Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Methodology

PBMC fixation and processing for Chromium single-cell RNA sequencing

Authors: Jinguo Chen, Foo Cheung, Rongye Shi, Huizhi Zhou, Wenrui Lu, CHI Consortium

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Interest in single-cell transcriptomic analysis is growing rapidly, especially for profiling rare or heterogeneous populations of cells. In almost all reported works investigators have used live cells, which introduces cell stress during preparation and hinders complex study designs. Recent studies have indicated that cells fixed by denaturing fixative can be used in single-cell sequencing, however they did not usually work with most types of primary cells including immune cells.

Methods

The methanol-fixation and new processing method was introduced to preserve human peripheral blood mononuclear cells (PBMCs) for single-cell RNA sequencing (scRNA-Seq) analysis on 10× Chromium platform.

Results

When methanol fixation protocol was broken up into three steps: fixation, storage and rehydration, we found that PBMC RNA was degraded during rehydration with PBS, not at cell fixation and up to 3-month storage steps. Resuspension but not rehydration in 3× saline sodium citrate (SSC) buffer instead of PBS preserved PBMC RNA integrity and prevented RNA leakage. Diluted SSC buffer did not interfere with full-length cDNA synthesis. The methanol-fixed PBMCs resuspended in 3× SSC were successfully implemented into 10× Chromium standard scRNA-seq workflows with no elevated low quality cells and cell doublets. The fixation process did not alter the single-cell transcriptional profiles and gene expression levels. Major subpopulations classified by marker genes could be identified in fixed PBMCs at a similar proportion as in live PBMCs. This new fixation processing protocol also worked in several other fixed primary cell types and cell lines as in live ones.

Conclusions

We expect that the methanol-based cell fixation procedure presented here will allow better and more effective batching schemes for a complex single cell experimental design with primary cells or tissues.
Appendix
Available only for authorised users
Literature
1.
go back to reference Proserpio V, Mahata B. Single-cell technologies to study the immune system. Immunology. 2016;147(2):133–40.CrossRefPubMed Proserpio V, Mahata B. Single-cell technologies to study the immune system. Immunology. 2016;147(2):133–40.CrossRefPubMed
2.
go back to reference Buchholz VR, Flossdorf M. Single-cell resolution of T Cell immune responses. Advances in immunology. Cambridge: Academic Press; 2018. Buchholz VR, Flossdorf M. Single-cell resolution of T Cell immune responses. Advances in immunology. Cambridge: Academic Press; 2018.
3.
go back to reference Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163(4):799–810.CrossRefPubMed Grun D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163(4):799–810.CrossRefPubMed
5.
go back to reference Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2014;11(1):41–6.CrossRefPubMed Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2014;11(1):41–6.CrossRefPubMed
6.
go back to reference Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.CrossRefPubMedPubMedCentral Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.CrossRefPubMedPubMedCentral
7.
go back to reference Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.CrossRefPubMedPubMedCentral Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.CrossRefPubMedPubMedCentral
9.
go back to reference Alles J, Karaiskos N, Praktiknjo SD, Grosswendt S, Wahle P, Ruffault PL, Ayoub S, Schreyer L, Boltengagen A, Birchmeier C, et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 2017;15(1):44.CrossRefPubMedPubMedCentral Alles J, Karaiskos N, Praktiknjo SD, Grosswendt S, Wahle P, Ruffault PL, Ayoub S, Schreyer L, Boltengagen A, Birchmeier C, et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 2017;15(1):44.CrossRefPubMedPubMedCentral
10.
go back to reference Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017;357(6352):661–7.CrossRefPubMedPubMedCentral Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017;357(6352):661–7.CrossRefPubMedPubMedCentral
11.
go back to reference Esser C, Gottlinger C, Kremer J, Hundeiker C, Radbruch A. Isolation of full-size mRNA from ethanol-fixed cells after cellular immunofluorescence staining and fluorescence-activated cell sorting (FACS). Cytometry. 1995;21(4):382–6.CrossRefPubMed Esser C, Gottlinger C, Kremer J, Hundeiker C, Radbruch A. Isolation of full-size mRNA from ethanol-fixed cells after cellular immunofluorescence staining and fluorescence-activated cell sorting (FACS). Cytometry. 1995;21(4):382–6.CrossRefPubMed
12.
go back to reference Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17:29.CrossRefPubMedPubMedCentral Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17:29.CrossRefPubMedPubMedCentral
13.
go back to reference Yamada H, Maruo R, Watanabe M, Hidaka Y, Iwatani Y, Takano T. Messenger RNA quantification after fluorescence activated cell sorting using intracellular antigens. Biochem Biophys Res Commun. 2010;397(3):425–8.CrossRefPubMed Yamada H, Maruo R, Watanabe M, Hidaka Y, Iwatani Y, Takano T. Messenger RNA quantification after fluorescence activated cell sorting using intracellular antigens. Biochem Biophys Res Commun. 2010;397(3):425–8.CrossRefPubMed
14.
go back to reference Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017;358(6360):194–9.CrossRefPubMed Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017;358(6360):194–9.CrossRefPubMed
15.
go back to reference Kozubek S, Lukasova E, Amrichova J, Kozubek M, Liskova A, Slotova J. Influence of cell fixation on chromatin topography. Anal Biochem. 2000;282(1):29–38.CrossRefPubMed Kozubek S, Lukasova E, Amrichova J, Kozubek M, Liskova A, Slotova J. Influence of cell fixation on chromatin topography. Anal Biochem. 2000;282(1):29–38.CrossRefPubMed
16.
go back to reference Nilsson H, Krawczyk KM, Johansson ME. High salt buffer improves integrity of RNA after fluorescence-activated cell sorting of intracellular labeled cells. J Biotechnol. 2014;192(Pt A):62–5.CrossRefPubMed Nilsson H, Krawczyk KM, Johansson ME. High salt buffer improves integrity of RNA after fluorescence-activated cell sorting of intracellular labeled cells. J Biotechnol. 2014;192(Pt A):62–5.CrossRefPubMed
17.
go back to reference Maeda T, Date A, Watanabe M, Hidaka Y, Iwatani Y, Takano T. Optimization of recovery and analysis of RNA in sorted cells in mRNA quantification after fluorescence-activated cell sorting. Ann Clin Lab Sci. 2016;46(6):571–7.PubMed Maeda T, Date A, Watanabe M, Hidaka Y, Iwatani Y, Takano T. Optimization of recovery and analysis of RNA in sorted cells in mRNA quantification after fluorescence-activated cell sorting. Ann Clin Lab Sci. 2016;46(6):571–7.PubMed
18.
go back to reference Khochbin S, Grunwald D, Pabion M, Lawrence JJ. Recovery of RNA from flow-sorted fixed cells. Cytometry. 1990;11(8):869–74.CrossRefPubMed Khochbin S, Grunwald D, Pabion M, Lawrence JJ. Recovery of RNA from flow-sorted fixed cells. Cytometry. 1990;11(8):869–74.CrossRefPubMed
19.
go back to reference Date A, Maeda T, Watanabe M, Hidaka Y, Iwatani Y, Takano T. An improved protocol for mRNA quantification after fluorescence-activated cell sorting with an increased signal to noise ratio in flow cytometry. Mol Biotechnol. 2014;56(7):591–8.CrossRefPubMed Date A, Maeda T, Watanabe M, Hidaka Y, Iwatani Y, Takano T. An improved protocol for mRNA quantification after fluorescence-activated cell sorting with an increased signal to noise ratio in flow cytometry. Mol Biotechnol. 2014;56(7):591–8.CrossRefPubMed
20.
go back to reference Guillaumet-Adkins A, Rodriguez-Esteban G, Mereu E, Mendez-Lago M, Jaitin DA, Villanueva A, Vidal A, Martinez-Marti A, Felip E, Vivancos A, et al. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol. 2017;18(1):45.CrossRefPubMedPubMedCentral Guillaumet-Adkins A, Rodriguez-Esteban G, Mereu E, Mendez-Lago M, Jaitin DA, Villanueva A, Vidal A, Martinez-Marti A, Felip E, Vivancos A, et al. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol. 2017;18(1):45.CrossRefPubMedPubMedCentral
Metadata
Title
PBMC fixation and processing for Chromium single-cell RNA sequencing
Authors
Jinguo Chen
Foo Cheung
Rongye Shi
Huizhi Zhou
Wenrui Lu
CHI Consortium
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1578-4

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.