Skip to main content
Top
Published in: Diabetologia 4/2011

01-04-2011 | Commentary

Per-arnt-sim (PAS) domain kinase (PASK) as a regulator of glucagon secretion

Authors: P. E. MacDonald, P. Rorsman

Published in: Diabetologia | Issue 4/2011

Login to get access

Abstract

The physiological and pathophysiological regulation of glucagon secretion from pancreatic alpha cells remains a hotly debated topic. The mechanism(s) contributing to the glucose sensitivity of glucagon release and its impaired regulation in diabetes remain unclear. A paper in the current issue of Diabetologia by da Silva Xavier and colleagues (doi:10.​1007/​s00125-010-2010-7) provides intriguing new insight into a metabolic sensing pathway mediated by the per-arnt-sim (PAS) domain kinase (PASK) that may contribute to both the paracrine and the intrinsic glucose regulation of alpha cells. Importantly, the authors show that PASK is decreased in islets from patients with type 2 diabetes, providing a potential mechanism for impaired suppression of glucagon by hyperglycaemia in this disease. Much work remains to be done to determine the exact role and mechanism of PASK in alpha and beta cells. Nevertheless, the present work introduces a new player in the metabolic regulation of glucagon secretion.
Literature
1.
go back to reference Dobbs R, Sakurai H, Sasaki H et al (1975) Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187:544–547PubMedCrossRef Dobbs R, Sakurai H, Sasaki H et al (1975) Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187:544–547PubMedCrossRef
2.
go back to reference Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM (1970) Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 49:837–848PubMedCrossRef Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM (1970) Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 49:837–848PubMedCrossRef
3.
go back to reference Aguilar-Parada E, Eisentraut AM, Unger RH (1969) Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci 257:415–419PubMedCrossRef Aguilar-Parada E, Eisentraut AM, Unger RH (1969) Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci 257:415–419PubMedCrossRef
4.
go back to reference Ali S, Drucker DJ (2009) Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 296:E415–E421PubMedCrossRef Ali S, Drucker DJ (2009) Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 296:E415–E421PubMedCrossRef
5.
go back to reference Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ (2010) The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59:1765–1770PubMedCrossRef Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ (2010) The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59:1765–1770PubMedCrossRef
6.
go back to reference Gromada J, Franklin I, Wollheim CB (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28:84–116PubMedCrossRef Gromada J, Franklin I, Wollheim CB (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28:84–116PubMedCrossRef
7.
go back to reference Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510PubMedCrossRef Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510PubMedCrossRef
8.
go back to reference Gopel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000) Regulation of glucagon release in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 528:509–520PubMedCrossRef Gopel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000) Regulation of glucagon release in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol 528:509–520PubMedCrossRef
9.
go back to reference MacDonald PE, de Marinis YZ, Ramracheya R et al (2007) A KATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5:e143PubMedCrossRef MacDonald PE, de Marinis YZ, Ramracheya R et al (2007) A KATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol 5:e143PubMedCrossRef
10.
go back to reference Spigelman AF, Dai X, MacDonald PE (2010) Voltage-dependent K+ channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans. Diabetologia 53:1917–1926PubMedCrossRef Spigelman AF, Dai X, MacDonald PE (2010) Voltage-dependent K+ channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans. Diabetologia 53:1917–1926PubMedCrossRef
11.
go back to reference da Silva Xavier G, Farhan H, Kim H et al (2010) Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia. doi:10.1007/s00125-010-2010-7 da Silva Xavier G, Farhan H, Kim H et al (2010) Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia. doi:10.​1007/​s00125-010-2010-7
12.
go back to reference da Silva XG, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA (2003) Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371:761–774CrossRef da Silva XG, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA (2003) Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371:761–774CrossRef
13.
go back to reference Tsuboi T, da Silva XG, Leclerc I, Rutter GA (2003) 5′-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 278:52042–52051PubMedCrossRef Tsuboi T, da Silva XG, Leclerc I, Rutter GA (2003) 5′-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 278:52042–52051PubMedCrossRef
14.
go back to reference Targonsky ED, Dai F, Koshkin V et al (2006) Alpha-lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells. Diabetologia 49:1587–1598PubMedCrossRef Targonsky ED, Dai F, Koshkin V et al (2006) Alpha-lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells. Diabetologia 49:1587–1598PubMedCrossRef
15.
go back to reference Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25PubMedCrossRef Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25PubMedCrossRef
16.
go back to reference McDonald A, Fogarty S, Leclerc I, Hill EV, Hardie DG, Rutter GA (2009) Control of insulin granule dynamics by AMPK dependent KLC1 phosphorylation. Islets 1:198–209PubMedCrossRef McDonald A, Fogarty S, Leclerc I, Hill EV, Hardie DG, Rutter GA (2009) Control of insulin granule dynamics by AMPK dependent KLC1 phosphorylation. Islets 1:198–209PubMedCrossRef
17.
go back to reference Leclerc I, Sun G, Morris C, Fernandez-Millan E, Nyirenda M, Rutter GA (2010) AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic alpha cells. Diabetologia 54:125–134PubMedCrossRef Leclerc I, Sun G, Morris C, Fernandez-Millan E, Nyirenda M, Rutter GA (2010) AMP-activated protein kinase regulates glucagon secretion from mouse pancreatic alpha cells. Diabetologia 54:125–134PubMedCrossRef
18.
go back to reference Schlafli P, Borter E, Spielmann P, Wenger RH (2009) The PAS-domain kinase PASKIN: a new sensor in energy homeostasis. Cell Mol Life Sci 66:876–883PubMedCrossRef Schlafli P, Borter E, Spielmann P, Wenger RH (2009) The PAS-domain kinase PASKIN: a new sensor in energy homeostasis. Cell Mol Life Sci 66:876–883PubMedCrossRef
19.
go back to reference da Silva XG, Rutter J, Rutter GA (2004) Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci U S A 101:8319–8324CrossRef da Silva XG, Rutter J, Rutter GA (2004) Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proc Natl Acad Sci U S A 101:8319–8324CrossRef
20.
go back to reference Fontes G, Semache M, Hagman DK et al (2009) Involvement of Per-Arnt-Sim kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes 58:2048–2058PubMedCrossRef Fontes G, Semache M, Hagman DK et al (2009) Involvement of Per-Arnt-Sim kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic beta-cells. Diabetes 58:2048–2058PubMedCrossRef
21.
go back to reference Hao HX, Cardon CM, Swiatek W et al (2007) PAS kinase is required for normal cellular energy balance. Proc Natl Acad Sci U S A 104:15466–15471PubMedCrossRef Hao HX, Cardon CM, Swiatek W et al (2007) PAS kinase is required for normal cellular energy balance. Proc Natl Acad Sci U S A 104:15466–15471PubMedCrossRef
22.
go back to reference Borter E, Niessen M, Zuellig R et al (2007) Glucose-stimulated insulin production in mice deficient for the PAS kinase PASKIN. Diabetes 56:113–117PubMedCrossRef Borter E, Niessen M, Zuellig R et al (2007) Glucose-stimulated insulin production in mice deficient for the PAS kinase PASKIN. Diabetes 56:113–117PubMedCrossRef
23.
go back to reference Rorsman P, Salehi SA, Abdulkader F, Braun M, Macdonald PE (2008) KATP-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19:277–284PubMedCrossRef Rorsman P, Salehi SA, Abdulkader F, Braun M, Macdonald PE (2008) KATP-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19:277–284PubMedCrossRef
24.
go back to reference Light PE, Wallace CH, Dyck JR (2003) Constitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes. Circulation 107:1962–1965PubMedCrossRef Light PE, Wallace CH, Dyck JR (2003) Constitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes. Circulation 107:1962–1965PubMedCrossRef
25.
go back to reference Wang CZ, Wang Y, Di A et al (2005) 5-Amino-imidazole carboxamide riboside acutely potentiates glucose-stimulated insulin secretion from mouse pancreatic islets by KATP channel-dependent and -independent pathways. Biochem Biophys Res Commun 330:1073–1079PubMedCrossRef Wang CZ, Wang Y, Di A et al (2005) 5-Amino-imidazole carboxamide riboside acutely potentiates glucose-stimulated insulin secretion from mouse pancreatic islets by KATP channel-dependent and -independent pathways. Biochem Biophys Res Commun 330:1073–1079PubMedCrossRef
26.
go back to reference Alzamora R, Gong F, Rondanino C et al (2010) AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 299:F1308–F1319 Alzamora R, Gong F, Rondanino C et al (2010) AMP-activated protein kinase inhibits KCNQ1 channels through regulation of the ubiquitin ligase Nedd4-2 in renal epithelial cells. Am J Physiol Renal Physiol 299:F1308–F1319
27.
go back to reference Evans AM, Hardie DG, Peers C et al (2009) Ion channel regulation by AMPK: the route of hypoxia-response coupling in the carotid body and pulmonary artery. Ann N Y Acad Sci 1177:89–100PubMedCrossRef Evans AM, Hardie DG, Peers C et al (2009) Ion channel regulation by AMPK: the route of hypoxia-response coupling in the carotid body and pulmonary artery. Ann N Y Acad Sci 1177:89–100PubMedCrossRef
28.
go back to reference Dallas ML, Scragg JL, Wyatt CN et al (2009) Modulation of O2 sensitive K+ channels by AMP-activated protein kinase. Adv Exp Med Biol 648:57–63PubMedCrossRef Dallas ML, Scragg JL, Wyatt CN et al (2009) Modulation of O2 sensitive K+ channels by AMP-activated protein kinase. Adv Exp Med Biol 648:57–63PubMedCrossRef
29.
go back to reference Ramracheya R, Ward C, Shigeto M et al (2010) Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59:2198–2208PubMedCrossRef Ramracheya R, Ward C, Shigeto M et al (2010) Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59:2198–2208PubMedCrossRef
30.
go back to reference Dunning BE, Foley JE, Ahren B (2005) Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48:1700–1713PubMedCrossRef Dunning BE, Foley JE, Ahren B (2005) Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48:1700–1713PubMedCrossRef
Metadata
Title
Per-arnt-sim (PAS) domain kinase (PASK) as a regulator of glucagon secretion
Authors
P. E. MacDonald
P. Rorsman
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 4/2011
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2072-1

Other articles of this Issue 4/2011

Diabetologia 4/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine