Skip to main content
Top
Published in: Inflammation 1/2024

19-09-2023 | RESEARCH

Tangeretin Attenuates Cerebral Ischemia–Reperfusion-Induced Neuronal Pyroptosis by Inhibiting AIM2 Inflammasome Activation via Regulating NRF2

Authors: Guoxing You, Linbo Zheng, Yuanyuan Zhang, Yuting Zhang, Yupeng Wang, Wenjie Guo, Hao Liu, Philipovich Tatiana, Kulchitsky Vladimir, Jie Zan

Published in: Inflammation | Issue 1/2024

Login to get access

Abstract

Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human’s life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen–glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.
Literature
2.
go back to reference Liang, T.Y., S.Y. Peng, M. Ma, H.Y. Li, Z. Wang, and G. Chen. 2021. Protective effects of sevoflurane in cerebral ischemia reperfusion injury: A narrative review. Medical Gas Research 11: 152–154.CrossRefPubMedPubMedCentral Liang, T.Y., S.Y. Peng, M. Ma, H.Y. Li, Z. Wang, and G. Chen. 2021. Protective effects of sevoflurane in cerebral ischemia reperfusion injury: A narrative review. Medical Gas Research 11: 152–154.CrossRefPubMedPubMedCentral
3.
go back to reference Rao, Z., Y. Zhu, P. Yang, Z. Chen, Y. Xia, C. Qiao, W. Liu, H. Deng, J. Li, P. Ning, and Z. Wang. 2022. Pyroptosis in inflammatory diseases and cancer. Theranostics 12: 4310–4329.CrossRefPubMedPubMedCentral Rao, Z., Y. Zhu, P. Yang, Z. Chen, Y. Xia, C. Qiao, W. Liu, H. Deng, J. Li, P. Ning, and Z. Wang. 2022. Pyroptosis in inflammatory diseases and cancer. Theranostics 12: 4310–4329.CrossRefPubMedPubMedCentral
4.
go back to reference Broz, P., and V.M. Dixit. 2016. Inflammasomes: Mechanism of assembly, regulation and signalling. Nature Reviews Immunology 16: 407–420.CrossRefPubMed Broz, P., and V.M. Dixit. 2016. Inflammasomes: Mechanism of assembly, regulation and signalling. Nature Reviews Immunology 16: 407–420.CrossRefPubMed
5.
go back to reference Wright, S.S., S.O. Vasudevan, and V.A. Rathinam. 2022. Mechanisms and consequences of noncanonical inflammasome-mediated pyroptosis. Journal of Molecular Biology 434: 167245.CrossRefPubMed Wright, S.S., S.O. Vasudevan, and V.A. Rathinam. 2022. Mechanisms and consequences of noncanonical inflammasome-mediated pyroptosis. Journal of Molecular Biology 434: 167245.CrossRefPubMed
6.
go back to reference Hsu, S.K., C.Y. Li, I.L. Lin, W.J. Syue, Y.F. Chen, K.C. Cheng, Y.N. Teng, Y.H. Lin, C.H. Yen, and C.C. Chiu. 2021. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 11: 8813–8835.CrossRefPubMedPubMedCentral Hsu, S.K., C.Y. Li, I.L. Lin, W.J. Syue, Y.F. Chen, K.C. Cheng, Y.N. Teng, Y.H. Lin, C.H. Yen, and C.C. Chiu. 2021. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 11: 8813–8835.CrossRefPubMedPubMedCentral
7.
go back to reference Wei, X., F. Xie, X. Zhou, Y. Wu, H. Yan, T. Liu, J. Huang, F. Wang, F. Zhou, and L. Zhang. 2022. Role of pyroptosis in inflammation and cancer. Cellular & Molecular Immunology 19: 971–992.CrossRef Wei, X., F. Xie, X. Zhou, Y. Wu, H. Yan, T. Liu, J. Huang, F. Wang, F. Zhou, and L. Zhang. 2022. Role of pyroptosis in inflammation and cancer. Cellular & Molecular Immunology 19: 971–992.CrossRef
8.
go back to reference Stutz, A., G.L. Horvath, B.G. Monks, and E. Latz. 2013. ASC speck formation as a readout for inflammasome activation. Methods in Molecular Biology 1040: 91–101.CrossRefPubMed Stutz, A., G.L. Horvath, B.G. Monks, and E. Latz. 2013. ASC speck formation as a readout for inflammasome activation. Methods in Molecular Biology 1040: 91–101.CrossRefPubMed
9.
go back to reference Chen, C., and P. Xu. 2022. Activation and pharmacological regulation of inflammasomes. Biomolecules 12. Chen, C., and P. Xu. 2022. Activation and pharmacological regulation of inflammasomes. Biomolecules 12.
11.
go back to reference Yao, S., S. Hu, C. Zhang, Q. Zhou, H. Wang, Y. Yang, C. Liu, and H. Ding. 2022. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139–5p/FoxO1/Keap1/NRF2 axis,\. International Immunopharmacology 105: 108582. https://doi.org/10.1016/j.intimp.2022.108582. Yao, S., S. Hu, C. Zhang, Q. Zhou, H. Wang, Y. Yang, C. Liu, and H. Ding. 2022. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139–5p/FoxO1/Keap1/NRF2 axis,\. International Immunopharmacology 105: 108582. https://​doi.​org/​10.​1016/​j.​intimp.​2022.​108582.
12.
go back to reference Zhao, J., X. Piao, Y. Wu, S. Liang, F. Han, Q. Liang, S. Shao, and D. Zhao. 2020. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 127: 110151. https://doi.org/10.1016/j.biopha.2020.110151. Zhao, J., X. Piao, Y. Wu, S. Liang, F. Han, Q. Liang, S. Shao, and D. Zhao. 2020. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 127: 110151. https://​doi.​org/​10.​1016/​j.​biopha.​2020.​110151.
16.
go back to reference Braidy, N., S. Behzad, S. Habtemariam, T. Ahmed, M. Daglia, S.M. Nabavi, E. Sobarzo-Sanchez, and S.F. Nabavi. 2017. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS & Neurological Disorders: Drug Targets 16: 387–397. Braidy, N., S. Behzad, S. Habtemariam, T. Ahmed, M. Daglia, S.M. Nabavi, E. Sobarzo-Sanchez, and S.F. Nabavi. 2017. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS & Neurological Disorders: Drug Targets 16: 387–397.
17.
go back to reference Sedik, A.A., and R. Elgohary. 2023. Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: targeting NRF2 signaling pathway, inflammatory mediators, and apoptosis. Inflammopharmacology. Sedik, A.A., and R. Elgohary. 2023. Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: targeting NRF2 signaling pathway, inflammatory mediators, and apoptosis. Inflammopharmacology.
18.
go back to reference Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, and A. Dunne. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.CrossRefPubMedPubMedCentral Cox, D.J., R.H. Field, D.G. Williams, M. Baran, A.G. Bowie, C. Cunningham, and A. Dunne. 2015. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 63: 812–825.CrossRefPubMedPubMedCentral
19.
go back to reference Lammert, C.R., E.L. Frost, C.E. Bellinger, A.C. Bolte, C.A. McKee, M.E. Hurt, M.J. Paysour, H.E. Ennerfelt, and J.R. Lukens. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580: 647–652.CrossRefPubMedPubMedCentral Lammert, C.R., E.L. Frost, C.E. Bellinger, A.C. Bolte, C.A. McKee, M.E. Hurt, M.J. Paysour, H.E. Ennerfelt, and J.R. Lukens. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580: 647–652.CrossRefPubMedPubMedCentral
20.
go back to reference Wu, P.J., H.Y. Liu, T.N. Huang, and Y.P. Hsueh. 2016. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Science and Reports 6: 32405.CrossRef Wu, P.J., H.Y. Liu, T.N. Huang, and Y.P. Hsueh. 2016. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Science and Reports 6: 32405.CrossRef
21.
go back to reference Kim, H., J.S. Seo, S.Y. Lee, K.T. Ha, B.T. Choi, Y.I. Shin, Y. Ju Yun, and H.K. Shin. 2020. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain, Behavior, and Immunity 87: 765–776. Kim, H., J.S. Seo, S.Y. Lee, K.T. Ha, B.T. Choi, Y.I. Shin, Y. Ju Yun, and H.K. Shin. 2020. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain, Behavior, and Immunity 87: 765–776.
22.
go back to reference Xu, S.Y., H.J. Bian, S. Shu, S.N. Xia, Y. Gu, M.J. Zhang, Y. Xu, and X. Cao. 2021. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neuroscience & Therapeutics 27: 1224–1237.CrossRef Xu, S.Y., H.J. Bian, S. Shu, S.N. Xia, Y. Gu, M.J. Zhang, Y. Xu, and X. Cao. 2021. AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neuroscience & Therapeutics 27: 1224–1237.CrossRef
23.
go back to reference Singh, B., J.P. Singh, A. Kaur, and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International 132: 109114.CrossRefPubMed Singh, B., J.P. Singh, A. Kaur, and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International 132: 109114.CrossRefPubMed
24.
go back to reference Shi, Y., J. Chen, S. Li, Y. Wu, C. Yu, L. Ni, J. Xiao, Z. Shao, H. Zhu, J. Wang, X. Wang, and X. Zhang. 2022. Tangeretin suppresses osteoarthritis progression via the NRF2/NF-kappaB and MAPK/NF-kappaB signaling pathways. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology. 98: 153928. https://doi.org/10.1016/j.phymed.2022.153928. Shi, Y., J. Chen, S. Li, Y. Wu, C. Yu, L. Ni, J. Xiao, Z. Shao, H. Zhu, J. Wang, X. Wang, and X. Zhang. 2022. Tangeretin suppresses osteoarthritis progression via the NRF2/NF-kappaB and MAPK/NF-kappaB signaling pathways. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology. 98: 153928. https://​doi.​org/​10.​1016/​j.​phymed.​2022.​153928.
25.
go back to reference Chen, B., J. Luo, Y. Han, H. Du, J. Liu, W. He, J. Zhu, J. Xiao, J. Wang, Y. Cao, H. Xiao, and M. Song. 2021. Dietary tangeretin alleviated dextran sulfate sodium-induced colitis in mice via inhibiting inflammatory response, restoring intestinal barrier function, and modulating gut microbiota. Journal of Agriculture and Food Chemistry 69: 7663–7674. https://doi.org/10.1021/acs.jafc.1c03046.CrossRef Chen, B., J. Luo, Y. Han, H. Du, J. Liu, W. He, J. Zhu, J. Xiao, J. Wang, Y. Cao, H. Xiao, and M. Song. 2021. Dietary tangeretin alleviated dextran sulfate sodium-induced colitis in mice via inhibiting inflammatory response, restoring intestinal barrier function, and modulating gut microbiota. Journal of Agriculture and Food Chemistry 69: 7663–7674. https://​doi.​org/​10.​1021/​acs.​jafc.​1c03046.CrossRef
26.
go back to reference Shiroorkar, P.N., O. Afzal, I. Kazmi, F.A. Al-Abbasi, A.S.A. Altamimi, K.S. Gubbiyappa, N. Sreeharsha. 2020. Cardioprotective effect of tangeretin by inhibiting PTEN/AKT/mTOR axis in experimental sepsis-induced myocardial dysfunction. Molecules 25. https://doi.org/10.3390/molecules25235622. Shiroorkar, P.N., O. Afzal, I. Kazmi, F.A. Al-Abbasi, A.S.A. Altamimi, K.S. Gubbiyappa, N. Sreeharsha. 2020. Cardioprotective effect of tangeretin by inhibiting PTEN/AKT/mTOR axis in experimental sepsis-induced myocardial dysfunction. Molecules 25. https://​doi.​org/​10.​3390/​molecules2523562​2.
27.
go back to reference Yang, J.S., X.H. Wu, H.G. Yu, and L.S. Teng. 2017. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 25: 471–484.CrossRefPubMed Yang, J.S., X.H. Wu, H.G. Yu, and L.S. Teng. 2017. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacology 25: 471–484.CrossRefPubMed
28.
go back to reference Yang, T., C. Feng, D. Wang, Y. Qu, Y. Yang, Y. Wang, and Z. Sun. 2020. Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats. Inflammation 43: 2332–2343.CrossRefPubMed Yang, T., C. Feng, D. Wang, Y. Qu, Y. Yang, Y. Wang, and Z. Sun. 2020. Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats. Inflammation 43: 2332–2343.CrossRefPubMed
29.
go back to reference Wang, Y., R. Jin, J. Chen, J. Cao, J. Xiao, X. Li, and C. Sun. 2021. Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination. Food Chemistry 365: 130470.CrossRefPubMed Wang, Y., R. Jin, J. Chen, J. Cao, J. Xiao, X. Li, and C. Sun. 2021. Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination. Food Chemistry 365: 130470.CrossRefPubMed
30.
go back to reference Wang, J., Y. Rong, C. Ji, C. Lv, D. Jiang, X. Ge, F. Gong, P. Tang, W. Cai, W. Liu, and J. Fan. 2020. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury. Journal of Nanobiotechnology 18: 72.CrossRefPubMedPubMedCentral Wang, J., Y. Rong, C. Ji, C. Lv, D. Jiang, X. Ge, F. Gong, P. Tang, W. Cai, W. Liu, and J. Fan. 2020. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury. Journal of Nanobiotechnology 18: 72.CrossRefPubMedPubMedCentral
31.
go back to reference Yu, Z., L. Zheng, Y. Geng, Y. Zhang, Y. Wang, G. You, M. Cai, M. Li, X. Cheng, and J. Zan. 2023. FTO alleviates cerebral ischemia/reperfusion-induced neuroinflammation by decreasing cGAS mRNA stability in an m6A-dependent manner. Cellular Signalling 109: 110751.CrossRefPubMed Yu, Z., L. Zheng, Y. Geng, Y. Zhang, Y. Wang, G. You, M. Cai, M. Li, X. Cheng, and J. Zan. 2023. FTO alleviates cerebral ischemia/reperfusion-induced neuroinflammation by decreasing cGAS mRNA stability in an m6A-dependent manner. Cellular Signalling 109: 110751.CrossRefPubMed
33.
go back to reference Yang, Y., P. Liu, L. Chen, Z. Liu, H. Zhang, J. Wang, X. Sun, W. Zhong, N. Wang, K. Tian, and J. Zhao. 2013. Therapeutic effect of Ginkgo biloba polysaccharide in rats with focal cerebral ischemia/reperfusion (I/R) injury. Carbohydrate Polymers 98: 1383–1388.CrossRefPubMed Yang, Y., P. Liu, L. Chen, Z. Liu, H. Zhang, J. Wang, X. Sun, W. Zhong, N. Wang, K. Tian, and J. Zhao. 2013. Therapeutic effect of Ginkgo biloba polysaccharide in rats with focal cerebral ischemia/reperfusion (I/R) injury. Carbohydrate Polymers 98: 1383–1388.CrossRefPubMed
34.
go back to reference Luo, J., J. Chen, C. Yang, J. Tan, J. Zhao, N. Jiang, and Y. Zhao. 2021. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. International Immunopharmacology 100: 108146.CrossRefPubMed Luo, J., J. Chen, C. Yang, J. Tan, J. Zhao, N. Jiang, and Y. Zhao. 2021. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. International Immunopharmacology 100: 108146.CrossRefPubMed
36.
go back to reference Lozano-Ruiz, B., V. Bachiller, I. Garcia-Martinez, P. Zapater, I. Gomez-Hurtado, A. Moratalla, P. Gimenez, P. Bellot, R. Frances, J. Such, and J.M. Gonzalez-Navajas. 2015. Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. Journal of hepatology 62: 64–71. https://doi.org/10.1016/j.jhep.2014.08.027.CrossRefPubMed Lozano-Ruiz, B., V. Bachiller, I. Garcia-Martinez, P. Zapater, I. Gomez-Hurtado, A. Moratalla, P. Gimenez, P. Bellot, R. Frances, J. Such, and J.M. Gonzalez-Navajas. 2015. Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. Journal of hepatology 62: 64–71. https://​doi.​org/​10.​1016/​j.​jhep.​2014.​08.​027.CrossRefPubMed
38.
go back to reference Hu, Q., T. Zuo, L. Deng, S. Chen, W. Yu, S. Liu, J. Liu, X. Wang, X. Fan, and Z. Dong. 2022. beta-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 102: 154112. https://doi.org/10.1016/j.phymed.2022.154112. Hu, Q., T. Zuo, L. Deng, S. Chen, W. Yu, S. Liu, J. Liu, X. Wang, X. Fan, and Z. Dong. 2022. beta-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 102: 154112. https://​doi.​org/​10.​1016/​j.​phymed.​2022.​154112.
40.
go back to reference Fusco, R., M. Cordaro, R. Siracusa, A.F. Peritore, E. Gugliandolo, T. Genovese, R. D’Amico, R. Crupi, A. Smeriglio, G. Mandalari, D. Impellizzeri, S. Cuzzocrea, and R. Di Paola. 2020. Consumption of Anacardium occidentale L. (cashew nuts) inhibits oxidative stress through modulation of the Nrf2/HO-1 and NF-kB pathways. Molecules 25. https://doi.org/10.3390/molecules25194426. Fusco, R., M. Cordaro, R. Siracusa, A.F. Peritore, E. Gugliandolo, T. Genovese, R. D’Amico, R. Crupi, A. Smeriglio, G. Mandalari, D. Impellizzeri, S. Cuzzocrea, and R. Di Paola. 2020. Consumption of Anacardium occidentale L. (cashew nuts) inhibits oxidative stress through modulation of the Nrf2/HO-1 and NF-kB pathways. Molecules 25. https://​doi.​org/​10.​3390/​molecules2519442​6.
Metadata
Title
Tangeretin Attenuates Cerebral Ischemia–Reperfusion-Induced Neuronal Pyroptosis by Inhibiting AIM2 Inflammasome Activation via Regulating NRF2
Authors
Guoxing You
Linbo Zheng
Yuanyuan Zhang
Yuting Zhang
Yupeng Wang
Wenjie Guo
Hao Liu
Philipovich Tatiana
Kulchitsky Vladimir
Jie Zan
Publication date
19-09-2023
Publisher
Springer US
Published in
Inflammation / Issue 1/2024
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01900-8

Other articles of this Issue 1/2024

Inflammation 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine