Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Perampanel | Study Protocol

PerSurge (NOA-30) phase II trial of perampanel treatment around surgery in patients with progressive glioblastoma

Authors: Sophie Heuer, Ina Burghaus, Maria Gose, Tobias Kessler, Felix Sahm, Philipp Vollmuth, Varun Venkataramani, Dirk Hoffmann, Matthias Schlesner, Miriam Ratliff, Carsten Hopf, Ulrich Herrlinger, Franz Ricklefs, Martin Bendszus, Sandro M. Krieg, Antje Wick, Wolfgang Wick, Frank Winkler

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept.

Methods

PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity.

Discussion

This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future.

Trial registration

EU-CT number: 2023-503938-52-00 30.11.2023.
Literature
1.
go back to reference Stupp R, Warren MP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMed Stupp R, Warren MP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N Engl J Med. 2005;352(10):987–96.CrossRefPubMed
2.
go back to reference Scherm A, Ippen FM, Hau P, Baurecht H, Wick W, Gempt J, et al. Targeted therapies in patients with newly diagnosed glioblastoma—A systematic meta-analysis of randomized clinical trials. Int J Cancer. 2023;152(11):2225–37.CrossRef Scherm A, Ippen FM, Hau P, Baurecht H, Wick W, Gempt J, et al. Targeted therapies in patients with newly diagnosed glioblastoma—A systematic meta-analysis of randomized clinical trials. Int J Cancer. 2023;152(11):2225–37.CrossRef
3.
go back to reference Wen PY, van den Bent M, Youssef G, Cloughesy TF, Ellingson BM, Weller M et al. RANO 2.0: update to the Response Assessment in Neuro-Oncology Criteria for High- and low-Grade gliomas in adults. J Clin Oncol. 2023:JCO2301059. Wen PY, van den Bent M, Youssef G, Cloughesy TF, Ellingson BM, Weller M et al. RANO 2.0: update to the Response Assessment in Neuro-Oncology Criteria for High- and low-Grade gliomas in adults. J Clin Oncol. 2023:JCO2301059.
4.
go back to reference Wen PY, Weller M, Lee EQ, Alexander BA, Barnholtz-Sloan JS, Barthel FP et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and future directions. Neuro Oncol. 2020. Wen PY, Weller M, Lee EQ, Alexander BA, Barnholtz-Sloan JS, Barthel FP et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) Consensus Review on Current Management and future directions. Neuro Oncol. 2020.
5.
go back to reference Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med. 2017;377(20):1954–63.CrossRefPubMed Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med. 2017;377(20):1954–63.CrossRefPubMed
6.
go back to reference Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, et al. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol. 2016;18(4):549–56.CrossRefPubMedPubMedCentral Suchorska B, Weller M, Tabatabai G, Senft C, Hau P, Sabel MC, et al. Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol. 2016;18(4):549–56.CrossRefPubMedPubMedCentral
7.
go back to reference Ringel F, Pape H, Sabel M, Krex D, Bock HC, Misch M, et al. Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro Oncol. 2016;18(1):96–104.CrossRefPubMed Ringel F, Pape H, Sabel M, Krex D, Bock HC, Misch M, et al. Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro Oncol. 2016;18(1):96–104.CrossRefPubMed
8.
go back to reference Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86.CrossRefPubMed Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86.CrossRefPubMed
9.
go back to reference Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528(7580):93–8.CrossRefPubMed Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, et al. Brain tumour cells interconnect to a functional and resistant network. Nature. 2015;528(7580):93–8.CrossRefPubMed
10.
go back to reference Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8.CrossRefPubMed Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573(7775):532–8.CrossRefPubMed
11.
go back to reference Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45.CrossRefPubMedPubMedCentral Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45.CrossRefPubMedPubMedCentral
12.
go back to reference Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, et al. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature. 2023;613(7942):179–86.CrossRefPubMed Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, et al. Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature. 2023;613(7942):179–86.CrossRefPubMed
13.
go back to reference Weil S, Osswald M, Solecki G, Grosch J, Jung E, Lemke D, et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 2017;19(10):1316–26.CrossRefPubMedPubMedCentral Weil S, Osswald M, Solecki G, Grosch J, Jung E, Lemke D, et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 2017;19(10):1316–26.CrossRefPubMedPubMedCentral
14.
go back to reference Sahm F, Capper D, Jeibmann A, Habel A, Paulus W, Troost D, et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol. 2012;69(4):523–6.CrossRefPubMed Sahm F, Capper D, Jeibmann A, Habel A, Paulus W, Troost D, et al. Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol. 2012;69(4):523–6.CrossRefPubMed
15.
go back to reference Ratliff M, Karimian-Jazi K, Hoffmann DC, Rauschenbach L, Simon M, Hai L et al. Individual glioblastoma cells harbor both proliferative and invasive capabilities during tumor progression. Neuro Oncol. 2023. Ratliff M, Karimian-Jazi K, Hoffmann DC, Rauschenbach L, Simon M, Hai L et al. Individual glioblastoma cells harbor both proliferative and invasive capabilities during tumor progression. Neuro Oncol. 2023.
16.
go back to reference Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wissmann N, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185(16):2899–917. e31.CrossRefPubMed Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wissmann N, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 2022;185(16):2899–917. e31.CrossRefPubMed
17.
go back to reference Venkataramani V, Schneider M, Giordano FA, Kuner T, Wick W, Herrlinger U, et al. Disconnecting multicellular networks in brain tumours. Nat Rev Cancer. 2022;22(8):481–91.CrossRefPubMed Venkataramani V, Schneider M, Giordano FA, Kuner T, Wick W, Herrlinger U, et al. Disconnecting multicellular networks in brain tumours. Nat Rev Cancer. 2022;22(8):481–91.CrossRefPubMed
19.
go back to reference Paul D, Allakonda L, Sahu A, Surendran S, Satheeshkumar N. Pharmacokinetics and brain uptake study of novel AMPA receptor antagonist perampanel in SD rats using a validated UHPLC-QTOF-MS method. J Pharm Biomed Anal. 2018;149:234–41.CrossRefPubMed Paul D, Allakonda L, Sahu A, Surendran S, Satheeshkumar N. Pharmacokinetics and brain uptake study of novel AMPA receptor antagonist perampanel in SD rats using a validated UHPLC-QTOF-MS method. J Pharm Biomed Anal. 2018;149:234–41.CrossRefPubMed
20.
go back to reference Patsalos PN. The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015;56(1):12–27.CrossRefPubMed Patsalos PN. The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia. 2015;56(1):12–27.CrossRefPubMed
21.
go back to reference French JA, Krauss GL, Biton V, Squillacote D, Yang H, Laurenza A et al. Adjunctive perampanel for refractory partial-onset seizures. Neurology. 2012;79. French JA, Krauss GL, Biton V, Squillacote D, Yang H, Laurenza A et al. Adjunctive perampanel for refractory partial-onset seizures. Neurology. 2012;79.
22.
go back to reference French JA, Krauss GL, Steinhoff BJ, Squillacote D, Yang H, Kumar D, et al. Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia. 2013;54(1):117–25.CrossRefPubMed French JA, Krauss GL, Steinhoff BJ, Squillacote D, Yang H, Kumar D, et al. Evaluation of adjunctive perampanel in patients with refractory partial-onset seizures: results of randomized global phase III study 305. Epilepsia. 2013;54(1):117–25.CrossRefPubMed
23.
go back to reference Krauss GL, Perucca E, Kwan P, Ben-Menachem E, Wang XF, Shih JJ, et al. Final safety, tolerability, and seizure outcomes in patients with focal epilepsy treated with adjunctive perampanel for up to 4 years in an open-label extension of phase III randomized trials: study 307. Epilepsia. 2018;59(4):866–76.CrossRefPubMed Krauss GL, Perucca E, Kwan P, Ben-Menachem E, Wang XF, Shih JJ, et al. Final safety, tolerability, and seizure outcomes in patients with focal epilepsy treated with adjunctive perampanel for up to 4 years in an open-label extension of phase III randomized trials: study 307. Epilepsia. 2018;59(4):866–76.CrossRefPubMed
24.
go back to reference van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 2007;6(5):421–30.CrossRefPubMed van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol. 2007;6(5):421–30.CrossRefPubMed
25.
go back to reference Coppola A, Zarabla A, Maialetti A, Villani V, Koudriavtseva T, Russo E, et al. Perampanel confirms to be effective and well-tolerated as an Add-On treatment in patients with brain tumor-related Epilepsy (PERADET Study). Front Neurol. 2020;11:592.CrossRefPubMedPubMedCentral Coppola A, Zarabla A, Maialetti A, Villani V, Koudriavtseva T, Russo E, et al. Perampanel confirms to be effective and well-tolerated as an Add-On treatment in patients with brain tumor-related Epilepsy (PERADET Study). Front Neurol. 2020;11:592.CrossRefPubMedPubMedCentral
26.
go back to reference Chonan M, Saito R, Kanamori M, Osawa SI, Watanabe M, Suzuki H, et al. Experience of Low Dose Perampanel to add-on in Glioma patients with Levetiracetam-uncontrollable Epilepsy. Neurol Med Chir (Tokyo). 2020;60(1):37–44.CrossRefPubMed Chonan M, Saito R, Kanamori M, Osawa SI, Watanabe M, Suzuki H, et al. Experience of Low Dose Perampanel to add-on in Glioma patients with Levetiracetam-uncontrollable Epilepsy. Neurol Med Chir (Tokyo). 2020;60(1):37–44.CrossRefPubMed
27.
go back to reference Dunn-Pirio AM, Woodring S, Lipp E, Herndon JE 2nd, Healy P, Weant M, et al. Adjunctive perampanel for glioma-associated epilepsy. Epilepsy & Behavior case Reports. 2018;10:114–7. Dunn-Pirio AM, Woodring S, Lipp E, Herndon JE 2nd, Healy P, Weant M, et al. Adjunctive perampanel for glioma-associated epilepsy. Epilepsy & Behavior case Reports. 2018;10:114–7.
28.
go back to reference Maschio M, Zarabla A, Maialetti A, Giannarelli D, Koudriavtseva T, Villani V, et al. Perampanel in brain tumor-related epilepsy: observational pilot study. Brain Behav. 2020;10(6):e01612.CrossRefPubMedPubMedCentral Maschio M, Zarabla A, Maialetti A, Giannarelli D, Koudriavtseva T, Villani V, et al. Perampanel in brain tumor-related epilepsy: observational pilot study. Brain Behav. 2020;10(6):e01612.CrossRefPubMedPubMedCentral
29.
go back to reference Izumoto S, Miyauchi M, Tasaki T, Okuda T, Nakagawa N, Nakano N, et al. Seizures and Tumor Progression in Glioma patients with Uncontrollable Epilepsy treated with Perampanel. Anticancer Res. 2018;38(7):4361–6.CrossRefPubMed Izumoto S, Miyauchi M, Tasaki T, Okuda T, Nakagawa N, Nakano N, et al. Seizures and Tumor Progression in Glioma patients with Uncontrollable Epilepsy treated with Perampanel. Anticancer Res. 2018;38(7):4361–6.CrossRefPubMed
30.
go back to reference Hai L, Hoffmann DC, Mandelbaum H, Xie R, Ito J, Jung E et al. A connectivity signature for glioblastoma. bioRxiv. 2021. Hai L, Hoffmann DC, Mandelbaum H, Xie R, Ito J, Jung E et al. A connectivity signature for glioblastoma. bioRxiv. 2021.
31.
go back to reference Katsigiannis S, Krischek B, Barleanu S, Grau S, Galldiks N, Timmer M, et al. Impact of time to initiation of radiotherapy on survival after resection of newly diagnosed glioblastoma. Radiat Oncol. 2019;14(1):73.CrossRefPubMedPubMedCentral Katsigiannis S, Krischek B, Barleanu S, Grau S, Galldiks N, Timmer M, et al. Impact of time to initiation of radiotherapy on survival after resection of newly diagnosed glioblastoma. Radiat Oncol. 2019;14(1):73.CrossRefPubMedPubMedCentral
32.
