Skip to main content
Top
Published in: Journal of Bone and Mineral Metabolism 3/2019

01-05-2019 | Original Article

PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells

Authors: Yuhei Yahiro, Shingo Maeda, Naohiro Shinohara, Go Jokoji, Daisuke Sakuma, Takao Setoguchi, Yasuhiro Ishidou, Satoshi Nagano, Setsuro Komiya, Noboru Taniguchi

Published in: Journal of Bone and Mineral Metabolism | Issue 3/2019

Login to get access

Abstract

Recently, we reported highly active transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signaling in human chondrosarcoma samples and concurrent downregulation of paternally expressed gene 10 (PEG10). PEG10 expression was suppressed by TGF-β signaling, and PEG10 interfered with the TGF-β and BMP-SMAD pathways in chondrosarcoma cells. However, the roles of PEG10 in bone tumors, including chondrosarcoma, remain unknown. Here, we report that PEG10 promotes SW1353 chondrosarcoma cell growth by preventing TGF-β1-mediated suppression. In contrast, PEG10 knockdown augments the TGF-β1-induced motility of SW1353 cells. Individually, TGF-β1 and PEG10 siRNA increase AKT phosphorylation, whereas an AKT inhibitor, MK2206, mitigates the effect of PEG10 silencing on cell migration. SW1353 cell invasion was enhanced by BMP-6, which was further increased by PEG10 silencing. The effect of siPEG10 was suppressed by inhibitors of matrix metalloproteinase (MMP). BMP-6 induced expression of MMP-1, -3, and -13, and PEG10 lentivirus or PEG10 siRNA downregulated or further upregulated these MMPs, respectively. PEG10 siRNA increased BMP-6-induced phosphorylation of p38 MAPK and AKT, whereas the p38 inhibitor SB203580 and MK2206 diminished SW1353 cell invasion by PEG10 siRNA. SB203580 and MK2206 impeded the enhancing effect of PEG10 siRNA on the BMP-6-induced expression of MMP-1, -3, and -13. Our findings suggest dual functions for PEG10: accelerating cell growth by suppressing TGF-β signaling and inhibiting cell motility and invasion by interfering with TGF-β and BMP signaling via the AKT and p38 pathways, respectively. Thus, PEG10 might be a molecular target for suppressing the aggressive phenotypes of chondrosarcoma cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38:101–106CrossRefPubMed Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F (2006) Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet 38:101–106CrossRefPubMed
2.
go back to reference Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F et al (2015) The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 12:922–936CrossRefPubMed Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F et al (2015) The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 12:922–936CrossRefPubMed
3.
go back to reference Peng W, Fan H, Wu G, Wu J, Feng J (2016) Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med 16:177–182CrossRefPubMed Peng W, Fan H, Wu G, Wu J, Feng J (2016) Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med 16:177–182CrossRefPubMed
4.
go back to reference Kainz B, Shehata M, Bilban M, Kienle D, Heintel D et al (2007) Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer 121:1984–1993CrossRefPubMed Kainz B, Shehata M, Bilban M, Kienle D, Heintel D et al (2007) Overexpression of the paternally expressed gene 10 (PEG10) from the imprinted locus on chromosome 7q21 in high-risk B-cell chronic lymphocytic leukemia. Int J Cancer 121:1984–1993CrossRefPubMed
5.
go back to reference Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, Zhang Q, Xiong J (2014) PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep 32:2159–2167CrossRefPubMed Deng X, Hu Y, Ding Q, Han R, Guo Q, Qin J, Li J, Xiao R, Tian S, Hu W, Zhang Q, Xiong J (2014) PEG10 plays a crucial role in human lung cancer proliferation, progression, prognosis and metastasis. Oncol Rep 32:2159–2167CrossRefPubMed
6.
go back to reference Liu DC, Yang ZL, Jiang S (2011) Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res 17:859–866CrossRefPubMed Liu DC, Yang ZL, Jiang S (2011) Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res 17:859–866CrossRefPubMed
7.
go back to reference Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A, Tycko B (2006) PEG10 is a c-MYC target gene in cancer cells. Cancer Res 66:665–672CrossRefPubMed Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A, Tycko B (2006) PEG10 is a c-MYC target gene in cancer cells. Cancer Res 66:665–672CrossRefPubMed
8.
go back to reference Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y (2003) Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 63:3043–3048PubMed Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y (2003) Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res 63:3043–3048PubMed
9.
go back to reference Bang H, Ha SY, Hwang SH, Park CK (2015) Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat 47:844–852CrossRefPubMedPubMedCentral Bang H, Ha SY, Hwang SH, Park CK (2015) Expression of PEG10 is associated with poor survival and tumor recurrence in hepatocellular carcinoma. Cancer Res Treat 47:844–852CrossRefPubMedPubMedCentral
10.
go back to reference Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y (2007) SIAH1 causes growth arrest and apoptosis in hepatoma cells through β-catenin degradation-dependent and -independent mechanisms. Oncol Rep 17:549–556PubMed Yoshibayashi H, Okabe H, Satoh S, Hida K, Kawashima K, Hamasu S, Nomura A, Hasegawa S, Ikai I, Sakai Y (2007) SIAH1 causes growth arrest and apoptosis in hepatoma cells through β-catenin degradation-dependent and -independent mechanisms. Oncol Rep 17:549–556PubMed
11.
go back to reference Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J (2017) PEG10 is imperative for TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep 37:510–518CrossRefPubMed Zhang M, Sui C, Dai B, Shen W, Lu J, Yang J (2017) PEG10 is imperative for TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep 37:510–518CrossRefPubMed
12.
go back to reference Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q (2016) PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 48:1933–1942CrossRefPubMed Li X, Xiao R, Tembo K, Hao L, Xiong M, Pan S, Yang X, Yuan W, Xiong J, Zhang Q (2016) PEG10 promotes human breast cancer cell proliferation, migration and invasion. Int J Oncol 48:1933–1942CrossRefPubMed
13.
go back to reference Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, Moriya H, Hosoda K, Waraya M, Katoh H, Watanabe M (2017) The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget 8:74567–74581PubMedPubMedCentral Ishii S, Yamashita K, Harada H, Ushiku H, Tanaka T, Nishizawa N, Yokoi K, Washio M, Ema A, Mieno H, Moriya H, Hosoda K, Waraya M, Katoh H, Watanabe M (2017) The H19-PEG10/IGF2BP3 axis promotes gastric cancer progression in patients with high lymph node ratios. Oncotarget 8:74567–74581PubMedPubMedCentral
14.
go back to reference Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PW, Reith AD (2001) Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res 29:4079–4088CrossRefPubMedPubMedCentral Shigemoto K, Brennan J, Walls E, Watson CJ, Stott D, Rigby PW, Reith AD (2001) Identification and characterisation of a developmentally regulated mammalian gene that utilises-1 programmed ribosomal frameshifting. Nucleic Acids Res 29:4079–4088CrossRefPubMedPubMedCentral
15.
go back to reference Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424CrossRefPubMed Ikushima H, Miyazono K (2010) TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424CrossRefPubMed
16.
go back to reference Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Βiochem 147:35–51 Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Βiochem 147:35–51
17.
go back to reference Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA, Hafner M (2005) Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-β receptor activin receptor-like kinase 1. J Biol Chem 280:8482–8493CrossRefPubMed Lux A, Beil C, Majety M, Barron S, Gallione CJ, Kuhn HM, Berg JN, Kioschis P, Marchuk DA, Hafner M (2005) Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-β receptor activin receptor-like kinase 1. J Biol Chem 280:8482–8493CrossRefPubMed
18.
go back to reference Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810CrossRefPubMed Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810CrossRefPubMed
19.
go back to reference Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274:27161–27167CrossRefPubMed Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274:27161–27167CrossRefPubMed
20.
go back to reference Henderson ED, Dahlin DC (1963) Chondrosarcoma of bone—a study of two hundred and eighty-eight cases. J Bone Jt Surg Am 45:1450–1458CrossRef Henderson ED, Dahlin DC (1963) Chondrosarcoma of bone—a study of two hundred and eighty-eight cases. J Bone Jt Surg Am 45:1450–1458CrossRef
21.
go back to reference Giuffrida AY, Burgueno JE, Koniaris LG, Gutierrez JC, Duncan R, Scully SP (2009) Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J Bone Jt Surg Am 91:1063–1072CrossRef Giuffrida AY, Burgueno JE, Koniaris LG, Gutierrez JC, Duncan R, Scully SP (2009) Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database. J Bone Jt Surg Am 91:1063–1072CrossRef
22.
go back to reference Italiano A, Mir O, Cioffi A, Palmerini E, Piperno-Neumann S, Perrin C, Chaigneau L, Penel N, Duffaud F, Kurtz JE, Collard O, Bertucci F, Bompas E, Le Cesne A, Maki RG, Ray Coquard I, Blay JY (2013) Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol 24:2916–2922CrossRefPubMedPubMedCentral Italiano A, Mir O, Cioffi A, Palmerini E, Piperno-Neumann S, Perrin C, Chaigneau L, Penel N, Duffaud F, Kurtz JE, Collard O, Bertucci F, Bompas E, Le Cesne A, Maki RG, Ray Coquard I, Blay JY (2013) Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol 24:2916–2922CrossRefPubMedPubMedCentral
23.
go back to reference Moussavi-Harami F, Mollano A, Martin JA, Ayoob A, Domann FE, Gitelis S, Buckwalter JA (2006) Intrinsic radiation resistance in human chondrosarcoma cells. Biochem Biophys Res Commun 346:379–385CrossRefPubMed Moussavi-Harami F, Mollano A, Martin JA, Ayoob A, Domann FE, Gitelis S, Buckwalter JA (2006) Intrinsic radiation resistance in human chondrosarcoma cells. Biochem Biophys Res Commun 346:379–385CrossRefPubMed
24.
go back to reference Dai X, Ma W, He X, Jha RK (2011) Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit 17:RA177–RA190CrossRefPubMedPubMedCentral Dai X, Ma W, He X, Jha RK (2011) Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit 17:RA177–RA190CrossRefPubMedPubMedCentral
25.
go back to reference van Driel M, van Leeuwen JP (2014) Cancer and bone: a complex complex. Arch Biochem Biophys 561:159–166CrossRefPubMed van Driel M, van Leeuwen JP (2014) Cancer and bone: a complex complex. Arch Biochem Biophys 561:159–166CrossRefPubMed
26.
go back to reference Boeuf S, Bovee JV, Lehner B, van den Akker B, van Ruler M, Cleton-Jansen AM, Richter W (2012) BMP and TGFβ pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors. BMC Cancer 12:488CrossRefPubMedPubMedCentral Boeuf S, Bovee JV, Lehner B, van den Akker B, van Ruler M, Cleton-Jansen AM, Richter W (2012) BMP and TGFβ pathways in human central chondrosarcoma: enhanced endoglin and Smad 1 signaling in high grade tumors. BMC Cancer 12:488CrossRefPubMedPubMedCentral
27.
go back to reference Masi L, Malentacchi C, Campanacci D, Franchi A (2002) Transforming growth factor-β isoform and receptor expression in chondrosarcoma of bone. Virchows Arch 440:491–497CrossRefPubMed Masi L, Malentacchi C, Campanacci D, Franchi A (2002) Transforming growth factor-β isoform and receptor expression in chondrosarcoma of bone. Virchows Arch 440:491–497CrossRefPubMed
28.
go back to reference Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-β1 increases motility and αvβ3 integrin up-regulation via PI3K, Akt and NF-κB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75:1292–1301CrossRefPubMed Yeh YY, Chiao CC, Kuo WY, Hsiao YC, Chen YJ, Wei YY, Lai TH, Fong YC, Tang CH (2008) TGF-β1 increases motility and αvβ3 integrin up-regulation via PI3K, Akt and NF-κB-dependent pathway in human chondrosarcoma cells. Biochem Pharmacol 75:1292–1301CrossRefPubMed
29.
go back to reference Hou CH, Hsiao YC, Fong YC, Tang CH (2009) Bone morphogenetic protein-2 enhances the motility of chondrosarcoma cells via activation of matrix metalloproteinase-13. Bone 44:233–242CrossRefPubMed Hou CH, Hsiao YC, Fong YC, Tang CH (2009) Bone morphogenetic protein-2 enhances the motility of chondrosarcoma cells via activation of matrix metalloproteinase-13. Bone 44:233–242CrossRefPubMed
30.
go back to reference Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S, Komiya S (2017) TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep 7:13494CrossRefPubMedPubMedCentral Shinohara N, Maeda S, Yahiro Y, Sakuma D, Matsuyama K, Imamura K, Kawamura I, Setoguchi T, Ishidou Y, Nagano S, Komiya S (2017) TGF-β signalling and PEG10 are mutually exclusive and inhibitory in chondrosarcoma cells. Sci Rep 7:13494CrossRefPubMedPubMedCentral
31.
go back to reference Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF (1994) Interleukin-1 β-modulated gene expression in immortalized human chondrocytes. J Clin Investig 94:2307–2316CrossRefPubMedPubMedCentral Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF (1994) Interleukin-1 β-modulated gene expression in immortalized human chondrocytes. J Clin Investig 94:2307–2316CrossRefPubMedPubMedCentral
32.
go back to reference Tominaga H, Maeda S, Hayashi M, Takeda S, Akira S, Komiya S, Nakamura T, Akiyama H, Imamura T (2008) CCAAT/enhancer-binding protein β promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell 19:5373–5386CrossRefPubMedPubMedCentral Tominaga H, Maeda S, Hayashi M, Takeda S, Akira S, Komiya S, Nakamura T, Akiyama H, Imamura T (2008) CCAAT/enhancer-binding protein β promotes osteoblast differentiation by enhancing Runx2 activity with ATF4. Mol Biol Cell 19:5373–5386CrossRefPubMedPubMedCentral
33.
go back to reference Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861CrossRefPubMed Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861CrossRefPubMed
34.
go back to reference Miyazono K, Miyazawa K (2002) Id: a target of BMP signaling. Sci STKE 2002:pe40PubMed Miyazono K, Miyazawa K (2002) Id: a target of BMP signaling. Sci STKE 2002:pe40PubMed
35.
go back to reference Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549CrossRefPubMedPubMedCentral Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995) Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 92:5545–5549CrossRefPubMedPubMedCentral
36.
go back to reference Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261CrossRefPubMed Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261CrossRefPubMed
37.
go back to reference Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64CrossRefPubMed Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64CrossRefPubMed
39.
go back to reference Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMed Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMed
40.
go back to reference Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807CrossRefPubMedPubMedCentral Boergermann JH, Kopf J, Yu PB, Knaus P (2010) Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42:1802–1807CrossRefPubMedPubMedCentral
41.
go back to reference Pikul S, McDow Dunham KL, Almstead NG, De B, Natchus MG, Anastasio MV, McPhail SJ, Snider CE, Taiwo YO, Rydel T, Dunaway CM, Gu F, Mieling GE (1998) Discovery of potent, achiral matrix metalloproteinase inhibitors. J Med Chem 41:3568–3571CrossRefPubMed Pikul S, McDow Dunham KL, Almstead NG, De B, Natchus MG, Anastasio MV, McPhail SJ, Snider CE, Taiwo YO, Rydel T, Dunaway CM, Gu F, Mieling GE (1998) Discovery of potent, achiral matrix metalloproteinase inhibitors. J Med Chem 41:3568–3571CrossRefPubMed
42.
go back to reference Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU (2005) Structural basis for the highly selective inhibition of MMP-13. Chem Biol 12:181–189CrossRefPubMed Engel CK, Pirard B, Schimanski S, Kirsch R, Habermann J, Klingler O, Schlotte V, Weithmann KU, Wendt KU (2005) Structural basis for the highly selective inhibition of MMP-13. Chem Biol 12:181–189CrossRefPubMed
43.
go back to reference Yuan J, Dutton CM, Scully SP (2005) RNAi mediated MMP-1 silencing inhibits human chondrosarcoma invasion. J Orthop Res 23:1467–1474CrossRefPubMed Yuan J, Dutton CM, Scully SP (2005) RNAi mediated MMP-1 silencing inhibits human chondrosarcoma invasion. J Orthop Res 23:1467–1474CrossRefPubMed
44.
go back to reference Tang CH, Yamamoto A, Lin YT, Fong YC, Tan TW (2010) Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis. Biochem Pharmacol 79:209–217CrossRefPubMed Tang CH, Yamamoto A, Lin YT, Fong YC, Tan TW (2010) Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis. Biochem Pharmacol 79:209–217CrossRefPubMed
45.
go back to reference Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451CrossRefPubMed Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272:2446–2451CrossRefPubMed
46.
go back to reference Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kahari VM (2002) Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360–32368CrossRefPubMed Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kahari VM (2002) Activation of p38 alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277:32360–32368CrossRefPubMed
47.
go back to reference Fong YC, Li TM, Wu CM, Hsu SF, Kao ST, Chen RJ, Lin CC, Liu SC, Wu CL, Tang CH (2008) BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol 217:846–855CrossRefPubMed Fong YC, Li TM, Wu CM, Hsu SF, Kao ST, Chen RJ, Lin CC, Liu SC, Wu CL, Tang CH (2008) BMP-2 increases migration of human chondrosarcoma cells via PI3K/Akt pathway. J Cell Physiol 217:846–855CrossRefPubMed
48.
go back to reference Wu MH, Lo JF, Kuo CH, Lin JA, Lin YM, Chen LM, Tsai FJ, Tsai CH, Huang CY, Tang CH (2012) Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227:3016–3026CrossRefPubMed Wu MH, Lo JF, Kuo CH, Lin JA, Lin YM, Chen LM, Tsai FJ, Tsai CH, Huang CY, Tang CH (2012) Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J Cell Physiol 227:3016–3026CrossRefPubMed
49.
go back to reference Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229–233CrossRefPubMed Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC (1995) SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229–233CrossRefPubMed
50.
go back to reference Derynck R, Akhurst RJ, Balmain A (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29:117–129CrossRefPubMed Derynck R, Akhurst RJ, Balmain A (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29:117–129CrossRefPubMed
51.
go back to reference Ikushima H, Miyazono K (2010) Cellular context-dependent “colors” of transforming growth factor-β signaling. Cancer Sci 101:306–312CrossRefPubMed Ikushima H, Miyazono K (2010) Cellular context-dependent “colors” of transforming growth factor-β signaling. Cancer Sci 101:306–312CrossRefPubMed
52.
go back to reference Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829CrossRefPubMed Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829CrossRefPubMed
53.
go back to reference Chen JC, Yang ST, Lin CY, Hsu CJ, Tsai CH, Su JL, Tang CH (2014) BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. PLoS One 9:e112636CrossRefPubMedPubMedCentral Chen JC, Yang ST, Lin CY, Hsu CJ, Tsai CH, Su JL, Tang CH (2014) BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells. PLoS One 9:e112636CrossRefPubMedPubMedCentral
Metadata
Title
PEG10 counteracts signaling pathways of TGF-β and BMP to regulate growth, motility and invasion of SW1353 chondrosarcoma cells
Authors
Yuhei Yahiro
Shingo Maeda
Naohiro Shinohara
Go Jokoji
Daisuke Sakuma
Takao Setoguchi
Yasuhiro Ishidou
Satoshi Nagano
Setsuro Komiya
Noboru Taniguchi
Publication date
01-05-2019
Publisher
Springer Japan
Published in
Journal of Bone and Mineral Metabolism / Issue 3/2019
Print ISSN: 0914-8779
Electronic ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-018-0946-8

Other articles of this Issue 3/2019

Journal of Bone and Mineral Metabolism 3/2019 Go to the issue