Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Short report

Partial HIV C2V3 envelope sequence analysis reveals association of coreceptor tropism, envelope glycosylation and viral genotypic variability among Kenyan patients on HAART

Authors: Rose C. Kitawi, Carol W. Hunja, Rashid Aman, Bernhards R. Ogutu, Anne W. T. Muigai, Gilbert O. Kokwaro, Washingtone Ochieng

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

HIV-1 is highly variable genetically and at protein level, a property it uses to subvert antiviral immunity and treatment. The aim of this study was to assess if HIV subtype differences were associated with variations in glycosylation patterns and co-receptor tropism among HAART patients experiencing different virologic treatment outcomes.

Methods

A total of 118 HIV env C2V3 sequence isolates generated previously from 59 Kenyan patients receiving highly active antiretroviral therapy (HAART) were examined for tropism and glycosylation patterns. For analysis of Potential N-linked glycosylation sites (PNGs), amino acid sequences generated by the NCBI’s Translate tool were applied to the HIVAlign and the N-glycosite tool within the Los Alamos Database. Viral tropism was assessed using Geno2Pheno (G2P), WebPSSM and Phenoseq platforms as well as using Raymond’s and Esbjörnsson’s rules. Chi square test was used to determine independent variables association and ANOVA applied on scale variables.

Results

At respective False Positive Rate (FPR) cut-offs of 5% (p = 0.045), 10% (p = 0.016) and 20% (p = 0.005) for CXCR4 usage within the Geno2Pheno platform, HIV-1 subtype and viral tropism were significantly associated in a chi square test. Raymond’s rule (p = 0.024) and WebPSSM (p = 0.05), but not Phenoseq or Esbjörnsson showed significant associations between subtype and tropism. Relative to other platforms used, Raymond’s and Esbjörnsson’s rules showed higher proportions of X4 variants, while WebPSSM resulted in lower proportions of X4 variants across subtypes. The mean glycosylation density differed significantly between subtypes at positions, N277 (p = 0.034), N296 (p = 0.036), N302 (p = 0.034) and N366 (p = 0.004), with HIV-1D most heavily glycosylated of the subtypes. R5 isolates had fewer PNGs than X4 isolates, but these differences were not significant except at position N262 (p = 0.040). Cell-associated isolates from virologic treatment success subjects were more glycosylated than cell-free isolates from virologic treatment failures both for the NXT (p = 0.016), and for all the patterns (p = 0.011).

Conclusion

These data reveal significant associations of HIV-1 subtype diversity, viral co-receptor tropism, viral suppression and envelope glycosylation. These associations have important implications for designing therapy and vaccines against HIV. Heavy glycosylation and preference for CXCR4 usage of HIV-1D may explain rapid disease progression in patients infected with these strains.
Literature
2.
go back to reference Plantier JC, Leoz M, Dickerson JE. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15(8):871–2.CrossRefPubMed Plantier JC, Leoz M, Dickerson JE. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15(8):871–2.CrossRefPubMed
3.
go back to reference Foley B, et al. (2013) HIV Sequence Compendium 2013 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, LA-UR 13-26007). Foley B, et al. (2013) HIV Sequence Compendium 2013 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, LA-UR 13-26007).
4.
go back to reference Worobey M (2007) The Origins and Diversification of HIV. Global HIV/AIDS Medicine:13-21. Worobey M (2007) The Origins and Diversification of HIV. Global HIV/AIDS Medicine:13-21.
5.
go back to reference Wilen CB, Tilton JC, Doms RW. Molecular Mechanisms of HIV Entry. Viral Mol Mach Adv Exp MedBiol. 2012;726:223–42.CrossRef Wilen CB, Tilton JC, Doms RW. Molecular Mechanisms of HIV Entry. Viral Mol Mach Adv Exp MedBiol. 2012;726:223–42.CrossRef
6.
go back to reference Pollakis G, et al. N-Linked Glycosylation of the HIV Type-1 gp120 Envelope Glycoprotein as a Major Determinant of CCR5 and CXCR4 Coreceptor Utilization. J Biol Chem. 2001;276(16):13433–41.CrossRefPubMed Pollakis G, et al. N-Linked Glycosylation of the HIV Type-1 gp120 Envelope Glycoprotein as a Major Determinant of CCR5 and CXCR4 Coreceptor Utilization. J Biol Chem. 2001;276(16):13433–41.CrossRefPubMed
7.
go back to reference Koot M, et al. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS. 1992;6(1):49–54.CrossRefPubMed Koot M, et al. HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS. 1992;6(1):49–54.CrossRefPubMed
8.
go back to reference Archer JP. The diversity of HIV. PhD. Manchester: University of Manchester; 2008. Archer JP. The diversity of HIV. PhD. Manchester: University of Manchester; 2008.
10.
go back to reference Shankarappa R, Maggolick J, al e. Consistent Viral Evolutionary Changes Associated with the Progression of Human Immunodeficiency Virus Type 1 Infection. J Virol. 1999;73(12):10489–502.PubMedPubMedCentral Shankarappa R, Maggolick J, al e. Consistent Viral Evolutionary Changes Associated with the Progression of Human Immunodeficiency Virus Type 1 Infection. J Virol. 1999;73(12):10489–502.PubMedPubMedCentral
11.
go back to reference Starcich BR, et al. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell. 1986;45(5):637–48.CrossRefPubMed Starcich BR, et al. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell. 1986;45(5):637–48.CrossRefPubMed
12.
go back to reference Wang W, et al. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology. 2013;10(1):1–14.CrossRef Wang W, et al. A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology. 2013;10(1):1–14.CrossRef
13.
go back to reference Kasturi L, Chen H, Shakin-Eshleman SH. Regulation of N-linked core glycosylation : use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. J Biochem. 1997;323:415–9.CrossRef Kasturi L, Chen H, Shakin-Eshleman SH. Regulation of N-linked core glycosylation : use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. J Biochem. 1997;323:415–9.CrossRef
14.
go back to reference Wood NT, et al. The Influence of N-Linked Glycans on the Molecular Dynamics of the HIV-1 gp120 V3 Loop. PLoS ONE. 2013;8(11):1–9.CrossRef Wood NT, et al. The Influence of N-Linked Glycans on the Molecular Dynamics of the HIV-1 gp120 V3 Loop. PLoS ONE. 2013;8(11):1–9.CrossRef
15.
go back to reference Si Z, Cayabyab M, Sodroski J. Envelope glycoprotein determinants of neutralization resistance in a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2) derived by passage in monkeys. J Virology. 2001;75:4208–18.CrossRefPubMedPubMedCentral Si Z, Cayabyab M, Sodroski J. Envelope glycoprotein determinants of neutralization resistance in a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2) derived by passage in monkeys. J Virology. 2001;75:4208–18.CrossRefPubMedPubMedCentral
16.
go back to reference Ferris RL, et al. Processing of HIV-1 envelope glycoprotein for class I–restricted recognition: dependence on TAP1/2 and mechanisms for cytosolic localization. J Immunol. 1999;162:1324–32.PubMed Ferris RL, et al. Processing of HIV-1 envelope glycoprotein for class I–restricted recognition: dependence on TAP1/2 and mechanisms for cytosolic localization. J Immunol. 1999;162:1324–32.PubMed
17.
go back to reference Botarelli P, et al. N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J Immunol. 1991;147:3128–32.PubMed Botarelli P, et al. N-glycosylation of HIV-gp120 may constrain recognition by T lymphocytes. J Immunol. 1991;147:3128–32.PubMed
18.
go back to reference Obong BP, et al. Characterization of Human Immunodeficiency Virus Type 1 from a Previously Unexplored Region of South Africa with a High HIV Prevalence. Aids Res Hum Retrovir. 2005;21(1):103–9.CrossRef Obong BP, et al. Characterization of Human Immunodeficiency Virus Type 1 from a Previously Unexplored Region of South Africa with a High HIV Prevalence. Aids Res Hum Retrovir. 2005;21(1):103–9.CrossRef
19.
go back to reference Chohan B, et al. Selection for Human Immunodeficiency Virus Type 1 Variants with Shorter V1-V2 loop Sequences Occurs During Transmission of Certain Genetic Subtypes and may Impact Viral RNA Levels. J Virology. 2005;79(10):6528–31.CrossRefPubMedPubMedCentral Chohan B, et al. Selection for Human Immunodeficiency Virus Type 1 Variants with Shorter V1-V2 loop Sequences Occurs During Transmission of Certain Genetic Subtypes and may Impact Viral RNA Levels. J Virology. 2005;79(10):6528–31.CrossRefPubMedPubMedCentral
20.
go back to reference Kiwanuka N, et al. Effect of Human Immunodeficiency Virus Type 1 (HIV-1) Subtype on Disease Progression in Persons from Rakai, Uganda, with Incident HIV-1 Infection. J Infect Dis. 2008;197:707–13.CrossRefPubMed Kiwanuka N, et al. Effect of Human Immunodeficiency Virus Type 1 (HIV-1) Subtype on Disease Progression in Persons from Rakai, Uganda, with Incident HIV-1 Infection. J Infect Dis. 2008;197:707–13.CrossRefPubMed
21.
go back to reference Khamadi SA, et al. HIV type 1 subtypes in circulation in northern Kenya. AIDS Res Hum Retrovir. 2005;21(9):810–4.CrossRefPubMed Khamadi SA, et al. HIV type 1 subtypes in circulation in northern Kenya. AIDS Res Hum Retrovir. 2005;21(9):810–4.CrossRefPubMed
22.
go back to reference Khamadi SA, et al. Genetic diversity of HIV type 1 along the coastal strip of Kenya. AIDS Res Hum Retrovir. 2009;25(9):919–23.CrossRefPubMed Khamadi SA, et al. Genetic diversity of HIV type 1 along the coastal strip of Kenya. AIDS Res Hum Retrovir. 2009;25(9):919–23.CrossRefPubMed
23.
go back to reference Kebira AN, Waihenya R, Khamadi S. HIV-1 genetic diversity among HIV drug naive populations of Nairobi, Kenya. Retrovirology. 2009;6(3):371. Kebira AN, Waihenya R, Khamadi S. HIV-1 genetic diversity among HIV drug naive populations of Nairobi, Kenya. Retrovirology. 2009;6(3):371.
24.
go back to reference Kebira AN, Muigai AWT, Khamadi SA. Circulating Trends of Non-B HIV Type 1 Subtypes Among Kenyan Individuals. AIDS Res Hum Retrovir. 2012;28(00):1–4. Kebira AN, Muigai AWT, Khamadi SA. Circulating Trends of Non-B HIV Type 1 Subtypes Among Kenyan Individuals. AIDS Res Hum Retrovir. 2012;28(00):1–4.
25.
go back to reference Hué S, et al. HIV Type 1 in a Rural Coastal Town in Kenya Shows Multiple Introductions with Many Subtypes and Much Recombination. AIDS Res Hum Retrovir. 2012;28(2):220–4.CrossRefPubMedPubMedCentral Hué S, et al. HIV Type 1 in a Rural Coastal Town in Kenya Shows Multiple Introductions with Many Subtypes and Much Recombination. AIDS Res Hum Retrovir. 2012;28(2):220–4.CrossRefPubMedPubMedCentral
26.
go back to reference Kageha S, et al. HIV type 1 subtype surveillance in central Kenya. AIDS Res Hum Retrovir. 2012;28(2):228–31.CrossRefPubMed Kageha S, et al. HIV type 1 subtype surveillance in central Kenya. AIDS Res Hum Retrovir. 2012;28(2):228–31.CrossRefPubMed
27.
go back to reference Wambui V, et al. Predicted HIV-1 coreceptor usage among Kenya patients shows a high tendency for subtype d to be cxcr4 tropic. AIDS Res Ther. 2012;9(22):1–7. Wambui V, et al. Predicted HIV-1 coreceptor usage among Kenya patients shows a high tendency for subtype d to be cxcr4 tropic. AIDS Res Ther. 2012;9(22):1–7.
28.
go back to reference Lihana RW, et al. HIV-1 subtype and viral tropism determination for evaluating antiretroviral therapy options: an analysis of archived Kenyan blood samples. BMC Infect Dis. 2009b;9(215). Lihana RW, et al. HIV-1 subtype and viral tropism determination for evaluating antiretroviral therapy options: an analysis of archived Kenyan blood samples. BMC Infect Dis. 2009b;9(215).
29.
go back to reference Kitawi RC, et al. HIV-1 Subtype Diversity Based on Envelope C2V3 Sequences from Kenyan Patients on Highly Active Antiretroviral Therapy. AIDS Res Hum Retrovir. 2015;31(4):452–5.CrossRefPubMed Kitawi RC, et al. HIV-1 Subtype Diversity Based on Envelope C2V3 Sequences from Kenyan Patients on Highly Active Antiretroviral Therapy. AIDS Res Hum Retrovir. 2015;31(4):452–5.CrossRefPubMed
30.
go back to reference Anonymous. National AIDS and STI Control Programme (NASCOP). In: Guidelines for antiretroviral therapy in Kenya. 4th ed. 2011. Nairobi, Kenya. Print. Anonymous. National AIDS and STI Control Programme (NASCOP). In: Guidelines for antiretroviral therapy in Kenya. 4th ed. 2011. Nairobi, Kenya. Print.
31.
go back to reference NASCOP. Guidelines on use of Antiretroviral drugs for treating and preventing HIV infections. 2014. NASCOP. Guidelines on use of Antiretroviral drugs for treating and preventing HIV infections. 2014.
32.
go back to reference Esbjörnsson J, et al. Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease - indication of an evolving epidemic in West Africa. Retrovirology. 2010;7(23):1–13. Esbjörnsson J, et al. Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease - indication of an evolving epidemic in West Africa. Retrovirology. 2010;7(23):1–13.
33.
go back to reference Raymond S, et al. Genotypic prediction of HIV-1 subtype D tropism. Retrovirology. 2011;8(56):1–8. Raymond S, et al. Genotypic prediction of HIV-1 subtype D tropism. Retrovirology. 2011;8(56):1–8.
34.
go back to reference Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R. Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol. 2007;25(12):1407–10.CrossRefPubMed Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R. Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol. 2007;25(12):1407–10.CrossRefPubMed
35.
go back to reference Jensen MA, et al. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virology. 2003;77(24):13376–788.CrossRefPubMedPubMedCentral Jensen MA, et al. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virology. 2003;77(24):13376–788.CrossRefPubMedPubMedCentral
36.
go back to reference Cashin K, et al. Reliable Genotypic Tropism Tests for major Subtypes. Sci Rep. 2015;5(8543). Cashin K, et al. Reliable Genotypic Tropism Tests for major Subtypes. Sci Rep. 2015;5(8543).
37.
go back to reference Crous S, Krishna RS, Travers SA. Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses. BMC Infect Dis. 2012;12(203):1–8. Crous S, Krishna RS, Travers SA. Appraising the performance of genotyping tools in the prediction of coreceptor tropism in HIV-1 subtype C viruses. BMC Infect Dis. 2012;12(203):1–8.
38.
go back to reference Behrens AJ, et al. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Rep. 2016;14(11):2695–706.CrossRefPubMedPubMedCentral Behrens AJ, et al. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Rep. 2016;14(11):2695–706.CrossRefPubMedPubMedCentral
39.
40.
go back to reference Gonzalez MW, DeVico AL, Lewis GK, Spouge JL. Conserved molecular signatures in gp120 are associated with the genetic bottleneck during simian immunodeficiency virus (SIV), SIV-human immunodeficiency virus (SHIV), and HIV type 1 (HIV-1) transmission. J Virology. 2015;89(7):3619–29.CrossRefPubMedPubMedCentral Gonzalez MW, DeVico AL, Lewis GK, Spouge JL. Conserved molecular signatures in gp120 are associated with the genetic bottleneck during simian immunodeficiency virus (SIV), SIV-human immunodeficiency virus (SHIV), and HIV type 1 (HIV-1) transmission. J Virology. 2015;89(7):3619–29.CrossRefPubMedPubMedCentral
42.
go back to reference Riemenschneider M, et al. Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C. Sci Rep. 2016;6(24883):1–9. Riemenschneider M, et al. Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C. Sci Rep. 2016;6(24883):1–9.
43.
go back to reference Bessong PO, et al. Characterization of Human Immunodeficiency Virus Type 1 from a Previously Unexplored Region of South Africa with a High HIV Prevalence. AIDS Res Hum Retrovir. 2005;21(1):103–9.CrossRefPubMed Bessong PO, et al. Characterization of Human Immunodeficiency Virus Type 1 from a Previously Unexplored Region of South Africa with a High HIV Prevalence. AIDS Res Hum Retrovir. 2005;21(1):103–9.CrossRefPubMed
44.
go back to reference Abraha A, et al. CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virology. 2009;83(11):5592–605.CrossRefPubMedPubMedCentral Abraha A, et al. CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virology. 2009;83(11):5592–605.CrossRefPubMedPubMedCentral
45.
go back to reference Nyamache AK, Muigai AWT, Ng'ang'a Z, Khamadi SA. Profile of HIV Type 1 Coreceptor Tropism Among Kenyan Patients from 2009 to 2010. AIDS Res Hum Retrovir. 2013;29(8):1105–9.CrossRefPubMedPubMedCentral Nyamache AK, Muigai AWT, Ng'ang'a Z, Khamadi SA. Profile of HIV Type 1 Coreceptor Tropism Among Kenyan Patients from 2009 to 2010. AIDS Res Hum Retrovir. 2013;29(8):1105–9.CrossRefPubMedPubMedCentral
46.
go back to reference Neilson JR, et al. Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virology. 1999;73(5):4393–403.PubMedPubMedCentral Neilson JR, et al. Subtypes of human immunodeficiency virus type 1 and disease stage among women in Nairobi, Kenya. J Virology. 1999;73(5):4393–403.PubMedPubMedCentral
47.
go back to reference Khamadi SA, et al. HIV type 1 genetic diversity in Moyale, Mandera, and Turkana based on env-C2-V3 sequences. AIDS Res Hum Retrovir. 2008;24(12):1561–4.CrossRefPubMed Khamadi SA, et al. HIV type 1 genetic diversity in Moyale, Mandera, and Turkana based on env-C2-V3 sequences. AIDS Res Hum Retrovir. 2008;24(12):1561–4.CrossRefPubMed
48.
go back to reference Ochieng W, et al. Implementation and Operational Research: Correlates of Adherence and Treatment Failure Among Kenyan Patients on Long-term Highly Active Antiretroviral Therapy. J Acquir Immune Defic Syndr. 2015;69(2):e49–56.CrossRefPubMedPubMedCentral Ochieng W, et al. Implementation and Operational Research: Correlates of Adherence and Treatment Failure Among Kenyan Patients on Long-term Highly Active Antiretroviral Therapy. J Acquir Immune Defic Syndr. 2015;69(2):e49–56.CrossRefPubMedPubMedCentral
49.
go back to reference Toohey K, Wehrly K, Nishio J, Perryman S, Chesebro B. Human Immunodeficiency Virus Envelope V1 and V2 Regions Influence Replication Efficiency in Macrophages by Affecting Virus Spread. Virology. 1995;213(1):70–9.CrossRefPubMed Toohey K, Wehrly K, Nishio J, Perryman S, Chesebro B. Human Immunodeficiency Virus Envelope V1 and V2 Regions Influence Replication Efficiency in Macrophages by Affecting Virus Spread. Virology. 1995;213(1):70–9.CrossRefPubMed
50.
go back to reference Pastore C, et al. Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness. J Virol. 2006;80(2):750–8.CrossRefPubMedPubMedCentral Pastore C, et al. Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness. J Virol. 2006;80(2):750–8.CrossRefPubMedPubMedCentral
51.
go back to reference Swenson LC, et al. Genotypic analysis of the V3 region of HIV from virologic nonresponders to maraviroc-containing regimens reveals distinct patterns of failure. Antimicrob Agents Chemother. 2013;57:6122–30.CrossRefPubMedPubMedCentral Swenson LC, et al. Genotypic analysis of the V3 region of HIV from virologic nonresponders to maraviroc-containing regimens reveals distinct patterns of failure. Antimicrob Agents Chemother. 2013;57:6122–30.CrossRefPubMedPubMedCentral
52.
go back to reference Poon AFY, Lewis FI, Kosakovsky Pond SL, SDW F. Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope. PLoS Comput Biol. 2007;3(1):0110–9.CrossRef Poon AFY, Lewis FI, Kosakovsky Pond SL, SDW F. Evolutionary interactions between N-linked glycosylation sites in the HIV-1 envelope. PLoS Comput Biol. 2007;3(1):0110–9.CrossRef
53.
go back to reference Bunnik E, Pisas L, van Nuenen A, Schuitemaker H. Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol. 2008;82:7932–41.CrossRefPubMedPubMedCentral Bunnik E, Pisas L, van Nuenen A, Schuitemaker H. Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol. 2008;82:7932–41.CrossRefPubMedPubMedCentral
54.
go back to reference Gavel Y, von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990;3:433–42.CrossRefPubMed Gavel Y, von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 1990;3:433–42.CrossRefPubMed
55.
go back to reference Ho YS, et al. HIV-1 gp120 N-linked glycosylation differs between plasma and leukocyte compartments. Virol J. 2008;5(14):1–10. Ho YS, et al. HIV-1 gp120 N-linked glycosylation differs between plasma and leukocyte compartments. Virol J. 2008;5(14):1–10.
56.
go back to reference Morris L, et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med. 1998;188(2):233–45.CrossRefPubMedPubMedCentral Morris L, et al. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med. 1998;188(2):233–45.CrossRefPubMedPubMedCentral
57.
go back to reference Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J Virology. 2007;81(19):10209–19.CrossRefPubMedPubMedCentral Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J Virology. 2007;81(19):10209–19.CrossRefPubMedPubMedCentral
58.
go back to reference Wilen CB, et al. Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins. J Virology. 2011;85(17):8514–27.CrossRefPubMedPubMedCentral Wilen CB, et al. Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins. J Virology. 2011;85(17):8514–27.CrossRefPubMedPubMedCentral
59.
go back to reference Toma J, et al. Loss of asparagine-linked glycosylation sites in variable region 5 of human immunodeficiency virus type 1 envelope is associated with resistance to CD4 antibody ibalizumab. J Virology. 2011;85(8):3872–80.CrossRefPubMedPubMedCentral Toma J, et al. Loss of asparagine-linked glycosylation sites in variable region 5 of human immunodeficiency virus type 1 envelope is associated with resistance to CD4 antibody ibalizumab. J Virology. 2011;85(8):3872–80.CrossRefPubMedPubMedCentral
60.
61.
go back to reference Kalinina OV, Pfeifer N, Lengauer T. Modelling binding between CCR5 and CXCR4 receptors and their ligands suggests the surface electrostatic potential of the co-receptor to be a key player in the HIV-1 tropism. Retrovirology. 2013;10(130):1–11. Kalinina OV, Pfeifer N, Lengauer T. Modelling binding between CCR5 and CXCR4 receptors and their ligands suggests the surface electrostatic potential of the co-receptor to be a key player in the HIV-1 tropism. Retrovirology. 2013;10(130):1–11.
62.
go back to reference Zhang M, et al. Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology. 2004;14(12):1229–46.CrossRefPubMed Zhang M, et al. Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology. 2004;14(12):1229–46.CrossRefPubMed
63.
go back to reference Nzomo TJ, et al. Genotypic variability of HIV-1 Reverse Transcriptase gene from long-term antiretroviral-experienced patients in Kenya. AIDS Res Hum Retroviruses. 2015;31(5):550–53.CrossRefPubMedPubMedCentral Nzomo TJ, et al. Genotypic variability of HIV-1 Reverse Transcriptase gene from long-term antiretroviral-experienced patients in Kenya. AIDS Res Hum Retroviruses. 2015;31(5):550–53.CrossRefPubMedPubMedCentral
Metadata
Title
Partial HIV C2V3 envelope sequence analysis reveals association of coreceptor tropism, envelope glycosylation and viral genotypic variability among Kenyan patients on HAART
Authors
Rose C. Kitawi
Carol W. Hunja
Rashid Aman
Bernhards R. Ogutu
Anne W. T. Muigai
Gilbert O. Kokwaro
Washingtone Ochieng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0703-y

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.