Skip to main content
Top
Published in: Inflammation 1/2024

06-11-2023 | Parkinson's Disease | RESEARCH

Investigating the TLR4/TAK1/IRF7 axis in NLRP3-Mediated Pyroptosis in Parkinson's Disease

Authors: Wei Quan, Ying Liu, Jia Li, Dawei Chen, Jing Xu, Jia Song, Jiajun Chen, Shilong Sun

Published in: Inflammation | Issue 1/2024

Login to get access

Abstract

In the realm of Parkinson's disease (PD) research, NLRP3 inflammasome-mediated pyroptosis has recently garnered significant attention as a potential novel form of dopaminergic neuronal death. Our previous research revealed the activation of innate immune-related genes, such as the TLR4 signaling pathway and interferon regulatory factor 7 (IRF7), although the specific mechanism remains unclear. Our current study shed light on whether the TLR4 signaling pathway and IRF7 can affect the pyroptosis of dopaminergic nerve cells and thus participate in the pathogenesis of PD. The PD model was constructed by MPP+ treatment of PC12 cells or stereotactic injection of the striatum of SD rats, and the expression of genes were detected by RT-qPCR and Western Blotting. Lentivirus, siRNA and (5Z)-7-Oxozeaenol were used to validate the regulation of this pathway on pyroptosis. The expression of TLR4, TAK1, IRF7 and pyroptosis molecular markers was upregulated after MPP+ treatment. IRF7 could affect dopaminergic neural cells pyroptosis by targeted regulation of NLRP3. Furthermore, inhibition of the TLR4/TAK1 signaling pathway led to a decrease in the expression of both IRF7 and NLRP3, while overexpression of IRF7 reversed the reduction in pyroptosis and increase in TH expression. TLR4/TAK1/IRF7 axis can promote PD by influencing pyroptosis through NLRP3.
Appendix
Available only for authorised users
Literature
1.
go back to reference Warnecke, T., C. Lummer, J.W. Rey, et al. 2023. Parkinson’s disease. [J]. Die Innere Medical (Heidelb) 64 (2): 131–138.PubMed Warnecke, T., C. Lummer, J.W. Rey, et al. 2023. Parkinson’s disease. [J]. Die Innere Medical (Heidelb) 64 (2): 131–138.PubMed
2.
go back to reference Massaquoi, M.S., W.A. Liguore, M.J. Churchill, et al. 2020. Gait Deficits and Loss of Striatal Tyrosine Hydroxlase/Trk-B are Restored Following 7,8-Dihydroxyflavone Treatment in a Progressive MPTP Mouse Model of Parkinson’s Disease [J]. Neuroscience 433: 53–71.PubMedCrossRef Massaquoi, M.S., W.A. Liguore, M.J. Churchill, et al. 2020. Gait Deficits and Loss of Striatal Tyrosine Hydroxlase/Trk-B are Restored Following 7,8-Dihydroxyflavone Treatment in a Progressive MPTP Mouse Model of Parkinson’s Disease [J]. Neuroscience 433: 53–71.PubMedCrossRef
3.
go back to reference Rite, I., S. Argüelles, J.L. Venero, et al. 2007. Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration [J]. Journal of Neuroscience Research 85 (16): 3607–3618.PubMedCrossRef Rite, I., S. Argüelles, J.L. Venero, et al. 2007. Proteomic identification of biomarkers in the cerebrospinal fluid in a rat model of nigrostriatal dopaminergic degeneration [J]. Journal of Neuroscience Research 85 (16): 3607–3618.PubMedCrossRef
4.
go back to reference Church, F.C. 2021. Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease [J]. Biomolecules 11 (4). Church, F.C. 2021. Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease [J]. Biomolecules 11 (4).
5.
go back to reference Elsworth, J.D. 2020. Parkinson’s disease treatment: Past, present, and future [J]. Journal of Neural Transmission (Vienna) 127 (5): 785–791.CrossRef Elsworth, J.D. 2020. Parkinson’s disease treatment: Past, present, and future [J]. Journal of Neural Transmission (Vienna) 127 (5): 785–791.CrossRef
6.
go back to reference Saewanee, N., T. Praputpittaya, N. Malaiwong, et al. 2021. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson's disease [J]. Neuroscience Research 162: 13–21. Saewanee, N., T. Praputpittaya, N. Malaiwong, et al. 2021. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson's disease [J]. Neuroscience Research 162: 13–21.
7.
go back to reference Moujalled, D., A. Strasser, and J.R. Liddell. 2021. Molecular mechanisms of cell death in neurological diseases [J]. Cell Death and Differentiation 28 (7): 2029–2044.PubMedPubMedCentralCrossRef Moujalled, D., A. Strasser, and J.R. Liddell. 2021. Molecular mechanisms of cell death in neurological diseases [J]. Cell Death and Differentiation 28 (7): 2029–2044.PubMedPubMedCentralCrossRef
8.
go back to reference Dionísio, P.A., J.D. Amaral, and C.M.P. Rodrigues. 2021. Oxidative stress and regulated cell death in Parkinson’s disease [J]. Ageing Research Reviews 67: 101263.PubMedCrossRef Dionísio, P.A., J.D. Amaral, and C.M.P. Rodrigues. 2021. Oxidative stress and regulated cell death in Parkinson’s disease [J]. Ageing Research Reviews 67: 101263.PubMedCrossRef
9.
go back to reference Wang, S., Y.H. Yuan, N.H. Chen, et al. 2019. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease [J]. International Immunopharmacology 67: 458–464.PubMedCrossRef Wang, S., Y.H. Yuan, N.H. Chen, et al. 2019. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease [J]. International Immunopharmacology 67: 458–464.PubMedCrossRef
10.
go back to reference Shi, J., Y. Zhao, K. Wang, et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature 526 (7575): 660–665.PubMedCrossRef Shi, J., Y. Zhao, K. Wang, et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature 526 (7575): 660–665.PubMedCrossRef
11.
go back to reference Man, S.M., R. Karki, and T.D. Kanneganti. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases [J]. Immunological Reviews 277 (1): 61–75.PubMedPubMedCentralCrossRef Man, S.M., R. Karki, and T.D. Kanneganti. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases [J]. Immunological Reviews 277 (1): 61–75.PubMedPubMedCentralCrossRef
12.
go back to reference Guan, Y., and F. Han. 2020. Key Mechanisms and Potential Targets of the NLRP3 Inflammasome in Neurodegenerative Diseases [J]. Frontiers in Integrative Neuroscience 14: 37.PubMedPubMedCentralCrossRef Guan, Y., and F. Han. 2020. Key Mechanisms and Potential Targets of the NLRP3 Inflammasome in Neurodegenerative Diseases [J]. Frontiers in Integrative Neuroscience 14: 37.PubMedPubMedCentralCrossRef
13.
go back to reference Milner, M.T., M. Maddugoda, J. Götz, et al. 2021. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease [J]. Current Opinion in Immunology 68: 116–124.PubMedCrossRef Milner, M.T., M. Maddugoda, J. Götz, et al. 2021. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease [J]. Current Opinion in Immunology 68: 116–124.PubMedCrossRef
14.
go back to reference Siew, J.J., H.M. Chen, H.Y. Chen, et al. 2019. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease [J]. Nature Communications 10 (1): 3473.PubMedPubMedCentralCrossRef Siew, J.J., H.M. Chen, H.Y. Chen, et al. 2019. Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease [J]. Nature Communications 10 (1): 3473.PubMedPubMedCentralCrossRef
15.
go back to reference Zhang, X., Y. Zhang, R. Li, et al. 2020. Salidroside ameliorates Parkinson’s disease by inhibiting NLRP3-dependent pyroptosis [J]. Aging (Albany NY) 12 (10): 9405–9426.PubMedCrossRef Zhang, X., Y. Zhang, R. Li, et al. 2020. Salidroside ameliorates Parkinson’s disease by inhibiting NLRP3-dependent pyroptosis [J]. Aging (Albany NY) 12 (10): 9405–9426.PubMedCrossRef
16.
go back to reference Rui, W., S. Li, H. Xiao, et al. 2020. Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson’s Disease [J]. International Journal of Neuropsychopharmacology 23 (11): 762–773.PubMedPubMedCentralCrossRef Rui, W., S. Li, H. Xiao, et al. 2020. Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/caspase-1/GSDMD Pathway in MPTP Induced Mice Model of Parkinson’s Disease [J]. International Journal of Neuropsychopharmacology 23 (11): 762–773.PubMedPubMedCentralCrossRef
17.
go back to reference Harms, A.S., S.A. Ferreira, and M. Romero-Ramos. 2021. Periphery and brain, innate and adaptive immunity in Parkinson’s disease [J]. Acta Neuropathologica 141 (4): 527–545.PubMedPubMedCentralCrossRef Harms, A.S., S.A. Ferreira, and M. Romero-Ramos. 2021. Periphery and brain, innate and adaptive immunity in Parkinson’s disease [J]. Acta Neuropathologica 141 (4): 527–545.PubMedPubMedCentralCrossRef
18.
go back to reference Yan, Z., S.A. Gibson, J.A. Buckley, et al. 2018. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases [J]. Clinical Immunology 189: 4–13.PubMedCrossRef Yan, Z., S.A. Gibson, J.A. Buckley, et al. 2018. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases [J]. Clinical Immunology 189: 4–13.PubMedCrossRef
19.
go back to reference Heidari, A., N. Yazdanpanah, and N. Rezaei. 2022. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease [J]. Journal of Neuroinflammation 19 (1): 135.PubMedPubMedCentralCrossRef Heidari, A., N. Yazdanpanah, and N. Rezaei. 2022. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease [J]. Journal of Neuroinflammation 19 (1): 135.PubMedPubMedCentralCrossRef
20.
go back to reference Lv, J., J. Zhu, P. Wang, et al. 2023. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson’s disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway [J]. CNS Neuroscience & Therapeutics 29 (4): 1012–1023.CrossRef Lv, J., J. Zhu, P. Wang, et al. 2023. Artemisinin exerts a protective effect in the MPTP mouse model of Parkinson’s disease by inhibiting microglial activation via the TLR4/Myd88/NF-KB pathway [J]. CNS Neuroscience & Therapeutics 29 (4): 1012–1023.CrossRef
21.
go back to reference Zhong, Z., W. Chen, H. Gao, et al. 2021. Fecal Microbiota Transplantation Exerts a Protective Role in MPTP-Induced Parkinson’s Disease via the TLR4/PI3K/AKT/NF-κB Pathway Stimulated by α-Synuclein [J]. Neurochemical Research 46 (11): 3050–3058.PubMedCrossRef Zhong, Z., W. Chen, H. Gao, et al. 2021. Fecal Microbiota Transplantation Exerts a Protective Role in MPTP-Induced Parkinson’s Disease via the TLR4/PI3K/AKT/NF-κB Pathway Stimulated by α-Synuclein [J]. Neurochemical Research 46 (11): 3050–3058.PubMedCrossRef
22.
go back to reference Li, J., Y. Sun, and J. Chen. 2019. Transcriptome sequencing in a 6-hydroxydopamine rat model of Parkinson’s disease [J]. Genes & Genetic Systems 94 (2): 61–69.CrossRef Li, J., Y. Sun, and J. Chen. 2019. Transcriptome sequencing in a 6-hydroxydopamine rat model of Parkinson’s disease [J]. Genes & Genetic Systems 94 (2): 61–69.CrossRef
23.
go back to reference Andrilenas, K.K., V. Ramlall, J. Kurland, et al. 2018. DNA-binding landscape of IRF3, IRF5 and IRF7 dimers: Implications for dimer-specific gene regulation [J]. Nucleic Acids Research 46 (5): 2509–2520.PubMedPubMedCentralCrossRef Andrilenas, K.K., V. Ramlall, J. Kurland, et al. 2018. DNA-binding landscape of IRF3, IRF5 and IRF7 dimers: Implications for dimer-specific gene regulation [J]. Nucleic Acids Research 46 (5): 2509–2520.PubMedPubMedCentralCrossRef
24.
go back to reference Honda, K., and T. Taniguchi. 2006. IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors [J]. Nature Reviews Immunology 6 (9): 644–658.PubMedCrossRef Honda, K., and T. Taniguchi. 2006. IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors [J]. Nature Reviews Immunology 6 (9): 644–658.PubMedCrossRef
25.
