Skip to main content
Top
Published in: Cellular Oncology 2/2016

01-04-2016 | Original Paper

PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors

Authors: Wei Wang, Xiao-Wen Song, Xian-Min Bu, Ning Zhang, Cheng-Hai Zhao

Published in: Cellular Oncology | Issue 2/2016

Login to get access

Abstract

Purpose

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported.

Methods

The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays.

Results

We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3.

Conclusions

Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.
Literature
1.
go back to reference M. Miettinen, M. Majidi, J. Lasota, Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur. J. Cancer 38, S39–S51 (2002)CrossRefPubMed M. Miettinen, M. Majidi, J. Lasota, Pathology and diagnostic criteria of gastrointestinal stromal tumors (GISTs): a review. Eur. J. Cancer 38, S39–S51 (2002)CrossRefPubMed
2.
go back to reference H. S. Kim, S. S. Kim, S. G. Park, Bowel perforation associated sunitinib therapy for recurred gastric gastrointestinal stromal tumor. Ann. Surg. Treat. Res. 86, 220–225 (2014)CrossRefPubMedPubMedCentral H. S. Kim, S. S. Kim, S. G. Park, Bowel perforation associated sunitinib therapy for recurred gastric gastrointestinal stromal tumor. Ann. Surg. Treat. Res. 86, 220–225 (2014)CrossRefPubMedPubMedCentral
3.
go back to reference L. G. Kindblom, H. E. Remotti, F. Aldenborg, J. M. Meis-Kindblom, Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am. J. Pathol. 152, 1259–1269 (1998)PubMedPubMedCentral L. G. Kindblom, H. E. Remotti, F. Aldenborg, J. M. Meis-Kindblom, Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am. J. Pathol. 152, 1259–1269 (1998)PubMedPubMedCentral
4.
go back to reference S. Minakhina, N. Changela, R. Steward, Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 141, 259–268 (2014)CrossRefPubMedPubMedCentral S. Minakhina, N. Changela, R. Steward, Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 141, 259–268 (2014)CrossRefPubMedPubMedCentral
5.
go back to reference M. Merup, T. C. Moreno, M. Heyman, K. Rönnberg, D. Grandér, R. Detlofsson, O. Rasool, Y. Liu, S. Söderhäll, G. Juliusson, G. Gahrton, S. Einhorn, 6q deletions in acute lymphoblastic leukemia and non-Hodgkin’s lymphomas. Blood 91, 3397–3400 (1998)PubMed M. Merup, T. C. Moreno, M. Heyman, K. Rönnberg, D. Grandér, R. Detlofsson, O. Rasool, Y. Liu, S. Söderhäll, G. Juliusson, G. Gahrton, S. Einhorn, 6q deletions in acute lymphoblastic leukemia and non-Hodgkin’s lymphomas. Blood 91, 3397–3400 (1998)PubMed
6.
go back to reference J. Zhang, W. Wei, H. C. Jin, R. C. Ying, A. K. Zhu, F. J. Zhang, The roles of APOBEC3B in gastric cancer. Int. J. Clin. Exp. Pathol. 8, 5089–5096 (2015)PubMedPubMedCentral J. Zhang, W. Wei, H. C. Jin, R. C. Ying, A. K. Zhu, F. J. Zhang, The roles of APOBEC3B in gastric cancer. Int. J. Clin. Exp. Pathol. 8, 5089–5096 (2015)PubMedPubMedCentral
7.
go back to reference J. Zhang, W. Wei, H. C. Jin, R. C. Ying, A. K. Zhu, F. J. Zhang, Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner. Oncol. Rep. 33, 103–110 (2015)PubMed J. Zhang, W. Wei, H. C. Jin, R. C. Ying, A. K. Zhu, F. J. Zhang, Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner. Oncol. Rep. 33, 103–110 (2015)PubMed
8.
go back to reference D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, C. von Mering, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011)CrossRefPubMedPubMedCentral D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, C. von Mering, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011)CrossRefPubMedPubMedCentral
9.
go back to reference R. B. Scarr, P. A. Sharp, PDCD2 is a negative regulator of HCF-1 (C1). Oncogene 21, 5245–5254 (2002)CrossRefPubMed R. B. Scarr, P. A. Sharp, PDCD2 is a negative regulator of HCF-1 (C1). Oncogene 21, 5245–5254 (2002)CrossRefPubMed
10.
go back to reference X. G. Zhu, D. W. Kim, M. L. Goodson, M. L. Privalsky, S. Y. Cheng, NCoR1 regulates thyroid hormone receptor isoform-dependent adipogenesis. J. Mol. Endocrinol. 46, 233–244 (2011)CrossRefPubMedPubMedCentral X. G. Zhu, D. W. Kim, M. L. Goodson, M. L. Privalsky, S. Y. Cheng, NCoR1 regulates thyroid hormone receptor isoform-dependent adipogenesis. J. Mol. Endocrinol. 46, 233–244 (2011)CrossRefPubMedPubMedCentral
11.
go back to reference T. Taguchi, H. Sonobe, S. Toyonaga, I. Yamasaki, T. Shuin, A. Takano, K. Araki, K. Akimaru, K. Yuri, Conventional and molecular cytogenetic characterization of a new human cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab. Investig. 82, 663–665 (2002)CrossRefPubMed T. Taguchi, H. Sonobe, S. Toyonaga, I. Yamasaki, T. Shuin, A. Takano, K. Araki, K. Akimaru, K. Yuri, Conventional and molecular cytogenetic characterization of a new human cell line, GIST-T1, established from gastrointestinal stromal tumor. Lab. Investig. 82, 663–665 (2002)CrossRefPubMed
12.
go back to reference B. W. Baron, N. Zeleznik-Le, M. J. Baron, C. Theisler, D. Huo, M. D. Krasowski, M. J. Thirman, R. M. Baron, J. M. Baron, Repression of the PDCD2 gene by BCL6 and the implications for the pathogenesis of human B and T cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 104, 7449–7454 (2007)CrossRefPubMedPubMedCentral B. W. Baron, N. Zeleznik-Le, M. J. Baron, C. Theisler, D. Huo, M. D. Krasowski, M. J. Thirman, R. M. Baron, J. M. Baron, Repression of the PDCD2 gene by BCL6 and the implications for the pathogenesis of human B and T cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 104, 7449–7454 (2007)CrossRefPubMedPubMedCentral
13.
go back to reference J. Kramer, C. J. Granier, S. Davis, K. Piso, J. Hand, A. B. Rabson, H. E. Sabaawy, PDCD2 controls hematopoietic stem cell differentiation during development. Stem Cells Dev. 22, 58–72 (2013)CrossRefPubMed J. Kramer, C. J. Granier, S. Davis, K. Piso, J. Hand, A. B. Rabson, H. E. Sabaawy, PDCD2 controls hematopoietic stem cell differentiation during development. Stem Cells Dev. 22, 58–72 (2013)CrossRefPubMed
14.
go back to reference R. M. Lavinsky, K. Jepsen, T. Heinzel, J. Torchia, T. M. Mullen, R. Schiff, A. L. Del-Rio, M. Ricote, S. Ngo, J. Gemsch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, M. G. Rosenfeld, D. W. Rose, Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. U. S. A. 95, 2920–2925 (1998)CrossRefPubMedPubMedCentral R. M. Lavinsky, K. Jepsen, T. Heinzel, J. Torchia, T. M. Mullen, R. Schiff, A. L. Del-Rio, M. Ricote, S. Ngo, J. Gemsch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, M. G. Rosenfeld, D. W. Rose, Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. U. S. A. 95, 2920–2925 (1998)CrossRefPubMedPubMedCentral
15.
go back to reference J. Kurebayashi, T. Otsuki, H. Kunisue, K. Tanaka, S. Yamamoto, H. Sonoo, Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin. Cancer Res. 6, 512–518 (2000)PubMed J. Kurebayashi, T. Otsuki, H. Kunisue, K. Tanaka, S. Yamamoto, H. Sonoo, Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin. Cancer Res. 6, 512–518 (2000)PubMed
16.
go back to reference Z. H. Zhang, H. Yamashita, T. Toyama, Y. Yamamoto, T. Kawasoe, M. Ibusuki, S. Tomita, H. Sugiura, S. Kobayashi, Y. Fujii, H. Iwase, Nuclear corepressor 1 expression predicts response to first-line endocrine therapy for breast cancer patients on relapse. Chin. Med. J. 122, 1764–1768 (2009)PubMed Z. H. Zhang, H. Yamashita, T. Toyama, Y. Yamamoto, T. Kawasoe, M. Ibusuki, S. Tomita, H. Sugiura, S. Kobayashi, Y. Fujii, H. Iwase, Nuclear corepressor 1 expression predicts response to first-line endocrine therapy for breast cancer patients on relapse. Chin. Med. J. 122, 1764–1768 (2009)PubMed
17.
go back to reference B. W. Baron, E. Hyjek, B. Gladstone, M. J. Thirman, J. M. Baron, PDCD2, a protein whose expression is repressed by BCL6, induces apoptosis in human cells by activation of the caspase cascade. Blood Cells Mol. Dis. 45, 169–175 (2010)CrossRefPubMed B. W. Baron, E. Hyjek, B. Gladstone, M. J. Thirman, J. M. Baron, PDCD2, a protein whose expression is repressed by BCL6, induces apoptosis in human cells by activation of the caspase cascade. Blood Cells Mol. Dis. 45, 169–175 (2010)CrossRefPubMed
18.
go back to reference H. Kashima, A. Horiuchi, J. Uchikawa, T. Miyamoto, A. Suzuki, T. Ashida, I. Konishi, T. Shiozawa, Up-regulation of nuclear receptor corepressor (NCoR) in progestin-induced growth suppression of endometrial hyperplasia and carcinoma. Anticancer Res. 29, 1023–1029 (2009)PubMed H. Kashima, A. Horiuchi, J. Uchikawa, T. Miyamoto, A. Suzuki, T. Ashida, I. Konishi, T. Shiozawa, Up-regulation of nuclear receptor corepressor (NCoR) in progestin-induced growth suppression of endometrial hyperplasia and carcinoma. Anticancer Res. 29, 1023–1029 (2009)PubMed
19.
go back to reference M. O. Lee, H. J. Kang, Role of coactivators and corepressors in the induction of the RAR beta gene in human colon cancer cells. Biol. Pharm. Bull. 25, 1298–1302 (2002)CrossRefPubMed M. O. Lee, H. J. Kang, Role of coactivators and corepressors in the induction of the RAR beta gene in human colon cancer cells. Biol. Pharm. Bull. 25, 1298–1302 (2002)CrossRefPubMed
20.
go back to reference B. Schmierer, C. S. Hill, TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell. Biol. 8, 970–982 (2007)CrossRefPubMed B. Schmierer, C. S. Hill, TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell. Biol. 8, 970–982 (2007)CrossRefPubMed
21.
go back to reference M. K. Wendt, J. A. Smith, W. P. Schiemann, p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J. Biol. Chem. 284, 34145–34156 (2009)CrossRefPubMedPubMedCentral M. K. Wendt, J. A. Smith, W. P. Schiemann, p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J. Biol. Chem. 284, 34145–34156 (2009)CrossRefPubMedPubMedCentral
22.
go back to reference M. R. Tang, Y. X. Wang, S. Guo, S. Y. Han, D. Wang, CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis 17, 927–937 (2012)CrossRefPubMed M. R. Tang, Y. X. Wang, S. Guo, S. Y. Han, D. Wang, CSMD1 exhibits antitumor activity in A375 melanoma cells through activation of the Smad pathway. Apoptosis 17, 927–937 (2012)CrossRefPubMed
23.
go back to reference D. Zurlo, C. Leone, G. Assante, S. Salzano, G. Renzone, A. Scaloni, C. Foresta, V. Colantuoni, A. Lupo, Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells. Mol. Carcinog. 52, 1–17 (2013)CrossRefPubMed D. Zurlo, C. Leone, G. Assante, S. Salzano, G. Renzone, A. Scaloni, C. Foresta, V. Colantuoni, A. Lupo, Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells. Mol. Carcinog. 52, 1–17 (2013)CrossRefPubMed
24.
go back to reference X. R. Han, Y. Sun, X. Z. Bai, The anti-tumor role and mechanism of integrated and truncated PDCD5 proteins in osteosarcoma cells. Cell. Signal. 24, 1713–1721 (2012)CrossRefPubMed X. R. Han, Y. Sun, X. Z. Bai, The anti-tumor role and mechanism of integrated and truncated PDCD5 proteins in osteosarcoma cells. Cell. Signal. 24, 1713–1721 (2012)CrossRefPubMed
25.
go back to reference M. E. Han, S. J. Baek, S. Y. Kim, C. D. Kang, S. O. Oh, ATOH1 can regulate the tumorigenicity of gastric cancer cells by inducing the differentiation of cancer stem cells. PLoS One 10, e0126085 (2015)CrossRefPubMedPubMedCentral M. E. Han, S. J. Baek, S. Y. Kim, C. D. Kang, S. O. Oh, ATOH1 can regulate the tumorigenicity of gastric cancer cells by inducing the differentiation of cancer stem cells. PLoS One 10, e0126085 (2015)CrossRefPubMedPubMedCentral
Metadata
Title
PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors
Authors
Wei Wang
Xiao-Wen Song
Xian-Min Bu
Ning Zhang
Cheng-Hai Zhao
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 2/2016
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-015-0258-0

Other articles of this Issue 2/2016

Cellular Oncology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine