
go back to reference Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) a and PPARβ/6, but not PPARy, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 2003; 92(5): 518–24.PubMedCrossRef Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) a and PPARβ/6, but not PPARy, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 2003; 92(5): 518–24.PubMedCrossRef
13.
go back to reference Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARβ gene. J Biol Chem 1997; 272(30): 18779–89.PubMedCrossRef Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARβ gene. J Biol Chem 1997; 272(30): 18779–89.PubMedCrossRef
14.
go back to reference Fajas L, Fruchart JC, Auwerx J. PPARβ3 mRNA: a distinct PPARβmRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438(1–2): 55–60.PubMedCrossRef Fajas L, Fruchart JC, Auwerx J. PPARβ3 mRNA: a distinct PPARβmRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438(1–2): 55–60.PubMedCrossRef
15.
go back to reference Mukherjee R, Jow L, Croston GE, et al. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARβ2 versus PPARβl and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997; 272(12): 8071–6.PubMedCrossRef Mukherjee R, Jow L, Croston GE, et al. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARβ2 versus PPARβl and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997; 272(12): 8071–6.PubMedCrossRef
16.
go back to reference Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor-β (PPARy). J Biol Chem 1995; 270(22): 12953–6.PubMedCrossRef Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor-β (PPARy). J Biol Chem 1995; 270(22): 12953–6.PubMedCrossRef
17.
go back to reference Blanquart C, Barbier O, Fruchart JC, et al. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 2003; 85(2–5): 267–73.PubMedCrossRef Blanquart C, Barbier O, Fruchart JC, et al. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 2003; 85(2–5): 267–73.PubMedCrossRef
18.
go back to reference Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int J Obes Relat Metab Disord 2003; 27 Suppl. 3: S41–5.PubMedCrossRef Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int J Obes Relat Metab Disord 2003; 27 Suppl. 3: S41–5.PubMedCrossRef
19.
go back to reference Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol 1997; 20(11 Suppl. 2): II–10.PubMed Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol 1997; 20(11 Suppl. 2): II–10.PubMed
22.
go back to reference Gimbrone MA, Resnick N, Nagel T, et al. Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 1997; 811: 1–10.PubMedCrossRef Gimbrone MA, Resnick N, Nagel T, et al. Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 1997; 811: 1–10.PubMedCrossRef
23.
go back to reference Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76(2): 301–14.PubMedCrossRef Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76(2): 301–14.PubMedCrossRef
24.
go back to reference Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 2001; 89(3): 201–10.PubMedCrossRef Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 2001; 89(3): 201–10.PubMedCrossRef
25.
go back to reference Plutzky J. Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 1999; 84(1A): 15J–20J.PubMedCrossRef Plutzky J. Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 1999; 84(1A): 15J–20J.PubMedCrossRef
26.
go back to reference Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor α (PPAR α) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun 1998; 246(2): 370–4.PubMedCrossRef Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor α (PPAR α) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun 1998; 246(2): 370–4.PubMedCrossRef
27.
go back to reference Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARβ on vascular endothelial function. Biochem Biophys Res Commun 1999; 254(3): 757–63.PubMedCrossRef Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARβ on vascular endothelial function. Biochem Biophys Res Commun 1999; 254(3): 757–63.PubMedCrossRef
28.
go back to reference Law RE, Goetze S, Xi XP, et al. Expression and function of PPARβ in rat and human vascular smooth muscle cells. Circulation 2000; 101(11): 1311–8.PubMedCrossRef Law RE, Goetze S, Xi XP, et al. Expression and function of PPARβ in rat and human vascular smooth muscle cells. Circulation 2000; 101(11): 1311–8.PubMedCrossRef
29.
go back to reference Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARβ: differentiation-dependent peroxisomal proliferator-activated receptor-β (PPARβ) expression and reduction of MMP-9 activity through PPARβ activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23.PubMedCrossRef Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARβ: differentiation-dependent peroxisomal proliferator-activated receptor-β (PPARβ) expression and reduction of MMP-9 activity through PPARβ activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23.PubMedCrossRef
30.
go back to reference Yang XY, Wang LH, Chen T, et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor-β (PPARβ) agonists. PPARβ co-association with transcription factor NFAT. J Biol Chem 2000; 275(7): 4541–4.PubMedCrossRef Yang XY, Wang LH, Chen T, et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor-β (PPARβ) agonists. PPARβ co-association with transcription factor NFAT. J Biol Chem 2000; 275(7): 4541–4.PubMedCrossRef
31.
go back to reference Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor-β (PPARβ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95(13): 7614–9.PubMedCrossRef Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor-β (PPARβ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95(13): 7614–9.PubMedCrossRef
32.
go back to reference Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7.PubMedCrossRef Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7.PubMedCrossRef
33.
go back to reference Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21(3): 365–71.PubMedCrossRef Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21(3): 365–71.PubMedCrossRef
34.
go back to reference Tao L, Liu HR, Gao E, et al. Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-β agonist in hypercholesterolemia. Circulation 2003; 108(22): 2805–11.PubMedCrossRef Tao L, Liu HR, Gao E, et al. Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-β agonist in hypercholesterolemia. Circulation 2003; 108(22): 2805–11.PubMedCrossRef
35.
go back to reference Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) β-dependent and PPARβ-independent signaling pathways. J Biol Chem 2004; 279(4): 2499–506.PubMedCrossRef Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) β-dependent and PPARβ-independent signaling pathways. J Biol Chem 2004; 279(4): 2499–506.PubMedCrossRef
36.
go back to reference Chinetti G, Lestavel S, Bocher V, et al. PPAR-α and PPAR-β activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCAl pathway. Nat Med 2001; 7(1): 53–8.PubMedCrossRef Chinetti G, Lestavel S, Bocher V, et al. PPAR-α and PPAR-β activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCAl pathway. Nat Med 2001; 7(1): 53–8.PubMedCrossRef
37.
go back to reference Chawla A, Boisvert WA, Lee CH, et al. A PPAR β-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7(1): 161–71.PubMedCrossRef Chawla A, Boisvert WA, Lee CH, et al. A PPAR β-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7(1): 161–71.PubMedCrossRef
38.
go back to reference Akiyama TE, Sakai S, Lambert G, et al. Conditional disruption of the peroxisome proliferator-activated receptor β gene in mice results in lowered expression of ABCAl, ABCGl, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol 2002; 22(8): 2607–19.PubMedCrossRef Akiyama TE, Sakai S, Lambert G, et al. Conditional disruption of the peroxisome proliferator-activated receptor β gene in mice results in lowered expression of ABCAl, ABCGl, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol 2002; 22(8): 2607–19.PubMedCrossRef
39.
go back to reference Tontonoz P, Nagy L, Alvarez JG, et al. PPARβ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52.PubMedCrossRef Tontonoz P, Nagy L, Alvarez JG, et al. PPARβ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52.PubMedCrossRef
40.
go back to reference Liang CP, Han S, Okamoto H, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004; 113(5): 764–73.PubMed Liang CP, Han S, Okamoto H, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004; 113(5): 764–73.PubMed
41.
go back to reference Argmann CA, Sawyez CG, McNeil CJ, et al. Activation of peroxisome proliferator-activated receptor β and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoproteins. Arterioscler Thromb Vasc Biol 2003; 23(3): 475–82.PubMedCrossRef Argmann CA, Sawyez CG, McNeil CJ, et al. Activation of peroxisome proliferator-activated receptor β and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoproteins. Arterioscler Thromb Vasc Biol 2003; 23(3): 475–82.PubMedCrossRef
42.
go back to reference Jiang C, Ting AT, Seed B. PPAR-β agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6.PubMedCrossRef Jiang C, Ting AT, Seed B. PPAR-β agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6.PubMedCrossRef
43.
go back to reference Marx N, Mach F, Sauty A, et al. Peroxisome proliferator-activated receptor-β activators inhibit IFN-β-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 2000; 164(12): 6503–8.PubMed Marx N, Mach F, Sauty A, et al. Peroxisome proliferator-activated receptor-β activators inhibit IFN-β-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 2000; 164(12): 6503–8.PubMed
44.
go back to reference Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106(6): 679–84.PubMedCrossRef Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106(6): 679–84.PubMedCrossRef
45.
go back to reference Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR β-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23(2): 283–8.PubMedCrossRef Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR β-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23(2): 283–8.PubMedCrossRef
46.
go back to reference Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104.PubMedCrossRef Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104.PubMedCrossRef
47.
go back to reference Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-y activators. Circulation 2000; 101(3): 235–8.PubMedCrossRef Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-y activators. Circulation 2000; 101(3): 235–8.PubMedCrossRef
48.
go back to reference Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40(5): 687–93.PubMedCrossRef Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40(5): 687–93.PubMedCrossRef
49.
go back to reference Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor-β ligands inhibit retinoblastoma phosphorylation and G1→ S transition in vascular smooth muscle cells. J Biol Chem 2000; 275(29): 22435–41.PubMedCrossRef Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor-β ligands inhibit retinoblastoma phosphorylation and G1→ S transition in vascular smooth muscle cells. J Biol Chem 2000; 275(29): 22435–41.PubMedCrossRef
50.
go back to reference Marx N, Schonbeck U, Lazar MA, et al. Peroxisome proliferator-activated receptor-y activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83(11): 1097–103.PubMedCrossRef Marx N, Schonbeck U, Lazar MA, et al. Peroxisome proliferator-activated receptor-y activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83(11): 1097–103.PubMedCrossRef
51.
go back to reference Hong HK, Cho YM, Park KH, et al. Peroxisome proliferator-activated receptor-β mediated inhibition of plasminogen activator inhibitor type 1 production and proliferation of human umbilical vein endothelial cells. Diabetes Res Clin Pract 2003; 62(1): 1–8.PubMedCrossRef Hong HK, Cho YM, Park KH, et al. Peroxisome proliferator-activated receptor-β mediated inhibition of plasminogen activator inhibitor type 1 production and proliferation of human umbilical vein endothelial cells. Diabetes Res Clin Pract 2003; 62(1): 1–8.PubMedCrossRef
52.
go back to reference Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6.PubMedCrossRef Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6.PubMedCrossRef
53.
go back to reference Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-β agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42(10): 1757–63.PubMedCrossRef Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-β agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42(10): 1757–63.PubMedCrossRef
54.
go back to reference Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24(5): 930–4.PubMedCrossRef Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24(5): 930–4.PubMedCrossRef
55.
go back to reference Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84(4): 1381–478.PubMedCrossRef Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84(4): 1381–478.PubMedCrossRef
56.
57.
go back to reference Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42(6): 1075–81.PubMedCrossRef Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42(6): 1075–81.PubMedCrossRef
58.
go back to reference Takata Y, Kitami Y, Yang ZH, et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-δ and peroxisome proliferator-activated receptor-β. Circ Res 2002; 91(5): 427–33.PubMedCrossRef Takata Y, Kitami Y, Yang ZH, et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-δ and peroxisome proliferator-activated receptor-β. Circ Res 2002; 91(5): 427–33.PubMedCrossRef
59.
go back to reference Tannock LR, Little PJ, Tsoi C, et al. Thiazolidinediones reduce the LDL binding affinity of non-human primate vascular cell proteoglycans. Diabetologia 2004; 47(5): 837–43.PubMedCrossRef Tannock LR, Little PJ, Tsoi C, et al. Thiazolidinediones reduce the LDL binding affinity of non-human primate vascular cell proteoglycans. Diabetologia 2004; 47(5): 837–43.PubMedCrossRef
60.
go back to reference Eto K, Ohya Y, Nakamura Y, et al. Comparative actions of insulin sensitizers on ion channels in vascular smooth muscle. Eur J Pharmacol 2001; 423(1): 1–7.PubMedCrossRef Eto K, Ohya Y, Nakamura Y, et al. Comparative actions of insulin sensitizers on ion channels in vascular smooth muscle. Eur J Pharmacol 2001; 423(1): 1–7.PubMedCrossRef
61.
go back to reference Nakamura Y, Ohya Y, Onaka U, et al. Inhibitory action of insulin-sensitizing agents on calcium channels in smooth muscle cells from resistance arteries of guinea-pig. Br J Pharmacol 1998; 123(4): 675–82.PubMedCrossRef Nakamura Y, Ohya Y, Onaka U, et al. Inhibitory action of insulin-sensitizing agents on calcium channels in smooth muscle cells from resistance arteries of guinea-pig. Br J Pharmacol 1998; 123(4): 675–82.PubMedCrossRef
62.
go back to reference Wu SN, Ho LL, Li HF, et al. Regulation of Ca (2+)-activated K+ currents by ciglitazone in rat pituitary GH3 cells. J Investig Med 2000; 48(4): 259–69.PubMed Wu SN, Ho LL, Li HF, et al. Regulation of Ca (2+)-activated K+ currents by ciglitazone in rat pituitary GH3 cells. J Investig Med 2000; 48(4): 259–69.PubMed
63.
go back to reference Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20.PubMedCrossRef Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20.PubMedCrossRef
64.
go back to reference Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemie benefits of troglitazone treatment in NIDDM: the Troglitazone Study Group. Diabetes 1997; 46(3): 433–9.PubMedCrossRef Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemie benefits of troglitazone treatment in NIDDM: the Troglitazone Study Group. Diabetes 1997; 46(3): 433–9.PubMedCrossRef
65.
go back to reference Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93.PubMedCrossRef Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93.PubMedCrossRef
66.
go back to reference Negro R, Dazzi D, Hassan H, et al. Pioglitazone reduces blood pressure in nondipping diabetic patients. Minerva Endocrinol 2004; 29(1): 11–7.PubMed Negro R, Dazzi D, Hassan H, et al. Pioglitazone reduces blood pressure in nondipping diabetic patients. Minerva Endocrinol 2004; 29(1): 11–7.PubMed
67.
go back to reference Gerber P, Lubben G, Heusler S, et al. Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin 2003; 19(6): 532–9.PubMedCrossRef Gerber P, Lubben G, Heusler S, et al. Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin 2003; 19(6): 532–9.PubMedCrossRef
68.
go back to reference Bennett SM, Agrawal A, Elasha H, et al. Rosiglitazone improves insulin sensitivity, glucose tolerance and ambulatory blood pressure in subjects with impaired glucose tolerance. Diabet Med 2004; 21(5): 415–22.PubMedCrossRef Bennett SM, Agrawal A, Elasha H, et al. Rosiglitazone improves insulin sensitivity, glucose tolerance and ambulatory blood pressure in subjects with impaired glucose tolerance. Diabet Med 2004; 21(5): 415–22.PubMedCrossRef
70.
go back to reference Diep QN, El Mabrouk M, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-β. Circulation 2002; 105(19): 2296–302.PubMedCrossRef Diep QN, El Mabrouk M, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-β. Circulation 2002; 105(19): 2296–302.PubMedCrossRef
71.
go back to reference Iglarz M, Touyz RM, Amiri F, et al. Effect of peroxisome proliferator-activated receptor-α and -β activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003; 23(1): 45–51.PubMedCrossRef Iglarz M, Touyz RM, Amiri F, et al. Effect of peroxisome proliferator-activated receptor-α and -β activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003; 23(1): 45–51.PubMedCrossRef
72.
go back to reference Ryan MJ, Didion SP, Mathur S, et al. PPAR (β) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004; 43(3): 661–6.PubMedCrossRef Ryan MJ, Didion SP, Mathur S, et al. PPAR (β) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004; 43(3): 661–6.PubMedCrossRef
73.
go back to reference Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor β ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23(1): 52–7.PubMedCrossRef Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor β ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23(1): 52–7.PubMedCrossRef
74.
go back to reference Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferatoractivated receptor β agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9.PubMedCrossRef Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferatoractivated receptor β agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9.PubMedCrossRef
75.
go back to reference Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thronibin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85(5): 394–402.PubMedCrossRef Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thronibin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85(5): 394–402.PubMedCrossRef
76.
go back to reference Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-β in vascular smooth muscle cells. Endocrinology 2001; 142(7): 3125–34.PubMedCrossRef Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-β in vascular smooth muscle cells. Endocrinology 2001; 142(7): 3125–34.PubMedCrossRef
77.
go back to reference Song J, Walsh MF, Igwe R, et al. Troglitazone reduces contraction by inhibition of vascular smooth muscle cell Ca2+ currents and not endothelial nitric oxide production. Diabetes 1997; 46(4): 659–64.PubMedCrossRef Song J, Walsh MF, Igwe R, et al. Troglitazone reduces contraction by inhibition of vascular smooth muscle cell Ca2+ currents and not endothelial nitric oxide production. Diabetes 1997; 46(4): 659–64.PubMedCrossRef
78.
go back to reference Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARβ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402(6764): 880–3.PubMed Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARβ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402(6764): 880–3.PubMed
79.
go back to reference Savage DB, Agostini M, Barroso I, et al. Digenic inheritance of severe insulin resistance in a human pedigree. Nat Genet 2002; 31(4): 379–84.PubMed Savage DB, Agostini M, Barroso I, et al. Digenic inheritance of severe insulin resistance in a human pedigree. Nat Genet 2002; 31(4): 379–84.PubMed
80.
go back to reference Tsai YS, Kim HJ, Takahashi N, et al. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARβ. J Clin Invest 2004; 114(2): 240–9.PubMed Tsai YS, Kim HJ, Takahashi N, et al. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARβ. J Clin Invest 2004; 114(2): 240–9.PubMed
81.
go back to reference Barak Y, Nelson MC, Ong ES, et al. PPAR β is required for placental, cardiac, and adipose tissue development. Mol Cell 1999; 4(4): 585–95.PubMedCrossRef Barak Y, Nelson MC, Ong ES, et al. PPAR β is required for placental, cardiac, and adipose tissue development. Mol Cell 1999; 4(4): 585–95.PubMedCrossRef
82.
go back to reference Kubota N, Terauchi Y, Miki H, et al. PPAR β mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4(4): 597–609.PubMedCrossRef Kubota N, Terauchi Y, Miki H, et al. PPAR β mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4(4): 597–609.PubMedCrossRef
83.
go back to reference He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferatoractivated receptor β knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 2003; 100(26): 15712–7.PubMedCrossRef He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferatoractivated receptor β knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 2003; 100(26): 15712–7.PubMedCrossRef
84.
go back to reference Norris AW, Chen L, Fisher SJ, et al. Muscle-specific PPARβ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 2003; 112(4): 608–18.PubMed Norris AW, Chen L, Fisher SJ, et al. Muscle-specific PPARβ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 2003; 112(4): 608–18.PubMed
85.
go back to reference Hevener AL, He W, Barak Y, et al. Muscle-specific PPARβ deletion causes insulin resistance. Nat Med 2003; 9(12): 1491–7.PubMedCrossRef Hevener AL, He W, Barak Y, et al. Muscle-specific PPARβ deletion causes insulin resistance. Nat Med 2003; 9(12): 1491–7.PubMedCrossRef
86.
go back to reference Mazzone T. Strategies in ongoing clinical trials to reduce cardiovascular disease in patients with diabetes mellitus and insulin resistance. Am J Cardiol 2004; 93(HA): 27C–31C.PubMedCrossRef Mazzone T. Strategies in ongoing clinical trials to reduce cardiovascular disease in patients with diabetes mellitus and insulin resistance. Am J Cardiol 2004; 93(HA): 27C–31C.PubMedCrossRef
87.
go back to reference Gilling L, Suwattee P, DeSouza C, et al. Effects of the thiazolidinediones on cardiovascular risk factors. Am J Cardiovasc Drugs 2002; 2(3): 149–56.PubMedCrossRef Gilling L, Suwattee P, DeSouza C, et al. Effects of the thiazolidinediones on cardiovascular risk factors. Am J Cardiovasc Drugs 2002; 2(3): 149–56.PubMedCrossRef
88.
go back to reference McDonnell DP. Selective estrogen receptor modulators (SERMs): a first step in the development of perfect hormone replacement therapy regimen. J Soc Gynecol Investig 2000; 7(1 Suppl.): S10–5.PubMedCrossRef McDonnell DP. Selective estrogen receptor modulators (SERMs): a first step in the development of perfect hormone replacement therapy regimen. J Soc Gynecol Investig 2000; 7(1 Suppl.): S10–5.PubMedCrossRef
89.
go back to reference Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARβ-modulating activity. Hypertension 2004; 43(5): 993–1002.PubMedCrossRef Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARβ-modulating activity. Hypertension 2004; 43(5): 993–1002.PubMedCrossRef
90.
go back to reference Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-y activity. Circulation 2004; 109(17): 2054–7.PubMedCrossRef Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-y activity. Circulation 2004; 109(17): 2054–7.PubMedCrossRef
91.
go back to reference Chakrabarti R, Vikramadithyan RK, Misra P, et al. Ragaglitazar: a novel PPAR α PPAR β agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br J Pharmacol 2003; 140(3): 527–37.PubMedCrossRef Chakrabarti R, Vikramadithyan RK, Misra P, et al. Ragaglitazar: a novel PPAR α PPAR β agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br J Pharmacol 2003; 140(3): 527–37.PubMedCrossRef
92.
go back to reference Bayes M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2004; 26(7): 587–612.PubMed Bayes M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2004; 26(7): 587–612.PubMed
93.
go back to reference Keen HL, Ryan MJ, Beyer A, et al. Gene expression profiling of potential PPARβ target genes in mouse aorta. Physiol Genomics 2004; 18(1): 33–42.PubMedCrossRef Keen HL, Ryan MJ, Beyer A, et al. Gene expression profiling of potential PPARβ target genes in mouse aorta. Physiol Genomics 2004; 18(1): 33–42.PubMedCrossRef
Metadata
Title
Peroxisome Proliferator-Activated Receptor-β and its Agonists in Hypertension and Atherosclerosis
Mechanisms and Clinical Implications
Authors
Carmen M. Halabi
Dr Curt D. Sigmund
Publication date
01-11-2005
Publisher
Springer International Publishing
Published in
American Journal of Cardiovascular Drugs / Issue 6/2005
Print ISSN: 1175-3277
Electronic ISSN: 1179-187X
DOI
https://doi.org/10.2165/00129784-200505060-00006

Other articles of this Issue 6/2005

American Journal of Cardiovascular Drugs 6/2005 Go to the issue

Acknowledgments

Acknowledgment