go back to reference Honda, K., H. Yanai, H. Negishi, et al. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses [J]. Nature 434 (7034): 772–777.PubMedCrossRef Honda, K., H. Yanai, H. Negishi, et al. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses [J]. Nature 434 (7034): 772–777.PubMedCrossRef
26.
go back to reference Honda, K., Y. Ohba, H. Yanai, et al. 2005. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction [J]. Nature 434 (7036): 1035–1040.PubMedCrossRef Honda, K., Y. Ohba, H. Yanai, et al. 2005. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction [J]. Nature 434 (7036): 1035–1040.PubMedCrossRef
27.
go back to reference Liu, Z., L. Gan, Y. Xu, et al. 2017. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue [J]. Journal of Pineal Research 63 (1). Liu, Z., L. Gan, Y. Xu, et al. 2017. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue [J]. Journal of Pineal Research 63 (1).
28.
go back to reference Pérez-Barrón, G., S. Montes, Y. Aguirre-Vidal, et al. 2021. Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP(+) Model of Parkinson’s Disease [J]. Neurochemical Research 46 (11): 2923–2935.PubMedCrossRef Pérez-Barrón, G., S. Montes, Y. Aguirre-Vidal, et al. 2021. Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP(+) Model of Parkinson’s Disease [J]. Neurochemical Research 46 (11): 2923–2935.PubMedCrossRef
29.
go back to reference Aguirre-Vidal, Y., J. Morales-Montor, C.T. Gómez de León, et al. 2020. Protection induced by estradiol benzoate in the MPP(+) rat model of Parkinson's disease is associated with the regulation of the inflammatory cytokine profile in the nigro striatum [J]. Journal of Neuroimmunology 349: 577426. Aguirre-Vidal, Y., J. Morales-Montor, C.T. Gómez de León, et al. 2020. Protection induced by estradiol benzoate in the MPP(+) rat model of Parkinson's disease is associated with the regulation of the inflammatory cytokine profile in the nigro striatum [J]. Journal of Neuroimmunology 349: 577426.
30.
go back to reference Aguirre-Vidal, Y., A. Monroy-Noyola, L. Anaya-Ramos, et al. 2017. β-Estradiol-3-benzoate confers neuroprotection in Parkinson MPP(+) rat model through inhibition of lipid peroxidation [J]. Steroids 126: 7–14.PubMedCrossRef Aguirre-Vidal, Y., A. Monroy-Noyola, L. Anaya-Ramos, et al. 2017. β-Estradiol-3-benzoate confers neuroprotection in Parkinson MPP(+) rat model through inhibition of lipid peroxidation [J]. Steroids 126: 7–14.PubMedCrossRef
31.
go back to reference Liu, J., W. Liu, Y. Lu, et al. 2018. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models [J]. Autophagy 14 (5): 845–861.PubMedPubMedCentralCrossRef Liu, J., W. Liu, Y. Lu, et al. 2018. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models [J]. Autophagy 14 (5): 845–861.PubMedPubMedCentralCrossRef
32.
go back to reference Ghavami, S., S. Shojaei, B. Yeganeh, et al. 2014. Autophagy and apoptosis dysfunction in neurodegenerative disorders [J]. Progress in Neurobiology 112: 24–49.PubMedCrossRef Ghavami, S., S. Shojaei, B. Yeganeh, et al. 2014. Autophagy and apoptosis dysfunction in neurodegenerative disorders [J]. Progress in Neurobiology 112: 24–49.PubMedCrossRef
33.
go back to reference Hartmann, A., S. Hunot, P.P. Michel, et al. 2000. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease [J]. Proceedings of the National Academy of Sciences USA 97 (6): 2875–2880.PubMedPubMedCentralCrossRef Hartmann, A., S. Hunot, P.P. Michel, et al. 2000. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease [J]. Proceedings of the National Academy of Sciences USA 97 (6): 2875–2880.PubMedPubMedCentralCrossRef
34.
go back to reference Erekat, N.S., Apoptosis and its Role in Parkinson’s Disease, in Parkinson’s Disease: Pathogenesis and Clinical Aspects, T.B. Stoker and J.C. Greenland, Editors. 2018, Codon Publications. Copyright: The Authors.: Brisbane (AU). Erekat, N.S., Apoptosis and its Role in Parkinson’s Disease, in Parkinson’s Disease: Pathogenesis and Clinical Aspects, T.B. Stoker and J.C. Greenland, Editors. 2018, Codon Publications. Copyright: The Authors.: Brisbane (AU).
35.
go back to reference Ryan, B.J., S. Hoek, E.A. Fon, et al. 2015. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease [J]. Trends in Biochemical Sciences 40 (4): 200–210.PubMedCrossRef Ryan, B.J., S. Hoek, E.A. Fon, et al. 2015. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease [J]. Trends in Biochemical Sciences 40 (4): 200–210.PubMedCrossRef
36.
go back to reference Moors, T., S. Paciotti, D. Chiasserini, et al. 2016. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson’s Disease: Diagnostic Links [J]. Movement Disorders 31 (6): 791–801.PubMedCrossRef Moors, T., S. Paciotti, D. Chiasserini, et al. 2016. Lysosomal Dysfunction and α-Synuclein Aggregation in Parkinson’s Disease: Diagnostic Links [J]. Movement Disorders 31 (6): 791–801.PubMedCrossRef
37.
go back to reference Haddad, D. and K. Nakamura. 2015. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease [J]. FEBS Letters 589 (24 Pt A): 3702–13. Haddad, D. and K. Nakamura. 2015. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease [J]. FEBS Letters 589 (24 Pt A): 3702–13.
38.
go back to reference Nguyen, L.T.N., H.D. Nguyen, Y.J. Kim, et al. 2022. Role of NLRP3 Inflammasome in Parkinson’s Disease and Therapeutic Considerations [J]. Journal of Parkinson’s Disease 12 (7): 2117–2133.PubMedPubMedCentralCrossRef Nguyen, L.T.N., H.D. Nguyen, Y.J. Kim, et al. 2022. Role of NLRP3 Inflammasome in Parkinson’s Disease and Therapeutic Considerations [J]. Journal of Parkinson’s Disease 12 (7): 2117–2133.PubMedPubMedCentralCrossRef
39.
go back to reference Coll, R.C., K. Schroder, and P. Pelegrín. 2022. NLRP3 and pyroptosis blockers for treating inflammatory diseases [J]. Trends in Pharmacological Sciences 43 (8): 653–668.PubMedCrossRef Coll, R.C., K. Schroder, and P. Pelegrín. 2022. NLRP3 and pyroptosis blockers for treating inflammatory diseases [J]. Trends in Pharmacological Sciences 43 (8): 653–668.PubMedCrossRef
40.
go back to reference Mouton-Liger, F., T. Rosazza, J. Sepulveda-Diaz, et al. 2018. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop [J]. Glia 66 (8): 1736–1751.PubMedPubMedCentralCrossRef Mouton-Liger, F., T. Rosazza, J. Sepulveda-Diaz, et al. 2018. Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop [J]. Glia 66 (8): 1736–1751.PubMedPubMedCentralCrossRef
41.
go back to reference Zhao, M.W., P. Yang, and L.L. Zhao. 2019. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson’s disease [J]. Environmental Toxicology 34 (6): 699–707.PubMedCrossRef Zhao, M.W., P. Yang, and L.L. Zhao. 2019. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson’s disease [J]. Environmental Toxicology 34 (6): 699–707.PubMedCrossRef
42.
go back to reference Wang, Y., S. Wu, Q. Li, et al. 2022. Salsolinol Induces Parkinson’s Disease Through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside [J]. Neurotoxicity Research 40 (6): 1948–1962.PubMedCrossRef Wang, Y., S. Wu, Q. Li, et al. 2022. Salsolinol Induces Parkinson’s Disease Through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside [J]. Neurotoxicity Research 40 (6): 1948–1962.PubMedCrossRef
43.
go back to reference Zhang, Q., X.M. Huang, J.X. Liao, et al. 2020. LncRNA HOTAIR Promotes Neuronal Damage Through Facilitating NLRP3 Mediated-Pyroptosis Activation in Parkinson's Disease via Regulation of miR-326/ELAVL1 Axis [J]. Cellular and Molecular Neurobiology. Zhang, Q., X.M. Huang, J.X. Liao, et al. 2020. LncRNA HOTAIR Promotes Neuronal Damage Through Facilitating NLRP3 Mediated-Pyroptosis Activation in Parkinson's Disease via Regulation of miR-326/ELAVL1 Axis [J]. Cellular and Molecular Neurobiology.
44.
go back to reference Masters, S.L., A. Dunne, S.L. Subramanian, et al. 2010. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes [J]. Nature Immunology 11 (10): 897–904.PubMedPubMedCentralCrossRef Masters, S.L., A. Dunne, S.L. Subramanian, et al. 2010. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes [J]. Nature Immunology 11 (10): 897–904.PubMedPubMedCentralCrossRef
45.
go back to reference Jo, E.K., J.K. Kim, D.M. Shin, et al. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation [J]. Cellular & Molecular Immunology 13 (2): 148–159.CrossRef Jo, E.K., J.K. Kim, D.M. Shin, et al. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation [J]. Cellular & Molecular Immunology 13 (2): 148–159.CrossRef
46.
go back to reference Paik, S., J.K. Kim, P. Silwal, et al. 2021. An update on the regulatory mechanisms of NLRP3 inflammasome activation [J]. Cellular & Molecular Immunology 18 (5): 1141–1160.CrossRef Paik, S., J.K. Kim, P. Silwal, et al. 2021. An update on the regulatory mechanisms of NLRP3 inflammasome activation [J]. Cellular & Molecular Immunology 18 (5): 1141–1160.CrossRef
47.
go back to reference Zeng, R., D.X. Luo, H.P. Li, et al. 2019. MicroRNA-135b alleviates MPP(+)-mediated Parkinson’s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis [J]. Journal of Clinical Neuroscience 65: 125–133.PubMedCrossRef Zeng, R., D.X. Luo, H.P. Li, et al. 2019. MicroRNA-135b alleviates MPP(+)-mediated Parkinson’s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis [J]. Journal of Clinical Neuroscience 65: 125–133.PubMedCrossRef
48.
go back to reference Zhong, Y., X. Cai, L. Ding, et al. 2022. Nrf2 Inhibits the Progression of Parkinson's Disease by Upregulating AABR07032261.5 to Repress Pyroptosis [J]. Journal of Inflammation Research 15: 669–685. Zhong, Y., X. Cai, L. Ding, et al. 2022. Nrf2 Inhibits the Progression of Parkinson's Disease by Upregulating AABR07032261.5 to Repress Pyroptosis [J]. Journal of Inflammation Research 15: 669–685.
49.
go back to reference Xing, X., F. Xu, Y. Wang, et al. 2022. Role of the OTUB1/IRF7/NOX4 axis in oxidative stress injury and inflammatory responses in mice with Parkinson's disease [J]. Psychogeriatrics. Xing, X., F. Xu, Y. Wang, et al. 2022. Role of the OTUB1/IRF7/NOX4 axis in oxidative stress injury and inflammatory responses in mice with Parkinson's disease [J]. Psychogeriatrics.
50.
go back to reference Malik, G. and Y. Zhou. 2020. Innate Immune Sensing of Influenza A Virus [J]. Viruses 12 (7). Malik, G. and Y. Zhou. 2020. Innate Immune Sensing of Influenza A Virus [J]. Viruses 12 (7).
51.
go back to reference Honda, K., H. Yanai, T. Mizutani, et al. 2004. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling [J]. Proceedings of the National Academy of Sciences USA 101 (43): 15416–15421.PubMedPubMedCentralCrossRef Honda, K., H. Yanai, T. Mizutani, et al. 2004. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling [J]. Proceedings of the National Academy of Sciences USA 101 (43): 15416–15421.PubMedPubMedCentralCrossRef
52.
go back to reference Kawai, T., S. Sato, K.J. Ishii, et al. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 [J]. Nature Immunology 5 (10): 1061–1068.PubMedCrossRef Kawai, T., S. Sato, K.J. Ishii, et al. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 [J]. Nature Immunology 5 (10): 1061–1068.PubMedCrossRef
53.
go back to reference Ajibade, A.A., H.Y. Wang, and R.F. Wang. 2013. Cell type-specific function of TAK1 in innate immune signaling [J]. Trends in Immunology 34 (7): 307–316.PubMedCrossRef Ajibade, A.A., H.Y. Wang, and R.F. Wang. 2013. Cell type-specific function of TAK1 in innate immune signaling [J]. Trends in Immunology 34 (7): 307–316.PubMedCrossRef
54.
go back to reference Zhao, Z., J. Ning, X.Q. Bao, et al. 2021. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis [J]. Microbiome 9 (1): 226.PubMedPubMedCentralCrossRef Zhao, Z., J. Ning, X.Q. Bao, et al. 2021. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis [J]. Microbiome 9 (1): 226.PubMedPubMedCentralCrossRef
55.
go back to reference Noelker, C., L. Morel, T. Lescot, et al. 2013. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease [J]. Science and Reports 3: 1393.CrossRef Noelker, C., L. Morel, T. Lescot, et al. 2013. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease [J]. Science and Reports 3: 1393.CrossRef
56.
go back to reference Yan, Y.Q., Y. Fang, R. Zheng, et al. 2020. NLRP3 Inflammasomes in Parkinson’s disease and their Regulation by Parkin [J]. Neuroscience 446: 323–334.PubMedCrossRef Yan, Y.Q., Y. Fang, R. Zheng, et al. 2020. NLRP3 Inflammasomes in Parkinson’s disease and their Regulation by Parkin [J]. Neuroscience 446: 323–334.PubMedCrossRef
57.
go back to reference Perez-Pardo, P., H.B. Dodiya, P.A. Engen, et al. 2019. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice [J]. Gut 68 (5): 829–843.PubMedCrossRef Perez-Pardo, P., H.B. Dodiya, P.A. Engen, et al. 2019. Role of TLR4 in the gut-brain axis in Parkinson’s disease: A translational study from men to mice [J]. Gut 68 (5): 829–843.PubMedCrossRef
58.
go back to reference Wang, Q., Y. Ai, C. Wang, et al. 2022. PKACα negatively regulates TAK1/IRF7 signaling in black carp Mylopharyngodon piceus [J]. Developmental and Comparative Immunology 127: 104306.PubMedCrossRef Wang, Q., Y. Ai, C. Wang, et al. 2022. PKACα negatively regulates TAK1/IRF7 signaling in black carp Mylopharyngodon piceus [J]. Developmental and Comparative Immunology 127: 104306.PubMedCrossRef
59.
go back to reference Jang, Y., J.H. Koo, I. Kwon, et al. 2017. Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice [J]. Brain Research 1655: 186–193.PubMedCrossRef Jang, Y., J.H. Koo, I. Kwon, et al. 2017. Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice [J]. Brain Research 1655: 186–193.PubMedCrossRef
60.
go back to reference Lee, H.J., S.H. Jang, H. Kim, et al. 2012. PINK1 stimulates interleukin-1β-mediated inflammatory signaling via the positive regulation of TRAF6 and TAK1 [J]. Cellular and Molecular Life Sciences 69 (19): 3301–3315.PubMedCrossRef Lee, H.J., S.H. Jang, H. Kim, et al. 2012. PINK1 stimulates interleukin-1β-mediated inflammatory signaling via the positive regulation of TRAF6 and TAK1 [J]. Cellular and Molecular Life Sciences 69 (19): 3301–3315.PubMedCrossRef
61.
go back to reference Han, K.A., L. Yoo, J.Y. Sung, et al. 2017. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1 [J]. Frontiers in Cellular Neuroscience 11: 125.PubMedPubMedCentralCrossRef Han, K.A., L. Yoo, J.Y. Sung, et al. 2017. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1 [J]. Frontiers in Cellular Neuroscience 11: 125.PubMedPubMedCentralCrossRef
Metadata
Title
Investigating the TLR4/TAK1/IRF7 axis in NLRP3-Mediated Pyroptosis in Parkinson's Disease
Authors
Wei Quan
Ying Liu
Jia Li
Dawei Chen
Jing Xu
Jia Song
Jiajun Chen
Shilong Sun
Publication date
06-11-2023
Publisher
Springer US
Published in
Inflammation / Issue 1/2024
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01918-y

Other articles of this Issue 1/2024

Inflammation 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine