Skip to main content
Top
Published in: Trials 1/2024

Open Access 01-12-2024 | Parkinson's Disease | Study protocol

Transcranial alternating current stimulation improves quality of life in Parkinson’s disease: study protocol for a randomized, double-blind, controlled trial

Authors: Hong-yu Zhang, Ting-ting Hou, Zhao-hui Jin, Tian Zhang, Yi-heng Wang, Zi-hao Cheng, Yong-hong Liu, Jin-ping Fang, Hong-jiao Yan, Yi Zhen, Xia An, Jia Du, Ke-ke Chen, Zhen-zhen Li, Qing Li, Qi-ping Wen, Bo-yan Fang

Published in: Trials | Issue 1/2024

Login to get access

Abstract

Background

The neural cells in the brains of patients with Parkinson’s disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson’s disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson’s disease based on the central-peripheral-central theory.

Methods

The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson’s disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes.

Discussion

The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP.

Trial registration

Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.
Appendix
Available only for authorised users
Literature
1.
go back to reference McGregor MM, Nelson AB. Circuit mechanisms of Parkinson’s disease. Neuron. 2019;101(6):1042–56.PubMedCrossRef McGregor MM, Nelson AB. Circuit mechanisms of Parkinson’s disease. Neuron. 2019;101(6):1042–56.PubMedCrossRef
2.
go back to reference Silva AB, de Oliveira RW, Diogenes GP, de Castro Aguiar MF, Sallem CC, Lima MPP, et al. Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art. Ageing Res Rev. 2023;84:101834.CrossRef Silva AB, de Oliveira RW, Diogenes GP, de Castro Aguiar MF, Sallem CC, Lima MPP, et al. Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art. Ageing Res Rev. 2023;84:101834.CrossRef
3.
go back to reference Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.PubMedCrossRef Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.PubMedCrossRef
4.
go back to reference Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.PubMedCrossRef Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.PubMedCrossRef
5.
go back to reference Collaborators GBDPsD. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.CrossRef Collaborators GBDPsD. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.CrossRef
6.
go back to reference Prado M Jr, Jamora RD. Cost of Parkinson’s disease among Filipino patients seen at a public tertiary hospital in Metro Manila. J Clin Neurosci. 2020;74:41–6.PubMedCrossRef Prado M Jr, Jamora RD. Cost of Parkinson’s disease among Filipino patients seen at a public tertiary hospital in Metro Manila. J Clin Neurosci. 2020;74:41–6.PubMedCrossRef
7.
go back to reference Yu Y, Escobar Sanabria D, Wang J, Hendrix CM, Zhang J, Nebeck SD, et al. Parkinsonism alters beta burst dynamics across the basal ganglia-motor cortical network. J Neurosci. 2021;41(10):2274–86.PubMedPubMedCentralCrossRef Yu Y, Escobar Sanabria D, Wang J, Hendrix CM, Zhang J, Nebeck SD, et al. Parkinsonism alters beta burst dynamics across the basal ganglia-motor cortical network. J Neurosci. 2021;41(10):2274–86.PubMedPubMedCentralCrossRef
8.
go back to reference Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol. 2013;26(6):662–70.PubMedCrossRef Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol. 2013;26(6):662–70.PubMedCrossRef
9.
go back to reference Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64.PubMedCrossRef Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64.PubMedCrossRef
10.
11.
go back to reference Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008;28(24):6165–73.PubMedPubMedCentralCrossRef Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008;28(24):6165–73.PubMedPubMedCentralCrossRef
12.
go back to reference de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18(5):779–86.PubMedPubMedCentralCrossRef de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18(5):779–86.PubMedPubMedCentralCrossRef
13.
go back to reference Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci. 2016;36(24):6445–58.PubMedPubMedCentralCrossRef Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci. 2016;36(24):6445–58.PubMedPubMedCentralCrossRef
14.
go back to reference Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, San Luciano M, et al. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci. 2018;38(19):4556–68.PubMedPubMedCentralCrossRef Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, San Luciano M, et al. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci. 2018;38(19):4556–68.PubMedPubMedCentralCrossRef
15.
go back to reference Florin E, Erasmi R, Reck C, Maarouf M, Schnitzler A, Fink GR, et al. Does increased gamma activity in patients suffering from Parkinson’s disease counteract the movement inhibiting beta activity? Neuroscience. 2013;237:42–50.PubMedCrossRef Florin E, Erasmi R, Reck C, Maarouf M, Schnitzler A, Fink GR, et al. Does increased gamma activity in patients suffering from Parkinson’s disease counteract the movement inhibiting beta activity? Neuroscience. 2013;237:42–50.PubMedCrossRef
16.
go back to reference Geng X, Zhang J, Jiang Y, Ashkan K, Foltynie T, Limousin P, et al. Comparison of oscillatory activity in subthalamic nucleus in Parkinson’s disease and dystonia. Neurobiol Dis. 2017;98:100–7.PubMedCrossRef Geng X, Zhang J, Jiang Y, Ashkan K, Foltynie T, Limousin P, et al. Comparison of oscillatory activity in subthalamic nucleus in Parkinson’s disease and dystonia. Neurobiol Dis. 2017;98:100–7.PubMedCrossRef
17.
go back to reference Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes G, Foltynie T, et al. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings. J Neurosci. 2012;32(31):10541–53.PubMedPubMedCentralCrossRef Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes G, Foltynie T, et al. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings. J Neurosci. 2012;32(31):10541–53.PubMedPubMedCentralCrossRef
18.
go back to reference Lofredi R, Neumann WJ, Bock A, Horn A, Huebl J, Siegert S, et al. Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease. Elife. 2018;7:e31895.PubMedPubMedCentralCrossRef Lofredi R, Neumann WJ, Bock A, Horn A, Huebl J, Siegert S, et al. Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease. Elife. 2018;7:e31895.PubMedPubMedCentralCrossRef
19.
go back to reference Fischer P, Pogosyan A, Cheeran B, Green AL, Aziz TZ, Hyam J, et al. Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Exp Neurol. 2017;293:53–61.PubMedPubMedCentralCrossRef Fischer P, Pogosyan A, Cheeran B, Green AL, Aziz TZ, Hyam J, et al. Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Exp Neurol. 2017;293:53–61.PubMedPubMedCentralCrossRef
20.
go back to reference Muthuraman M, Bange M, Koirala N, Ciolac D, Pintea B, Glaser M, et al. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson’s disease. Brain. 2020;143(11):3393–407.PubMedPubMedCentralCrossRef Muthuraman M, Bange M, Koirala N, Ciolac D, Pintea B, Glaser M, et al. Cross-frequency coupling between gamma oscillations and deep brain stimulation frequency in Parkinson’s disease. Brain. 2020;143(11):3393–407.PubMedPubMedCentralCrossRef
21.
go back to reference Guerra A, Asci F, D’Onofrio V, Sveva V, Bologna M, Fabbrini G, et al. Enhancing gamma oscillations restores primary motor cortex plasticity in Parkinson’s disease. J Neurosci. 2020;40(24):4788–96.PubMedPubMedCentralCrossRef Guerra A, Asci F, D’Onofrio V, Sveva V, Bologna M, Fabbrini G, et al. Enhancing gamma oscillations restores primary motor cortex plasticity in Parkinson’s disease. J Neurosci. 2020;40(24):4788–96.PubMedPubMedCentralCrossRef
23.
go back to reference Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):135–56.PubMedCrossRef Elyamany O, Leicht G, Herrmann CS, Mulert C. Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):135–56.PubMedCrossRef
24.
go back to reference Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687.PubMedPubMedCentralCrossRef Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci. 2013;7:687.PubMedPubMedCentralCrossRef
25.
go back to reference Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A. 2019;116(12):5747–55.ADSPubMedPubMedCentralCrossRef Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A. 2019;116(12):5747–55.ADSPubMedPubMedCentralCrossRef
26.
go back to reference Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals: a systematic review. J Neurosci Methods. 2021;347:108957.PubMedCrossRef Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals: a systematic review. J Neurosci Methods. 2021;347:108957.PubMedCrossRef
27.
go back to reference Guerra A, Colella D, Giangrosso M, Cannavacciuolo A, Paparella G, Fabbrini G, et al. Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease. Brain. 2022;145(1):224–36.PubMedCrossRef Guerra A, Colella D, Giangrosso M, Cannavacciuolo A, Paparella G, Fabbrini G, et al. Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease. Brain. 2022;145(1):224–36.PubMedCrossRef
28.
go back to reference Kim J, Kim H, Jeong H, Roh D, Kim DH. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J Psychiatr Res. 2021;141:248–56.PubMedCrossRef Kim J, Kim H, Jeong H, Roh D, Kim DH. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J Psychiatr Res. 2021;141:248–56.PubMedCrossRef
29.
go back to reference Brak IV, Filimonova E, Zakhariya O, Khasanov R, Stepanyan I. Transcranial current stimulation as a tool of neuromodulation of cognitive functions in Parkinson’s disease. Front Neurosci. 2022;16:781488.PubMedPubMedCentralCrossRef Brak IV, Filimonova E, Zakhariya O, Khasanov R, Stepanyan I. Transcranial current stimulation as a tool of neuromodulation of cognitive functions in Parkinson’s disease. Front Neurosci. 2022;16:781488.PubMedPubMedCentralCrossRef
30.
go back to reference Del Felice A, Castiglia L, Formaggio E, Cattelan M, Scarpa B, Manganotti P, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin. 2019;22:101768.PubMedPubMedCentralCrossRef Del Felice A, Castiglia L, Formaggio E, Cattelan M, Scarpa B, Manganotti P, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin. 2019;22:101768.PubMedPubMedCentralCrossRef
31.
32.
go back to reference Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.PubMedPubMedCentralCrossRef Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.PubMedPubMedCentralCrossRef
33.
go back to reference Lande RG, Gragnani C. Efficacy of cranial electric stimulation for the treatment of insomnia: a randomized pilot study. Complement Ther Med. 2013;21(1):8–13.PubMedCrossRef Lande RG, Gragnani C. Efficacy of cranial electric stimulation for the treatment of insomnia: a randomized pilot study. Complement Ther Med. 2013;21(1):8–13.PubMedCrossRef
34.
go back to reference Warner RL, Johnston C, Hamilton R, Skolnick MH, Wilson OB. Transcranial electrostimulation effects on rat opioid and neurotransmitter levels. Life Sci. 1994;54(7):481–90.PubMedCrossRef Warner RL, Johnston C, Hamilton R, Skolnick MH, Wilson OB. Transcranial electrostimulation effects on rat opioid and neurotransmitter levels. Life Sci. 1994;54(7):481–90.PubMedCrossRef
35.
go back to reference Wang H-X, Wang L, Zhang W-R, Xue Q, Peng M, Sun Z-C, et al. Effect of transcranial alternating current stimulation for the treatment of chronic insomnia: a randomized, double-blind, parallel-group, placebo-controlled clinical trial. Psychother Psychosom. 2020;89(1):38–47.PubMedCrossRef Wang H-X, Wang L, Zhang W-R, Xue Q, Peng M, Sun Z-C, et al. Effect of transcranial alternating current stimulation for the treatment of chronic insomnia: a randomized, double-blind, parallel-group, placebo-controlled clinical trial. Psychother Psychosom. 2020;89(1):38–47.PubMedCrossRef
36.
go back to reference Wang H, Wang K, Xue Q, Peng M, Yin L, Gu X, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain. 2022;145(1):83–91.PubMedCrossRef Wang H, Wang K, Xue Q, Peng M, Yin L, Gu X, et al. Transcranial alternating current stimulation for treating depression: a randomized controlled trial. Brain. 2022;145(1):83–91.PubMedCrossRef
37.
go back to reference Shan Y, Wang H, Yang Y, Wang J, Zhao W, Huang Y, et al. Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Molecular Psychiatry. 2023:1-9. Shan Y, Wang H, Yang Y, Wang J, Zhao W, Huang Y, et al. Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Molecular Psychiatry. 2023:1-9.
38.
go back to reference Jia J. Exploration on neurobiological mechanisms of the central–peripheral–central closed-loop rehabilitation. Front Cell Neurosci. 2022;16:982881.PubMedPubMedCentralCrossRef Jia J. Exploration on neurobiological mechanisms of the central–peripheral–central closed-loop rehabilitation. Front Cell Neurosci. 2022;16:982881.PubMedPubMedCentralCrossRef
39.
go back to reference Frazzitta G, Bertotti G, Riboldazzi G, Turla M, Uccellini D, Boveri N, et al. Effectiveness of intensive inpatient rehabilitation treatment on disease progression in parkinsonian patients: a randomized controlled trial with 1-year follow-up. Neurorehabil Neural Repair. 2012;26(2):144–50.PubMedCrossRef Frazzitta G, Bertotti G, Riboldazzi G, Turla M, Uccellini D, Boveri N, et al. Effectiveness of intensive inpatient rehabilitation treatment on disease progression in parkinsonian patients: a randomized controlled trial with 1-year follow-up. Neurorehabil Neural Repair. 2012;26(2):144–50.PubMedCrossRef
40.
go back to reference Frazzitta G, Maestri R, Bertotti G, Riboldazzi G, Boveri N, Perini M, et al. Intensive rehabilitation treatment in early Parkinson’s disease: a randomized pilot study with a 2-year follow-up. Neurorehabil Neural Repair. 2015;29(2):123–31.PubMedCrossRef Frazzitta G, Maestri R, Bertotti G, Riboldazzi G, Boveri N, Perini M, et al. Intensive rehabilitation treatment in early Parkinson’s disease: a randomized pilot study with a 2-year follow-up. Neurorehabil Neural Repair. 2015;29(2):123–31.PubMedCrossRef
41.
go back to reference Chen KK, Jin ZH, Gao L, Qi L, Zhen QX, Liu C, et al. Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson’s disease motor subtypes: a prospective pilot study with 3-month follow-up. Neural Regen Res. 2021;16(7):1336–43.PubMedCrossRef Chen KK, Jin ZH, Gao L, Qi L, Zhen QX, Liu C, et al. Efficacy of short-term multidisciplinary intensive rehabilitation in patients with different Parkinson’s disease motor subtypes: a prospective pilot study with 3-month follow-up. Neural Regen Res. 2021;16(7):1336–43.PubMedCrossRef
42.
go back to reference Reid M, Mitchell SD, Mitchell KM, Sidiropoulos C. Efficacy of a 5-day, intensive, multidisciplinary, outpatient physical and occupational therapy protocol in the treatment of functional movement disorders: a retrospective study. J Neurol Sci. 2022;443:120461.PubMedCrossRef Reid M, Mitchell SD, Mitchell KM, Sidiropoulos C. Efficacy of a 5-day, intensive, multidisciplinary, outpatient physical and occupational therapy protocol in the treatment of functional movement disorders: a retrospective study. J Neurol Sci. 2022;443:120461.PubMedCrossRef
43.
go back to reference Ferrazzoli D, Ortelli P, Madeo G, Giladi N, Petzinger GM, Frazzitta G. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neurosci Biobehav Rev. 2018;90:294–308.PubMedCrossRef Ferrazzoli D, Ortelli P, Madeo G, Giladi N, Petzinger GM, Frazzitta G. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neurosci Biobehav Rev. 2018;90:294–308.PubMedCrossRef
44.
go back to reference Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations the movement disorder society task force on rating scales for Parkinson’s disease. Mov Disord. 2004;19(9):1020–8.PubMedCrossRef Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT, Counsell C, et al. Movement disorder society task force report on the Hoehn and Yahr staging scale: status and recommendations the movement disorder society task force on rating scales for Parkinson’s disease. Mov Disord. 2004;19(9):1020–8.PubMedCrossRef
45.
go back to reference Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.PubMedPubMedCentralCrossRef Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.PubMedPubMedCentralCrossRef
46.
go back to reference Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson’s Disease Questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing. 1997;26(5):353–7.PubMedCrossRef Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson’s Disease Questionnaire (PDQ-39): development and validation of a Parkinson’s disease summary index score. Age Ageing. 1997;26(5):353–7.PubMedCrossRef
47.
go back to reference Horvath K, Aschermann Z, Kovacs M, Makkos A, Harmat M, Janszky J, et al. Changes in quality of life in Parkinson’s disease: how large must they be to be relevant? Neuroepidemiology. 2017;48(1–2):1–8.PubMedCrossRef Horvath K, Aschermann Z, Kovacs M, Makkos A, Harmat M, Janszky J, et al. Changes in quality of life in Parkinson’s disease: how large must they be to be relevant? Neuroepidemiology. 2017;48(1–2):1–8.PubMedCrossRef
48.
go back to reference Martinez-Martin P, Jeukens-Visser M, Lyons KE, Rodriguez-Blazquez C, Selai C, Siderowf A, et al. Health-related quality-of-life scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2011;26(13):2371–80.PubMedCrossRef Martinez-Martin P, Jeukens-Visser M, Lyons KE, Rodriguez-Blazquez C, Selai C, Siderowf A, et al. Health-related quality-of-life scales in Parkinson’s disease: critique and recommendations. Mov Disord. 2011;26(13):2371–80.PubMedCrossRef
49.
go back to reference Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.PubMedCrossRef Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.PubMedCrossRef
50.
go back to reference Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J Rehabil Med. 2010;42(4):323–31.PubMedCrossRef Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric techniques to improve the balance evaluation systems test: the mini-BESTest. J Rehabil Med. 2010;42(4):323–31.PubMedCrossRef
51.
go back to reference ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.
52.
go back to reference van Wamelen DJ, Martinez-Martin P, Weintraub D, Schrag A, Antonini A, Falup-Pecurariu C, et al. The non-motor symptoms scale in Parkinson’s disease: validation and use. Acta Neurol Scand. 2021;143(1):3–12.PubMedCrossRef van Wamelen DJ, Martinez-Martin P, Weintraub D, Schrag A, Antonini A, Falup-Pecurariu C, et al. The non-motor symptoms scale in Parkinson’s disease: validation and use. Acta Neurol Scand. 2021;143(1):3–12.PubMedCrossRef
53.
go back to reference Nasreddine ZS, Phillips NA, Bédirian Vr, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. Nasreddine ZS, Phillips NA, Bédirian Vr, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.
55.
go back to reference Yu RL, Wu RM, Chan AYY, Mok V, Wu YR, Tilley BC, et al. Cross-cultural differences of the non-motor symptoms studied by the traditional Chinese version of the International Parkinson and Movement Disorder Society-Unified Parkinson’s Disease Rating Scale. Mov Disord Clin Pract. 2016;4(1):68–77.PubMedPubMedCentralCrossRef Yu RL, Wu RM, Chan AYY, Mok V, Wu YR, Tilley BC, et al. Cross-cultural differences of the non-motor symptoms studied by the traditional Chinese version of the International Parkinson and Movement Disorder Society-Unified Parkinson’s Disease Rating Scale. Mov Disord Clin Pract. 2016;4(1):68–77.PubMedPubMedCentralCrossRef
56.
go back to reference Schlenstedt C, Brombacher S, Hartwigsen G, Weisser B, Möller B, Deuschl G. Comparing the Fullerton Advanced Balance Scale with the Mini-BESTest and Berg Balance Scale to assess postural control in patients with Parkinson disease. Arch Phys Med Rehabil. 2015;96(2):218–25.PubMedCrossRef Schlenstedt C, Brombacher S, Hartwigsen G, Weisser B, Möller B, Deuschl G. Comparing the Fullerton Advanced Balance Scale with the Mini-BESTest and Berg Balance Scale to assess postural control in patients with Parkinson disease. Arch Phys Med Rehabil. 2015;96(2):218–25.PubMedCrossRef
57.
go back to reference Tan VZ, Lee MQ, Wong DL, Huang KS, Chan MY, Yan CC, et al. The Chinese (Mandarin) instructions of the 6-minute walk test: a validation study. Hong Kong Physiother J. 2021;41(01):45–53.PubMedPubMedCentralCrossRef Tan VZ, Lee MQ, Wong DL, Huang KS, Chan MY, Yan CC, et al. The Chinese (Mandarin) instructions of the 6-minute walk test: a validation study. Hong Kong Physiother J. 2021;41(01):45–53.PubMedPubMedCentralCrossRef
58.
go back to reference Wang G, Hong Z, Cheng Q, Xiao Q, Wang Y, Zhang J, et al. Validation of the Chinese non-motor symptoms scale for Parkinson’s disease: results from a Chinese pilot study. Clin Neurol Neurosurg. 2009;111(6):523–6.PubMedCrossRef Wang G, Hong Z, Cheng Q, Xiao Q, Wang Y, Zhang J, et al. Validation of the Chinese non-motor symptoms scale for Parkinson’s disease: results from a Chinese pilot study. Clin Neurol Neurosurg. 2009;111(6):523–6.PubMedCrossRef
59.
go back to reference Xu Q, Zhou M, Jiang C, Wu L, He Q, Zhao L, et al. Application of the Chinese version of the Montreal cognitive assessment-basic for assessing mild cognitive impairment in Parkinson’s disease. Brain Sciences. 2021;11(12):1575.PubMedPubMedCentralCrossRef Xu Q, Zhou M, Jiang C, Wu L, He Q, Zhao L, et al. Application of the Chinese version of the Montreal cognitive assessment-basic for assessing mild cognitive impairment in Parkinson’s disease. Brain Sciences. 2021;11(12):1575.PubMedPubMedCentralCrossRef
60.
go back to reference Lin J, Wang X, Dong F, Du Y, Shen J, Ding S, et al. Validation of the Chinese version of the Hamilton Rating Scale for Depression in adults with epilepsy. Epilepsy Behav. 2018;89:148–52.PubMedCrossRef Lin J, Wang X, Dong F, Du Y, Shen J, Ding S, et al. Validation of the Chinese version of the Hamilton Rating Scale for Depression in adults with epilepsy. Epilepsy Behav. 2018;89:148–52.PubMedCrossRef
61.
go back to reference Herrmann CS, Struber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21.PubMedCrossRef Herrmann CS, Struber D, Helfrich RF, Engel AK. EEG oscillations: from correlation to causality. Int J Psychophysiol. 2016;103:12–21.PubMedCrossRef
62.
go back to reference Acharya JN, Hani AJ, Thirumala P, Tsuchida TN. American clinical neurophysiology society guideline 3: a proposal for standard montages to be used in clinical EEG. Neurodiagn J. 2016;56(4):253–60.PubMedCrossRef Acharya JN, Hani AJ, Thirumala P, Tsuchida TN. American clinical neurophysiology society guideline 3: a proposal for standard montages to be used in clinical EEG. Neurodiagn J. 2016;56(4):253–60.PubMedCrossRef
63.
go back to reference Bachinger M, Zerbi V, Moisa M, Polania R, Liu Q, Mantini D, et al. Concurrent tACS-fMRI reveals causal influence of power synchronized neural activity on resting state fMRI connectivity. J Neurosci. 2017;37(18):4766–77.PubMedPubMedCentralCrossRef Bachinger M, Zerbi V, Moisa M, Polania R, Liu Q, Mantini D, et al. Concurrent tACS-fMRI reveals causal influence of power synchronized neural activity on resting state fMRI connectivity. J Neurosci. 2017;37(18):4766–77.PubMedPubMedCentralCrossRef
64.
go back to reference Mencarelli L, Monti L, Romanella S, Neri F, Koch G, Salvador R, et al. Local and distributed fMRI changes induced by 40 Hz gamma tACS of the bilateral dorsolateral prefrontal cortex: a pilot study. Neural Plast. 2022;2022:6197505.PubMedPubMedCentralCrossRef Mencarelli L, Monti L, Romanella S, Neri F, Koch G, Salvador R, et al. Local and distributed fMRI changes induced by 40 Hz gamma tACS of the bilateral dorsolateral prefrontal cortex: a pilot study. Neural Plast. 2022;2022:6197505.PubMedPubMedCentralCrossRef
65.
go back to reference Meng D, Jin Z, Chen K, Yu X, Wang Y, Du W, et al. Quality of life predicts rehabilitation prognosis in Parkinson’s disease patients. Brain Behav. 2022;12(5):e2579.PubMedPubMedCentralCrossRef Meng D, Jin Z, Chen K, Yu X, Wang Y, Du W, et al. Quality of life predicts rehabilitation prognosis in Parkinson’s disease patients. Brain Behav. 2022;12(5):e2579.PubMedPubMedCentralCrossRef
66.
go back to reference Li J, Mi T-M, Zhu B-F, Ma J-H, Han C, Li Y, et al. High-frequency repetitive transcranial magnetic stimulation over the primary motor cortex relieves musculoskeletal pain in patients with Parkinson’s disease: a randomized controlled trial. Parkinson Relat Disord. 2020;80:113–9.CrossRef Li J, Mi T-M, Zhu B-F, Ma J-H, Han C, Li Y, et al. High-frequency repetitive transcranial magnetic stimulation over the primary motor cortex relieves musculoskeletal pain in patients with Parkinson’s disease: a randomized controlled trial. Parkinson Relat Disord. 2020;80:113–9.CrossRef
67.
68.
go back to reference Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999;96(26):15222–7. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999;96(26):15222–7.
69.
go back to reference Neumann WJ, Staub-Bartelt F, Horn A, Schanda J, Schneider GH, Brown P, et al. Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson’s disease. Clin Neurophysiol. 2017;128(11):2286–91.PubMedPubMedCentralCrossRef Neumann WJ, Staub-Bartelt F, Horn A, Schanda J, Schneider GH, Brown P, et al. Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson’s disease. Clin Neurophysiol. 2017;128(11):2286–91.PubMedPubMedCentralCrossRef
70.
go back to reference López-Azcárate J, Tainta M, Rodríguez-Oroz MC, Valencia M, González R, Guridi J, et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci. 2010;30(19):6667–77.PubMedPubMedCentralCrossRef López-Azcárate J, Tainta M, Rodríguez-Oroz MC, Valencia M, González R, Guridi J, et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci. 2010;30(19):6667–77.PubMedPubMedCentralCrossRef
71.
go back to reference Alegre M, Alonso-Frech F, Rodríguez-Oroz MC, Guridi J, Zamarbide I, Valencia M, et al. Movement-related changes in oscillatory activity in the human subthalamic nucleus: ipsilateral vs. contralateral movements. Eur J Neurosci. 2005;22(9):2315–24.PubMedCrossRef Alegre M, Alonso-Frech F, Rodríguez-Oroz MC, Guridi J, Zamarbide I, Valencia M, et al. Movement-related changes in oscillatory activity in the human subthalamic nucleus: ipsilateral vs. contralateral movements. Eur J Neurosci. 2005;22(9):2315–24.PubMedCrossRef
72.
go back to reference Priori A, Lefaucheur JP. Chronic epidural motor cortical stimulation for movement disorders. Lancet Neurol. 2007;6(3):279–86.PubMedCrossRef Priori A, Lefaucheur JP. Chronic epidural motor cortical stimulation for movement disorders. Lancet Neurol. 2007;6(3):279–86.PubMedCrossRef
73.
go back to reference Liu A, Voroslakos M, Kronberg G, Henin S, Krause MR, Huang Y, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9(1):5092.ADSPubMedPubMedCentralCrossRef Liu A, Voroslakos M, Kronberg G, Henin S, Krause MR, Huang Y, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9(1):5092.ADSPubMedPubMedCentralCrossRef
74.
go back to reference Moisa M, Polania R, Grueschow M, Ruff CC. Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. J Neurosci. 2016;36(47):12053–65.PubMedPubMedCentralCrossRef Moisa M, Polania R, Grueschow M, Ruff CC. Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. J Neurosci. 2016;36(47):12053–65.PubMedPubMedCentralCrossRef
75.
go back to reference Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist. 2010;16(3):285–307.PubMedCrossRef Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist. 2010;16(3):285–307.PubMedCrossRef
76.
go back to reference Brunyé TT, Patterson JE, Wooten T, Hussey EK. A critical review of cranial electrotherapy stimulation for neuromodulation in clinical and non-clinical samples. Front Hum Neurosci. 2021;15:625321.PubMedPubMedCentralCrossRef Brunyé TT, Patterson JE, Wooten T, Hussey EK. A critical review of cranial electrotherapy stimulation for neuromodulation in clinical and non-clinical samples. Front Hum Neurosci. 2021;15:625321.PubMedPubMedCentralCrossRef
77.
go back to reference Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9(1):483.ADSPubMedPubMedCentralCrossRef Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A, Fernández-Ruiz A, et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun. 2018;9(1):483.ADSPubMedPubMedCentralCrossRef
78.
go back to reference Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res. 2019;237(12):3071–88.PubMedCrossRef Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res. 2019;237(12):3071–88.PubMedCrossRef
79.
go back to reference Watanabe K, Watanabe T, Takahashi A, Saito N, Hirato M, Sasaki T. Transcranial electrical stimulation through screw electrodes for intraoperative monitoring of motor evoked potentials Technical note. J Neurosurg. 2004;100(1):155–60.PubMedCrossRef Watanabe K, Watanabe T, Takahashi A, Saito N, Hirato M, Sasaki T. Transcranial electrical stimulation through screw electrodes for intraoperative monitoring of motor evoked potentials Technical note. J Neurosurg. 2004;100(1):155–60.PubMedCrossRef
80.
go back to reference Shill HA, Obradov S, Katsnelson Y, Pizinger R. A randomized, double-blind trial of transcranial electrostimulation in early Parkinson’s disease. Mov Disord. 2011;26(8):1477–80.PubMedCrossRef Shill HA, Obradov S, Katsnelson Y, Pizinger R. A randomized, double-blind trial of transcranial electrostimulation in early Parkinson’s disease. Mov Disord. 2011;26(8):1477–80.PubMedCrossRef
81.
go back to reference Ferrazzoli D, Ortelli P, Zivi I, Cian V, Urso E, Ghilardi MF, et al. Efficacy of intensive multidisciplinary rehabilitation in Parkinson’s disease: a randomised controlled study. J Neurol Neurosurg Psychiatry. 2018;89(8):828–35.PubMedCrossRef Ferrazzoli D, Ortelli P, Zivi I, Cian V, Urso E, Ghilardi MF, et al. Efficacy of intensive multidisciplinary rehabilitation in Parkinson’s disease: a randomised controlled study. J Neurol Neurosurg Psychiatry. 2018;89(8):828–35.PubMedCrossRef
82.
go back to reference Liu T, Yan Z, Han Z, Zhang J, Fang B, Yan T. Cortico–subcortical spatiotemporal dynamics in Parkinson’s disease can be modulated by transcranial alternating current stimulation. Brain Sci Adv. 2023;9(2):114–35.CrossRef Liu T, Yan Z, Han Z, Zhang J, Fang B, Yan T. Cortico–subcortical spatiotemporal dynamics in Parkinson’s disease can be modulated by transcranial alternating current stimulation. Brain Sci Adv. 2023;9(2):114–35.CrossRef
Metadata
Title
Transcranial alternating current stimulation improves quality of life in Parkinson’s disease: study protocol for a randomized, double-blind, controlled trial
Authors
Hong-yu Zhang
Ting-ting Hou
Zhao-hui Jin
Tian Zhang
Yi-heng Wang
Zi-hao Cheng
Yong-hong Liu
Jin-ping Fang
Hong-jiao Yan
Yi Zhen
Xia An
Jia Du
Ke-ke Chen
Zhen-zhen Li
Qing Li
Qi-ping Wen
Bo-yan Fang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Trials / Issue 1/2024
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-024-08045-5

Other articles of this Issue 1/2024

Trials 1/2024 Go to the issue