go back to reference Vollmuth P, Foltyn M, Huang RY, Galldiks N, Petersen J, Isensee F, et al. Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: an international multi-reader study. Neuro Oncol. 2023;25(3):533–43.CrossRefPubMed Vollmuth P, Foltyn M, Huang RY, Galldiks N, Petersen J, Isensee F, et al. Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: an international multi-reader study. Neuro Oncol. 2023;25(3):533–43.CrossRefPubMed
33.
go back to reference Groenvold M, Klee MC, Sprangers MAG, Aaronson NK. Validation of the EORTC QLQ-C30 Quality of Life Questionnaire through Combined qualitative and quantitative Assessment of Patient-Observer Agreement. J Clin Epidemiol. 1997;50(4):441–50.CrossRefPubMed Groenvold M, Klee MC, Sprangers MAG, Aaronson NK. Validation of the EORTC QLQ-C30 Quality of Life Questionnaire through Combined qualitative and quantitative Assessment of Patient-Observer Agreement. J Clin Epidemiol. 1997;50(4):441–50.CrossRefPubMed
34.
go back to reference Folstein MF, Folstein SE, McHugh PR. Mini-mental State A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res. 1974;12:189–98.CrossRef Folstein MF, Folstein SE, McHugh PR. Mini-mental State A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res. 1974;12:189–98.CrossRef
35.
go back to reference Karnofsky DA, Burchenal JH. The clinical evaluation of Chemotherapeutic agents in Cancer. New York: Columbia University Press; 1949. p. 196. Karnofsky DA, Burchenal JH. The clinical evaluation of Chemotherapeutic agents in Cancer. New York: Columbia University Press; 1949. p. 196.
37.
go back to reference Stensjoen AL, Solheim O, Kvistad KA, Haberg AK, Salvesen O, Berntsen EM. Growth dynamics of untreated glioblastomas in vivo. Neuro Oncol. 2015;17(10):1402–11.CrossRefPubMedPubMedCentral Stensjoen AL, Solheim O, Kvistad KA, Haberg AK, Salvesen O, Berntsen EM. Growth dynamics of untreated glioblastomas in vivo. Neuro Oncol. 2015;17(10):1402–11.CrossRefPubMedPubMedCentral
38.
go back to reference Schmid D, Warnken U, Latzer P, Hoffmann DC, Roth J, Kutschmann S, et al. Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies. J Neurochem. 2021;158(2):522–38.CrossRefPubMed Schmid D, Warnken U, Latzer P, Hoffmann DC, Roth J, Kutschmann S, et al. Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies. J Neurochem. 2021;158(2):522–38.CrossRefPubMed
39.
go back to reference Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv. 2018;4. Ricklefs FL, Alayo Q, Krenzlin H, Mahmoud AB, Speranza MC, Nakashima H et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv. 2018;4.
40.
go back to reference Schneider M, Vollmer L, Potthoff AL, Ravi VM, Evert BO, Rahman MA, et al. Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro Oncol. 2021;23(11):1885–97.CrossRefPubMedPubMedCentral Schneider M, Vollmer L, Potthoff AL, Ravi VM, Evert BO, Rahman MA, et al. Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro Oncol. 2021;23(11):1885–97.CrossRefPubMedPubMedCentral
41.
go back to reference Zeyen T, Potthoff AL, Nemeth R, Heiland DH, Burger MC, Steinbach JP, et al. Phase I/II trial of meclofenamate in progressive MGMT-methylated glioblastoma under temozolomide second-line therapy-the MecMeth/NOA-24 trial. Trials. 2022;23(1):57.CrossRefPubMedPubMedCentral Zeyen T, Potthoff AL, Nemeth R, Heiland DH, Burger MC, Steinbach JP, et al. Phase I/II trial of meclofenamate in progressive MGMT-methylated glioblastoma under temozolomide second-line therapy-the MecMeth/NOA-24 trial. Trials. 2022;23(1):57.CrossRefPubMedPubMedCentral
Metadata
Title
PerSurge (NOA-30) phase II trial of perampanel treatment around surgery in patients with progressive glioblastoma
Authors
Sophie Heuer
Ina Burghaus
Maria Gose
Tobias Kessler
Felix Sahm
Philipp Vollmuth
Varun Venkataramani
Dirk Hoffmann
Matthias Schlesner
Miriam Ratliff
Carsten Hopf
Ulrich Herrlinger
Franz Ricklefs
Martin Bendszus
Sandro M. Krieg
Antje Wick
Wolfgang Wick
Frank Winkler
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11846-1

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine