Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2024

Open Access 01-12-2024 | Parkinson's Disease | Research

Regional differences in synaptic degeneration are linked to alpha-synuclein burden and axonal damage in Parkinson’s disease and dementia with Lewy bodies

Authors: Irene Frigerio, Maud M. A. Bouwman, Ruby T. G. M. M. Noordermeer, Ema Podobnik, Marko Popovic, Evelien Timmermans, Annemieke J. M. Rozemuller, Wilma D. J. van de Berg, Laura E. Jonkman

Published in: Acta Neuropathologica Communications | Issue 1/2024

Login to get access

Abstract

Regional differences in synaptic degeneration may underlie differences in clinical presentation and neuropathological disease progression in Parkinson’s Disease (PD) and Dementia with Lewy bodies (DLB). Here, we mapped and quantified synaptic degeneration in cortical brain regions in PD, PD with dementia (PDD) and DLB, and assessed whether regional differences in synaptic loss are linked to axonal degeneration and neuropathological burden. We included a total of 47 brain donors, 9 PD, 12 PDD, 6 DLB and 20 non-neurological controls. Synaptophysin+ and SV2A+ puncta were quantified in eight cortical regions using a high throughput microscopy approach. Neurofilament light chain (NfL) immunoreactivity, Lewy body (LB) density, phosphorylated-tau and amyloid-β load were also quantified. Group differences in synaptic density, and associations with neuropathological markers and Clinical Dementia Rating (CDR) scores, were investigated using linear mixed models. We found significantly decreased synaptophysin and SV2A densities in the cortex of PD, PDD and DLB cases compared to controls. Specifically, synaptic density was decreased in cortical regions affected at Braak α-synuclein stage 5 in PD (middle temporal gyrus, anterior cingulate and insula), and was additionally decreased in cortical regions affected at Braak α-synuclein stage 4 in PDD and DLB compared to controls (entorhinal cortex, parahippocampal gyrus and fusiform gyrus). Synaptic loss associated with higher NfL immunoreactivity and LB density. Global synaptophysin loss associated with longer disease duration and higher CDR scores. Synaptic neurodegeneration occurred in temporal, cingulate and insular cortices in PD, as well as in parahippocampal regions in PDD and DLB. In addition, synaptic loss was linked to axonal damage and severe α-synuclein burden. These results, together with the association between synaptic loss and disease progression and cognitive impairment, indicate that regional synaptic loss may underlie clinical differences between PD and PDD/DLB. Our results might provide useful information for the interpretation of synaptic biomarkers in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellucci A, Antonini A, Pizzi M, Spano P (2017) The end is the beginning: Parkinson’s Disease in the light of brain imaging. Front Aging Neurosci 9:330PubMedPubMedCentralCrossRef Bellucci A, Antonini A, Pizzi M, Spano P (2017) The end is the beginning: Parkinson’s Disease in the light of brain imaging. Front Aging Neurosci 9:330PubMedPubMedCentralCrossRef
2.
go back to reference Bellucci A et al (2016) Review: Parkinson’s Disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 42(1):77–94PubMedCrossRef Bellucci A et al (2016) Review: Parkinson’s Disease: from synaptic loss to connectome dysfunction. Neuropathol Appl Neurobiol 42(1):77–94PubMedCrossRef
3.
go back to reference Poewe W et al (2017) Parkinson Disease. Nat Reviews Disease Primers 3(1):1–21 Poewe W et al (2017) Parkinson Disease. Nat Reviews Disease Primers 3(1):1–21
4.
go back to reference Aarsland D, Zaccai J, Brayne C (2005) A systematic review of prevalence studies of Dementia in Parkinson’s Disease. Mov Disorders: Official J Mov Disorder Soc 20(10):1255–1263CrossRef Aarsland D, Zaccai J, Brayne C (2005) A systematic review of prevalence studies of Dementia in Parkinson’s Disease. Mov Disorders: Official J Mov Disorder Soc 20(10):1255–1263CrossRef
5.
go back to reference Jellinger KA (2022) Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm 1–23 Jellinger KA (2022) Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm 1–23
6.
go back to reference e Sousa CS, Alarcão J, Martins IP, Ferreira JJ (2022) Frequency of Dementia in Parkinson’s Disease: a systematic review and meta-analysis. J Neurol Sci 432:120077CrossRef e Sousa CS, Alarcão J, Martins IP, Ferreira JJ (2022) Frequency of Dementia in Parkinson’s Disease: a systematic review and meta-analysis. J Neurol Sci 432:120077CrossRef
7.
go back to reference Emre M et al (2007) Clinical diagnostic criteria for Dementia associated with Parkinson’s Disease. Mov Disorders: Official J Mov Disorder Soc 22(12):1689–1707CrossRef Emre M et al (2007) Clinical diagnostic criteria for Dementia associated with Parkinson’s Disease. Mov Disorders: Official J Mov Disorder Soc 22(12):1689–1707CrossRef
8.
9.
go back to reference Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disorders: Official J Mov Disorder Soc 18(S6):2–12CrossRef Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disorders: Official J Mov Disorder Soc 18(S6):2–12CrossRef
10.
go back to reference Braak H et al (2003) Staging of brain pathology related to sporadic Parkinson’s Disease. Neurobiol Aging 24(2):197–211PubMedCrossRef Braak H et al (2003) Staging of brain pathology related to sporadic Parkinson’s Disease. Neurobiol Aging 24(2):197–211PubMedCrossRef
11.
go back to reference Shahmoradian SH et al (2019) Lewy pathology in Parkinson’s Disease consists of crowded organelles and lipid membranes. Nat Neurosci 22(7):1099–1109PubMedCrossRef Shahmoradian SH et al (2019) Lewy pathology in Parkinson’s Disease consists of crowded organelles and lipid membranes. Nat Neurosci 22(7):1099–1109PubMedCrossRef
12.
go back to reference Burré J (2015) The synaptic function of α-synuclein. J Parkinson’s Disease 5(4):699–713CrossRef Burré J (2015) The synaptic function of α-synuclein. J Parkinson’s Disease 5(4):699–713CrossRef
13.
go back to reference Longhena F et al (2017) The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy Neural plasticity, 2017 Longhena F et al (2017) The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy Neural plasticity, 2017
14.
go back to reference Longhena F, Faustini G, Spillantini MG, Bellucci A (2019) Living in promiscuity: the multiple partners of alpha-synuclein at the synapse in physiology and pathology. Int J Mol Sci 20(1):141PubMedPubMedCentralCrossRef Longhena F, Faustini G, Spillantini MG, Bellucci A (2019) Living in promiscuity: the multiple partners of alpha-synuclein at the synapse in physiology and pathology. Int J Mol Sci 20(1):141PubMedPubMedCentralCrossRef
15.
go back to reference Zhan S-S, Beyreuther K, Schmitt H (1993) Quantitative Assessment of the Synaptophysin Immuno-Reactivity of the cortical neuropil in various neurodegenerative disorderswith Dementia. Dement Geriatr Cogn Disord 4(2):66–74CrossRef Zhan S-S, Beyreuther K, Schmitt H (1993) Quantitative Assessment of the Synaptophysin Immuno-Reactivity of the cortical neuropil in various neurodegenerative disorderswith Dementia. Dement Geriatr Cogn Disord 4(2):66–74CrossRef
17.
go back to reference Bereczki E et al (2016) Synaptic proteins predict cognitive decline in Alzheimer’s Disease and Lewy body Dementia. Alzheimer’s Dement 12(11):1149–1158CrossRef Bereczki E et al (2016) Synaptic proteins predict cognitive decline in Alzheimer’s Disease and Lewy body Dementia. Alzheimer’s Dement 12(11):1149–1158CrossRef
18.
go back to reference Bereczki E et al (2017) Synaptic proteins in CSF relate to Parkinson’s Disease stage markers. Npj Parkinson’s Disease 3(1):1–5 Bereczki E et al (2017) Synaptic proteins in CSF relate to Parkinson’s Disease stage markers. Npj Parkinson’s Disease 3(1):1–5
19.
go back to reference Chatterjee M et al (2020) Contactin-1 is reduced in cerebrospinal fluid of parkinson’s Disease patients and is present within lewy bodies. Biomolecules 10(8):1177PubMedPubMedCentralCrossRef Chatterjee M et al (2020) Contactin-1 is reduced in cerebrospinal fluid of parkinson’s Disease patients and is present within lewy bodies. Biomolecules 10(8):1177PubMedPubMedCentralCrossRef
20.
go back to reference Lerche S et al (2021) CSF protein level of neurotransmitter secretion, synaptic plasticity, and autophagy in PD and DLB. Mov Disord 36(11):2595–2604PubMedCrossRef Lerche S et al (2021) CSF protein level of neurotransmitter secretion, synaptic plasticity, and autophagy in PD and DLB. Mov Disord 36(11):2595–2604PubMedCrossRef
21.
go back to reference Nilsson J et al (2023) Cerebrospinal fluid biomarkers of synaptic dysfunction are altered in Parkinson’s Disease and Related disorders. Mov Disord 38(2):267–277PubMedCrossRef Nilsson J et al (2023) Cerebrospinal fluid biomarkers of synaptic dysfunction are altered in Parkinson’s Disease and Related disorders. Mov Disord 38(2):267–277PubMedCrossRef
22.
go back to reference Mercier J, Provins L, Valade A (2017) Discovery and development of SV2A PET tracers: potential for imaging synaptic density and clinical applications. Drug Discovery Today: Technologies 25:45–52PubMedCrossRef Mercier J, Provins L, Valade A (2017) Discovery and development of SV2A PET tracers: potential for imaging synaptic density and clinical applications. Drug Discovery Today: Technologies 25:45–52PubMedCrossRef
24.
go back to reference Andersen KB et al (2021) Reduced synaptic density in patients with Lewy Body Dementia: an [11 C] UCB-J PET imaging study. Mov Disord 36(9):2057–2065PubMedCrossRef Andersen KB et al (2021) Reduced synaptic density in patients with Lewy Body Dementia: an [11 C] UCB-J PET imaging study. Mov Disord 36(9):2057–2065PubMedCrossRef
25.
go back to reference Wilson H et al (2020) Mitochondrial complex 1, sigma 1, and synaptic vesicle 2A in early drug-naive Parkinson’s Disease. Mov Disord 35(8):1416–1427PubMedCrossRef Wilson H et al (2020) Mitochondrial complex 1, sigma 1, and synaptic vesicle 2A in early drug-naive Parkinson’s Disease. Mov Disord 35(8):1416–1427PubMedCrossRef
26.
go back to reference Hepp DH et al (2016) Distribution and load of amyloid-β pathology in Parkinson Disease and Dementia with Lewy bodies. J Neuropathology Experimental Neurol 75(10):936–945CrossRef Hepp DH et al (2016) Distribution and load of amyloid-β pathology in Parkinson Disease and Dementia with Lewy bodies. J Neuropathology Experimental Neurol 75(10):936–945CrossRef
27.
go back to reference Irwin DJ et al (2017) Neuropathological and genetic correlates of survival and Dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol 16(1):55–65PubMedPubMedCentralCrossRef Irwin DJ et al (2017) Neuropathological and genetic correlates of survival and Dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol 16(1):55–65PubMedPubMedCentralCrossRef
29.
go back to reference Frigerio I et al (2023) Neurofilament light chain is increased in the parahippocampal cortex and associates with pathological hallmarks in Parkinson’s Disease Dementia. Translational Neurodegeneration 12(1):3PubMedPubMedCentralCrossRef Frigerio I et al (2023) Neurofilament light chain is increased in the parahippocampal cortex and associates with pathological hallmarks in Parkinson’s Disease Dementia. Translational Neurodegeneration 12(1):3PubMedPubMedCentralCrossRef
30.
go back to reference Ashton NJ et al (2021) A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun 12(1):1–12CrossRef Ashton NJ et al (2021) A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun 12(1):1–12CrossRef
31.
go back to reference Jonkman LE et al (2019) Normal aging brain Collection Amsterdam (NABCA): a comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls, vol 22. Clinical, NeuroImage, p 101698 Jonkman LE et al (2019) Normal aging brain Collection Amsterdam (NABCA): a comprehensive collection of postmortem high-field imaging, neuropathological and morphometric datasets of non-neurological controls, vol 22. Clinical, NeuroImage, p 101698
32.
go back to reference Postuma RB et al (2015) MDS clinical diagnostic criteria for Parkinson’s Disease. Mov Disord 30(12):1591–1601PubMedCrossRef Postuma RB et al (2015) MDS clinical diagnostic criteria for Parkinson’s Disease. Mov Disord 30(12):1591–1601PubMedCrossRef
33.
go back to reference Morris JC (1991) The clinical Dementia rating (cdr): current version and. Young 41:1588–1592 Morris JC (1991) The clinical Dementia rating (cdr): current version and. Young 41:1588–1592
34.
go back to reference Alafuzoff I et al (2009) Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 117(3):309–320PubMedPubMedCentralCrossRef Alafuzoff I et al (2009) Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 117(3):309–320PubMedPubMedCentralCrossRef
35.
go back to reference Alafuzoff I et al (2008) Staging of neurofibrillary pathology in Alzheimer’s Disease: a study of the BrainNet Europe Consortium. Brain Pathol 18(4):484–496PubMedPubMedCentralCrossRef Alafuzoff I et al (2008) Staging of neurofibrillary pathology in Alzheimer’s Disease: a study of the BrainNet Europe Consortium. Brain Pathol 18(4):484–496PubMedPubMedCentralCrossRef
36.
go back to reference Alafuzoff I et al (2009) Staging/typing of Lewy body related α-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 117(6):635–652PubMedCrossRef Alafuzoff I et al (2009) Staging/typing of Lewy body related α-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 117(6):635–652PubMedCrossRef
37.
39.
go back to reference Arendt T et al (2017) Inhomogeneous distribution of Alzheimer pathology along the isocortical relief. Are cortical convolutions an Achilles heel of evolution? Brain Pathol 27(5):603–611PubMedCrossRef Arendt T et al (2017) Inhomogeneous distribution of Alzheimer pathology along the isocortical relief. Are cortical convolutions an Achilles heel of evolution? Brain Pathol 27(5):603–611PubMedCrossRef
40.
go back to reference Frigerio I et al (2021) Amyloid-β, p-tau and reactive microglia are pathological correlates of MRI cortical atrophy in Alzheimer’s Disease. Brain Commun 3(4):fcab281PubMedPubMedCentralCrossRef Frigerio I et al (2021) Amyloid-β, p-tau and reactive microglia are pathological correlates of MRI cortical atrophy in Alzheimer’s Disease. Brain Commun 3(4):fcab281PubMedPubMedCentralCrossRef
41.
go back to reference Montine TJ et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s Disease: a practical approach. Acta Neuropathol 123(1):1–11PubMedCrossRef Montine TJ et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s Disease: a practical approach. Acta Neuropathol 123(1):1–11PubMedCrossRef
42.
go back to reference Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800PubMedCrossRef Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800PubMedCrossRef
43.
go back to reference Braak H et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404PubMedPubMedCentralCrossRef Braak H et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404PubMedPubMedCentralCrossRef
44.
go back to reference Thal DR et al (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61(3):282–293PubMedCrossRef Thal DR et al (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61(3):282–293PubMedCrossRef
45.
go back to reference Calakos N, Scheller RH (1994) Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J Biol Chem 269(40):24534–24537PubMedCrossRef Calakos N, Scheller RH (1994) Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J Biol Chem 269(40):24534–24537PubMedCrossRef
46.
go back to reference Stout KA, Dunn AR, Hoffman C, Miller GW (2019) The synaptic vesicle glycoprotein 2: structure, function, and Disease relevance. ACS Chem Neurosci 10(9):3927–3938PubMedCrossRef Stout KA, Dunn AR, Hoffman C, Miller GW (2019) The synaptic vesicle glycoprotein 2: structure, function, and Disease relevance. ACS Chem Neurosci 10(9):3927–3938PubMedCrossRef
47.
go back to reference Palomero-Gallagher N, Zilles K (2019) Cortical layers: Cyto-, myelo-, receptor-and synaptic architecture in human cortical areas. NeuroImage 197:716–741PubMedCrossRef Palomero-Gallagher N, Zilles K (2019) Cortical layers: Cyto-, myelo-, receptor-and synaptic architecture in human cortical areas. NeuroImage 197:716–741PubMedCrossRef
48.
go back to reference Mecca AP et al (2020) Association between cerebrospinal fluid biomarkers of neurodegeneration and PET measurements of synaptic density in Alzheimer’s Disease: Neuroimaging/multi-modal comparisons, vol 16. Alzheimer’s & Dementia, p e044211 Mecca AP et al (2020) Association between cerebrospinal fluid biomarkers of neurodegeneration and PET measurements of synaptic density in Alzheimer’s Disease: Neuroimaging/multi-modal comparisons, vol 16. Alzheimer’s & Dementia, p e044211
49.
go back to reference Nemani VM et al (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79PubMedPubMedCentralCrossRef Nemani VM et al (2010) Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79PubMedPubMedCentralCrossRef
50.
go back to reference Mukaetova-Ladinska EB et al (2013) Synaptic proteins and choline acetyltransferase loss in visual cortex in Dementia with Lewy bodies. J Neuropathology Experimental Neurol 72(1):53–60CrossRef Mukaetova-Ladinska EB et al (2013) Synaptic proteins and choline acetyltransferase loss in visual cortex in Dementia with Lewy bodies. J Neuropathology Experimental Neurol 72(1):53–60CrossRef
51.
go back to reference Koffie RM et al (2009) Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques Proceedings of the National Academy of Sciences, 106(10): p. 4012–4017 Koffie RM et al (2009) Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques Proceedings of the National Academy of Sciences, 106(10): p. 4012–4017
52.
go back to reference Dong H, Martin MV, Chambers S, Csernansky JG (2007) Spatial relationship between synapse loss and β-amyloid deposition in Tg2576 mice. J Comp Neurol 500(2):311–321PubMedPubMedCentralCrossRef Dong H, Martin MV, Chambers S, Csernansky JG (2007) Spatial relationship between synapse loss and β-amyloid deposition in Tg2576 mice. J Comp Neurol 500(2):311–321PubMedPubMedCentralCrossRef
53.
go back to reference Mabrouk R, Gotkiewicz M, Rauramaa T, Tanila H (2022) DAPI (4’, 6-diamidino-2-phenylindole) stains Compact amyloid plaques. J Alzheimers Dis Preprint:1–7 Mabrouk R, Gotkiewicz M, Rauramaa T, Tanila H (2022) DAPI (4’, 6-diamidino-2-phenylindole) stains Compact amyloid plaques. J Alzheimers Dis Preprint:1–7
54.
go back to reference O’Dell RS et al (2021) Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: A PET imaging study with [11 C], vol 13. UCB-J. Alzheimer’s Research & Therapy, pp 1–12 O’Dell RS et al (2021) Association of Aβ deposition and regional synaptic density in early Alzheimer’s disease: A PET imaging study with [11 C], vol 13. UCB-J. Alzheimer’s Research & Therapy, pp 1–12
55.
go back to reference Head E et al (2009) Synaptic proteins, neuropathology and cognitive status in the oldest-old. Neurobiol Aging 30(7):1125–1134PubMedCrossRef Head E et al (2009) Synaptic proteins, neuropathology and cognitive status in the oldest-old. Neurobiol Aging 30(7):1125–1134PubMedCrossRef
56.
go back to reference Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s Disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 30(4):572–580CrossRef Terry RD et al (1991) Physical basis of cognitive alterations in Alzheimer’s Disease: synapse loss is the major correlate of cognitive impairment. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 30(4):572–580CrossRef
Metadata
Title
Regional differences in synaptic degeneration are linked to alpha-synuclein burden and axonal damage in Parkinson’s disease and dementia with Lewy bodies
Authors
Irene Frigerio
Maud M. A. Bouwman
Ruby T. G. M. M. Noordermeer
Ema Podobnik
Marko Popovic
Evelien Timmermans
Annemieke J. M. Rozemuller
Wilma D. J. van de Berg
Laura E. Jonkman
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2024
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-023-01711-w

Other articles of this Issue 1/2024

Acta Neuropathologica Communications 1/2024 Go to the issue