Skip to main content
Top
Published in: Cellular Oncology 2/2016

01-04-2016 | Original Paper

Down-regulation of osteopontin mediates a novel mechanism underlying the cytostatic activity of TGF-β

Authors: Jing Zhang, Osamu Yamada, Shinya Kida, Yoshihisa Matsushita, Toshio Hattori

Published in: Cellular Oncology | Issue 2/2016

Login to get access

Abstract

Purpose

Loss of a cytostatic response to TGF-β has been implicated in multiple hyper-proliferative disorders, including cancer. Although several key genes involved in the cytostatic activity of TGF-β have in the past been identified, its exact mode of action is yet to be elucidated. A comprehensive understanding of the mechanisms underlying the cytostatic activity of TGF-β may open up new avenues for the development of therapeutic strategies.

Methods

Quantitative real-time RT-PCR was used to assess osteopontin (OPN) gene expression in human hepatoma-derived Huh-7 and lung adenocarcinoma-derived A549 cells. Reporter assays using an OPN promoter-luciferase construct and its mutated counterparts were performed to assess its transcriptional activity. Binding of Smad4 to the OPN gene promoter was investigated using chromatin immunoprecipitation (CHIP). The putative role of Smad4 in OPN gene expression down-regulation was also assessed using a shRNA-mediated knockdown strategy. The anti-proliferative effect of TGF-β on different cancer-derived cell lines was determined using the cell proliferation reagent WST-1.

Results

We found that the OPN expression levels dose-dependently decreased in TGF-β-treated Huh-7 and A549 cells. Our reporter assays indicated that this TGF-β-induced repression occurred at the transcriptional level, and could largely be abrogated by disruption of an element (TIE2) similar to the TGF-β inhibitory element found in other TGF-β-repressed genes. Our CHIP assay revealed that the Smad protein complex specifically binds to the OPN gene promoter, and that the TGF-β-mediated inhibition of OPN was lost upon shRNA-mediated knockdown of Smad4. Moreover, we found that the deregulation of OPN gene expression by TGF-β occurred concomitantly with loss of the TGF-β anti-proliferative response, whereas a neutralizing anti-OPN antibody partially restored this response.

Conclusions

Our results indicate that the OPN gene is a direct target of Smad-mediated TGF-β signaling, implying that OPN expression inhibition serves as a novel mechanism underlying the cytostatic activity of TGF-β.
Literature
1.
go back to reference F. Lebrin, M. Deckers, P. Bertolino, P. ten Dijke, TGF-β receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2004)CrossRef F. Lebrin, M. Deckers, P. Bertolino, P. ten Dijke, TGF-β receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2004)CrossRef
2.
go back to reference C.-H. Heldin, M. Landström, A. Moustakas, Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr. Opin. Cell Biol. 21, 166–176 (2009)CrossRefPubMed C.-H. Heldin, M. Landström, A. Moustakas, Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr. Opin. Cell Biol. 21, 166–176 (2009)CrossRefPubMed
3.
go back to reference E. Meulmeester, P. Ten Dijke, The dynamic roles of TGF-beta in cancer. J. Pathol. 223, 205–218 (2011)CrossRefPubMed E. Meulmeester, P. Ten Dijke, The dynamic roles of TGF-beta in cancer. J. Pathol. 223, 205–218 (2011)CrossRefPubMed
4.
go back to reference A Maier, A.L. Peille, V. Vuaroqueaux, M. Lahn, Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell. Oncol. 38, 131–144 (2015) A Maier, A.L. Peille, V. Vuaroqueaux, M. Lahn, Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell. Oncol. 38, 131–144 (2015)
5.
go back to reference S. Ross, C.S. Hill, How the smads regulate transcription. Int. J. Biochem. Cell Biol. 40, 383–408 (2008)CrossRefPubMed S. Ross, C.S. Hill, How the smads regulate transcription. Int. J. Biochem. Cell Biol. 40, 383–408 (2008)CrossRefPubMed
6.
go back to reference A Moustakas, C.H. Heldin, The regulation of TGFβ signal transduction. Development 136, 3699–3714 (2009) A Moustakas, C.H. Heldin, The regulation of TGFβ signal transduction. Development 136, 3699–3714 (2009)
7.
go back to reference P.M. Siegel, J. Massagué, Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer 3, 807–821 (2003)CrossRefPubMed P.M. Siegel, J. Massagué, Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer 3, 807–821 (2003)CrossRefPubMed
10.
go back to reference G.J. Hannon, D. Beach, p15INK4B is a potential effector of TGFbeta-induced cell cycle arrest. Nature 371, 257–261 (1994)CrossRefPubMed G.J. Hannon, D. Beach, p15INK4B is a potential effector of TGFbeta-induced cell cycle arrest. Nature 371, 257–261 (1994)CrossRefPubMed
11.
go back to reference M.B. Datto, Y. Li, J.F. Panus, D.J. Howe, Y. Xiong, X.F. Wang, Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 throughp53-independent mechanism. Proc. Natl. Acad. Sci. U. S. A. 92, 5545–5549 (1995)CrossRefPubMedPubMedCentral M.B. Datto, Y. Li, J.F. Panus, D.J. Howe, Y. Xiong, X.F. Wang, Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 throughp53-independent mechanism. Proc. Natl. Acad. Sci. U. S. A. 92, 5545–5549 (1995)CrossRefPubMedPubMedCentral
12.
go back to reference J.M. Scandura, P. Boccuni, J. Massague, S.D. Nimer, Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 upregulation. Proc. Natl. Acad. Sci. U. S. A. 101, 15231–15236 (2004)CrossRefPubMedPubMedCentral J.M. Scandura, P. Boccuni, J. Massague, S.D. Nimer, Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 upregulation. Proc. Natl. Acad. Sci. U. S. A. 101, 15231–15236 (2004)CrossRefPubMedPubMedCentral
13.
go back to reference J. Massagué, S.W. Blain, R.S. Lo, TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000)CrossRefPubMed J. Massagué, S.W. Blain, R.S. Lo, TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000)CrossRefPubMed
14.
go back to reference R. Derynck, R.J. Akhurst, A. Balmain, TGF-β signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001)CrossRefPubMed R. Derynck, R.J. Akhurst, A. Balmain, TGF-β signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001)CrossRefPubMed
15.
go back to reference L.M. Wakefield, A.B. Roberts, TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29 (2002)CrossRefPubMed L.M. Wakefield, A.B. Roberts, TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29 (2002)CrossRefPubMed
16.
go back to reference B. Kleuser, D. Malek, R. Gust, H.H. Pertz, H. Potteck, 17-beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. Mol. Pharmacol. 74, 1533–1543 (2008)CrossRefPubMed B. Kleuser, D. Malek, R. Gust, H.H. Pertz, H. Potteck, 17-beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30. Mol. Pharmacol. 74, 1533–1543 (2008)CrossRefPubMed
17.
go back to reference S. Gizzo, C. Saccardi, T.S. Patrelli, R. Berretta, G. Capobianco, S. Di Gangi, A. Vacilotto, A. Bertocco, M. Noventa, E. Ancona, D. D’Antona, G.B. Nardelli, Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet. Gynecol. Surv. 68, 467–481 (2013)CrossRefPubMed S. Gizzo, C. Saccardi, T.S. Patrelli, R. Berretta, G. Capobianco, S. Di Gangi, A. Vacilotto, A. Bertocco, M. Noventa, E. Ancona, D. D’Antona, G.B. Nardelli, Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet. Gynecol. Surv. 68, 467–481 (2013)CrossRefPubMed
18.
go back to reference S. Gizzo, M. Noventa, C. Saccardi, P. Litta, D. D’Antona, G.B. Nardelli, Proposal on raloxifene use after prophylactic salpingo-oophorectomy in BRCA1-2: hypothesis and rationale. Eur. J. Cancer Prev. 23, 514–515 (2014)CrossRefPubMed S. Gizzo, M. Noventa, C. Saccardi, P. Litta, D. D’Antona, G.B. Nardelli, Proposal on raloxifene use after prophylactic salpingo-oophorectomy in BRCA1-2: hypothesis and rationale. Eur. J. Cancer Prev. 23, 514–515 (2014)CrossRefPubMed
19.
go back to reference S. Gizzo, M. Noventa, S. Di Gangi, P. Litta, C. Saccardi, D. D’Antona, G.B. Nardelli, Could in-vitro studies on Ishikawa cell lines explain the endometrial safety of raloxifene? Systematic literature review and starting points for future oncological research. Eur. J. Cancer Prev 24, 497–507 (2015)CrossRefPubMed S. Gizzo, M. Noventa, S. Di Gangi, P. Litta, C. Saccardi, D. D’Antona, G.B. Nardelli, Could in-vitro studies on Ishikawa cell lines explain the endometrial safety of raloxifene? Systematic literature review and starting points for future oncological research. Eur. J. Cancer Prev 24, 497–507 (2015)CrossRefPubMed
20.
go back to reference L. Levy, C.S. Hill, Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006)CrossRefPubMed L. Levy, C.S. Hill, Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58 (2006)CrossRefPubMed
21.
go back to reference A.B. Roberts, L.M. Wakefield, The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 100, 8621–8623 (2003)CrossRefPubMedPubMedCentral A.B. Roberts, L.M. Wakefield, The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 100, 8621–8623 (2003)CrossRefPubMedPubMedCentral
22.
go back to reference C.H. Heldin, M. Vanlandewijck, A. Moustakas, Regulation of EMT by TGFβ in cancer. FEBS Lett. 586, 1959–1970 (2012)CrossRefPubMed C.H. Heldin, M. Vanlandewijck, A. Moustakas, Regulation of EMT by TGFβ in cancer. FEBS Lett. 586, 1959–1970 (2012)CrossRefPubMed
23.
go back to reference G.F. Weber, The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim. Biophys. Acta 1552, 61–85 (2001)CrossRefPubMed G.F. Weber, The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim. Biophys. Acta 1552, 61–85 (2001)CrossRefPubMed
24.
go back to reference H. Rangaswami, A. Bulbule, G.C. Kundu, Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 16, 79–87 (2006)CrossRefPubMed H. Rangaswami, A. Bulbule, G.C. Kundu, Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 16, 79–87 (2006)CrossRefPubMed
25.
go back to reference N.I. Johnston, V.K. Gunasekharan, A. Ravindranath, C. O’Connell, P.G. Johnston, P.G. El-Tanani, Osteopontin as a target for cancer therapy. Front. Biosci. 13, 4361–4372 (2008)CrossRefPubMed N.I. Johnston, V.K. Gunasekharan, A. Ravindranath, C. O’Connell, P.G. Johnston, P.G. El-Tanani, Osteopontin as a target for cancer therapy. Front. Biosci. 13, 4361–4372 (2008)CrossRefPubMed
26.
go back to reference J.L. Lee, M.J. Wang, P.R. Sudhir, G.D. Chen, C.W. Chi, J.Y. Chen, Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN-CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer Res. 67, 2089–2097 (2007)CrossRefPubMed J.L. Lee, M.J. Wang, P.R. Sudhir, G.D. Chen, C.W. Chi, J.Y. Chen, Osteopontin promotes integrin activation through outside-in and inside-out mechanisms: OPN-CD44V interaction enhances survival in gastrointestinal cancer cells. Cancer Res. 67, 2089–2097 (2007)CrossRefPubMed
27.
go back to reference A Bellahcène, V. Castronovo, K.U. Ogbureke, L.W. Fisher, N.S. Fedarko, Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat. Rev. Cancer 8, 212–226 (2008) A Bellahcène, V. Castronovo, K.U. Ogbureke, L.W. Fisher, N.S. Fedarko, Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat. Rev. Cancer 8, 212–226 (2008)
28.
go back to reference D. Coppola, M. Szabo, D. Boulware, P. Muraca, M. Alsarraj, A.F. Chambers, T.J. Yeatman, Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin. Cancer Res. 10, 184–190 (2004)CrossRefPubMed D. Coppola, M. Szabo, D. Boulware, P. Muraca, M. Alsarraj, A.F. Chambers, T.J. Yeatman, Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin. Cancer Res. 10, 184–190 (2004)CrossRefPubMed
29.
go back to reference M. Higashiyama, T. Ito, E. Tanaka, Y. Shimada, Prognostic significance of osteopon- tin expression in human gastric carcinoma. Ann. Surg. Oncol. 14, 3419–3427 (2007)CrossRefPubMed M. Higashiyama, T. Ito, E. Tanaka, Y. Shimada, Prognostic significance of osteopon- tin expression in human gastric carcinoma. Ann. Surg. Oncol. 14, 3419–3427 (2007)CrossRefPubMed
30.
go back to reference P.V. Korita, T. Wakai, Y. Shirai, Y. Matsuda, J. Sakata, X. Cui, Y. Ajioka, K. Hatakeyama, Overexpression of osteopontin independently correlates with vascular invasion and poor prognosis in patients with hepatocellular carcinoma. Hum. Pathol. 39, 1777–1783 (2008)CrossRefPubMed P.V. Korita, T. Wakai, Y. Shirai, Y. Matsuda, J. Sakata, X. Cui, Y. Ajioka, K. Hatakeyama, Overexpression of osteopontin independently correlates with vascular invasion and poor prognosis in patients with hepatocellular carcinoma. Hum. Pathol. 39, 1777–1783 (2008)CrossRefPubMed
31.
go back to reference N. Patani, F. Jouhra, W. Jiang, K. Mokbel, Osteopontin expression profiles predict pathological and clinical outcome in breast cancer. Anticancer Res. 28, 4105–4110 (2008)PubMed N. Patani, F. Jouhra, W. Jiang, K. Mokbel, Osteopontin expression profiles predict pathological and clinical outcome in breast cancer. Anticancer Res. 28, 4105–4110 (2008)PubMed
32.
33.
go back to reference J. Zhang, O. Yamada, Y. Matsushita, H. Chagan-Yasutan, T. Hattori, Transactivation of human osteopontin promoter by human T-cell leukemia virus type 1-encoded tax protein. Leuk. Res. 34, 763–768 (2010)CrossRefPubMed J. Zhang, O. Yamada, Y. Matsushita, H. Chagan-Yasutan, T. Hattori, Transactivation of human osteopontin promoter by human T-cell leukemia virus type 1-encoded tax protein. Leuk. Res. 34, 763–768 (2010)CrossRefPubMed
34.
go back to reference J. Zhang, O. Yamada, T. Sakamoto, H. Yoshida, T. Iwai, Y. Matsushita, H. Shimamura, H. Araki, K. Shimotohno, Down-regulation of viral replication by adenoviral-mediated expression of siRAN against cellular cofactors for hepatitis C virus. Virology 320, 135–143 (2004)CrossRefPubMed J. Zhang, O. Yamada, T. Sakamoto, H. Yoshida, T. Iwai, Y. Matsushita, H. Shimamura, H. Araki, K. Shimotohno, Down-regulation of viral replication by adenoviral-mediated expression of siRAN against cellular cofactors for hepatitis C virus. Virology 320, 135–143 (2004)CrossRefPubMed
35.
go back to reference J. Zhang, O. Yamada, S. Kida, Y. Matsushita, S. Yamaoka, H. Chagan-Yasutan, T. Hattori, Identification of CD44 as a downstream target of noncanonical NF-κB pathway activated by human T-cell leukemia virus type 1-encoded tax protein. Virology 413, 244–252 (2011)CrossRefPubMed J. Zhang, O. Yamada, S. Kida, Y. Matsushita, S. Yamaoka, H. Chagan-Yasutan, T. Hattori, Identification of CD44 as a downstream target of noncanonical NF-κB pathway activated by human T-cell leukemia virus type 1-encoded tax protein. Virology 413, 244–252 (2011)CrossRefPubMed
36.
go back to reference T. Standal, M. Borset, A. Sundan, Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp. Oncol. 26, 179–184 (2004)PubMed T. Standal, M. Borset, A. Sundan, Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp. Oncol. 26, 179–184 (2004)PubMed
37.
go back to reference C.R. Chen, Y. Kang, P.M. Siegel, J. Massagué, E2F4/5 and p107 as smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110, 19–32 (2002)CrossRefPubMed C.R. Chen, Y. Kang, P.M. Siegel, J. Massagué, E2F4/5 and p107 as smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110, 19–32 (2002)CrossRefPubMed
38.
go back to reference Y. Kang, C.R. Chen, J. Massagué, A self-enabling TGFbeta response coupled to stress signaling: smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915–926 (2003)CrossRefPubMed Y. Kang, C.R. Chen, J. Massagué, A self-enabling TGFbeta response coupled to stress signaling: smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915–926 (2003)CrossRefPubMed
39.
go back to reference N.G. Denissova, C. Pouponnot, J. Long, D. He, F. Liu, Transforming growth factor -inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl. Acad. Sci. 97, 6397–6402 (2000)CrossRefPubMedPubMedCentral N.G. Denissova, C. Pouponnot, J. Long, D. He, F. Liu, Transforming growth factor -inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl. Acad. Sci. 97, 6397–6402 (2000)CrossRefPubMedPubMedCentral
40.
go back to reference N.T. Liberati, M. Moniwa, A.J. Borton, J.R. Davie, X.F. Wang, An essential role for mad homology domain 1 in the association of Smad3 with histone deacetylase activity. J. Biol. Chem. 276, 22595–22603 (2001)CrossRefPubMed N.T. Liberati, M. Moniwa, A.J. Borton, J.R. Davie, X.F. Wang, An essential role for mad homology domain 1 in the association of Smad3 with histone deacetylase activity. J. Biol. Chem. 276, 22595–22603 (2001)CrossRefPubMed
41.
go back to reference T. Alliston, L. Choy, P. Ducy, G. Karsenty, R. Derynck, TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 20, 2254–2272 (2001)CrossRefPubMedPubMedCentral T. Alliston, L. Choy, P. Ducy, G. Karsenty, R. Derynck, TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J. 20, 2254–2272 (2001)CrossRefPubMedPubMedCentral
42.
go back to reference J.S. Kang, T. Alliston, R. Delston, R. Derynck, Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3. EMBO J. 24, 2543–2555 (2005)CrossRefPubMedPubMedCentral J.S. Kang, T. Alliston, R. Delston, R. Derynck, Repression of Runx2 function by TGF-β through recruitment of class II histone deacetylases by Smad3. EMBO J. 24, 2543–2555 (2005)CrossRefPubMedPubMedCentral
43.
go back to reference R. Sakata, S. Minami, Y. Sowa, M. Yoshida, T. Tamaki, Trichostatin a activates the osteopontin gene promoter through AP1 site. Biochem. Biophys. Res. Commun. 315, 959–963 (2004)CrossRefPubMed R. Sakata, S. Minami, Y. Sowa, M. Yoshida, T. Tamaki, Trichostatin a activates the osteopontin gene promoter through AP1 site. Biochem. Biophys. Res. Commun. 315, 959–963 (2004)CrossRefPubMed
44.
go back to reference D.T. Denhardt, D. Mistretta, A.F. Chambers, S. Krishna, J.F. Porter, S. Raghuram, S.R. Rittling, Transcriptional regulation of osteopontin and the metastatic phenotype evidence for a ras-activated enhancer in the human OPN promoter. Clin. Exp. Metastasis 20, 77–84 (2003)CrossRefPubMed D.T. Denhardt, D. Mistretta, A.F. Chambers, S. Krishna, J.F. Porter, S. Raghuram, S.R. Rittling, Transcriptional regulation of osteopontin and the metastatic phenotype evidence for a ras-activated enhancer in the human OPN promoter. Clin. Exp. Metastasis 20, 77–84 (2003)CrossRefPubMed
45.
go back to reference X. Shi, S. Bai, L. Li, X. Cao, Hoxa-9 represses transforming growth factor-beta- induced osteopontin gene transcription. J. Biol. Chem. 276, 850–855 (2001)CrossRefPubMed X. Shi, S. Bai, L. Li, X. Cao, Hoxa-9 represses transforming growth factor-beta- induced osteopontin gene transcription. J. Biol. Chem. 276, 850–855 (2001)CrossRefPubMed
46.
go back to reference T.G. Hullinger, Q. Pan, H.L. Viswanathan, M.J. Somerman, TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp. Cell Res. 262, 69–74 (2001)CrossRefPubMed T.G. Hullinger, Q. Pan, H.L. Viswanathan, M.J. Somerman, TGFbeta and BMP-2 activation of the OPN promoter: roles of smad- and hox-binding elements. Exp. Cell Res. 262, 69–74 (2001)CrossRefPubMed
47.
49.
go back to reference K. Matsuzaki, Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev. 24, 385–399 (2013)CrossRefPubMed K. Matsuzaki, Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev. 24, 385–399 (2013)CrossRefPubMed
50.
go back to reference D. Padua, X.H. Zhang, Q. Wang, C. Nadal, W.L. Gerald, R.R. Gomis, J. Massagué, TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008)CrossRefPubMedPubMedCentral D. Padua, X.H. Zhang, Q. Wang, C. Nadal, W.L. Gerald, R.R. Gomis, J. Massagué, TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008)CrossRefPubMedPubMedCentral
51.
go back to reference S. Gizzo, M. Quaranta, G.B. Nardelli, M. Noventa. Lipophilic Statins as Anticancer Agents: Molecular Targeted Actions and Proposal in Advanced Gynaecological Malignancies. Curr. Drug Targets 16, 1142--1159 (2015) S. Gizzo, M. Quaranta, G.B. Nardelli, M. Noventa. Lipophilic Statins as Anticancer Agents: Molecular Targeted Actions and Proposal in Advanced Gynaecological Malignancies. Curr. Drug Targets 16, 1142--1159 (2015)
52.
go back to reference A. Vitagliano, M. Noventa, S. Gizzo. Emerging evidence regarding statins use as novel endometriosis targeted treatment: real "magic pills" or "trendy" drugs? Some considerations. Eur. J. Obstet. Gynecol. Reprod. Biol. 184, 125-126 (2015) A. Vitagliano, M. Noventa, S. Gizzo. Emerging evidence regarding statins use as novel endometriosis targeted treatment: real "magic pills" or "trendy" drugs? Some considerations. Eur. J. Obstet. Gynecol. Reprod. Biol. 184, 125-126 (2015)
53.
go back to reference A. Vitagliano, M. Noventa, M. Quaranta, S. Gizzo. Statins as Targeted "Magical Pills" for the Conservative Treatment of Endometriosis: May Potential Adverse Effects on Female Fertility Represent the "Dark Side of the Same Coin"? A Systematic Review of Literature. Reprod. Sci. (2015). doi:10.1177/1933719115584446 A. Vitagliano, M. Noventa, M. Quaranta, S. Gizzo. Statins as Targeted "Magical Pills" for the Conservative Treatment of Endometriosis: May Potential Adverse Effects on Female Fertility Represent the "Dark Side of the Same Coin"? A Systematic Review of Literature. Reprod. Sci. (2015). doi:10.​1177/​1933719115584446​
54.
go back to reference M. Matsuura, T. Suzuki, M. Suzuki, R. Tanaka, E. Ito, T. Saito, Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol. Rep. 25, 41–47 (2011)PubMed M. Matsuura, T. Suzuki, M. Suzuki, R. Tanaka, E. Ito, T. Saito, Statin-mediated reduction of osteopontin expression induces apoptosis and cell growth arrest in ovarian clear cell carcinoma. Oncol. Rep. 25, 41–47 (2011)PubMed
Metadata
Title
Down-regulation of osteopontin mediates a novel mechanism underlying the cytostatic activity of TGF-β
Authors
Jing Zhang
Osamu Yamada
Shinya Kida
Yoshihisa Matsushita
Toshio Hattori
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 2/2016
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-015-0257-1

Other articles of this Issue 2/2016

Cellular Oncology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine