Skip to main content
Top
Published in: Acta Neurochirurgica 11/2023

28-09-2023 | Parkinson's Disease | Original Article

Exploring the network effects of deep brain stimulation for rapid eye movement sleep behavior disorder in Parkinson’s disease

Authors: Guangrui Zhao, Yifeng Cheng, Min Wang, Yuzhang Wu, Jingtao Yan, Keke Feng, Shaoya Yin

Published in: Acta Neurochirurgica | Issue 11/2023

Login to get access

Abstract

Background

The research findings on the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson’s disease (PD) with Rapid Eye Movement Sleep Behavior Disorder (RBD) are inconsistent, and there is a lack of research on DBS electrode sites and their network effects for the explanation of the differences. Our objective is to explore the optimal stimulation sites (that is the sweet spot) and the brain network effects of STN-DBS for RBD in PD.

Methods

In this study, among the 50 PD patients who underwent STN-DBS treatment, 24 PD patients with RBD were screened. According to clinical scores and imaging data, the sweet spot of STN-DBS was analyzed in PD patients with RBD, and the optimal structure and functional network models of subthalamic stimulation were constructed.

Results

Bilateral STN-DBS can effectively improve the symptoms of RBD and other non-motor symptoms in 24 PD patients with RBD. RBD Questionnaire-Hong Kong (RBDQ-HK) score was 41.33 ± 17.45 at baseline and 30.83 ± 15.83 at 1-year follow-up, with statistical significance between them (P < 0.01). However, the MoCA score was an exception with a baseline of 22.04 ± 4.28 and a 1-year follow-up of 21.58 ± 4.33, showing no statistical significance (P = 0.12). The sweet spot and optimal network connectivity models for RBD improvement have been validated as effective.

Conclusions

Bilateral STN-DBS can improve the symptoms of RBD in PD. There exist the sweet spot and brain network effects of bilateral STN-DBS in the treatment of PD with RBD. Our study also demonstrates that RBD is a brain network disease.
Literature
1.
go back to reference Astrom M, Diczfalusy E, Martens H, Wardell K (2015) Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans Biomed Eng 62(2):664–672PubMedCrossRef Astrom M, Diczfalusy E, Martens H, Wardell K (2015) Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans Biomed Eng 62(2):664–672PubMedCrossRef
2.
go back to reference Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41PubMedCrossRef Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41PubMedCrossRef
3.
go back to reference Bargiotas P, Debove I, Bargiotas I, Lachenmayer ML, Ntafouli M, Vayatis N et al (2019) Effects of bilateral stimulation of the subthalamic nucleus in Parkinson’s disease with and without REM sleep behaviour disorder. J Neurol Neurosurg Psychiatry 90(12):1310–1316PubMed Bargiotas P, Debove I, Bargiotas I, Lachenmayer ML, Ntafouli M, Vayatis N et al (2019) Effects of bilateral stimulation of the subthalamic nucleus in Parkinson’s disease with and without REM sleep behaviour disorder. J Neurol Neurosurg Psychiatry 90(12):1310–1316PubMed
5.
go back to reference Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE et al (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130(Pt 11):2770–2788PubMedCrossRef Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE et al (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130(Pt 11):2770–2788PubMedCrossRef
6.
go back to reference Byun JI, Kim HW, Kang H, Cha KS, Sunwoo JS, Shin JW et al (2020) Altered resting-state thalamo-occipital functional connectivity is associated with cognition in isolated rapid eye movement sleep behavior disorder. Sleep Med 69:198–203PubMedCrossRef Byun JI, Kim HW, Kang H, Cha KS, Sunwoo JS, Shin JW et al (2020) Altered resting-state thalamo-occipital functional connectivity is associated with cognition in isolated rapid eye movement sleep behavior disorder. Sleep Med 69:198–203PubMedCrossRef
7.
go back to reference Campabadal A, Segura B, Junque C, Iranzo A (2021) Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: a systematic review of studies using neuroimaging software. Sleep Med Rev 59:101495PubMedCrossRef Campabadal A, Segura B, Junque C, Iranzo A (2021) Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: a systematic review of studies using neuroimaging software. Sleep Med Rev 59:101495PubMedCrossRef
8.
go back to reference Castrioto A, Lhommée E, Moro E, Krack P (2014) Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol 13(3):287–305PubMedCrossRef Castrioto A, Lhommée E, Moro E, Krack P (2014) Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol 13(3):287–305PubMedCrossRef
9.
go back to reference Christensen E, Abosch A, Thompson JA, Zylberberg J (2019) Inferring sleep stage from local field potentials recorded in the subthalamic nucleus of Parkinson’s patients. J Sleep Res 28(4):e12806PubMedCrossRef Christensen E, Abosch A, Thompson JA, Zylberberg J (2019) Inferring sleep stage from local field potentials recorded in the subthalamic nucleus of Parkinson’s patients. J Sleep Res 28(4):e12806PubMedCrossRef
10.
go back to reference Cipolli C, Ferrara M, De Gennaro L, Plazzi G (2017) Beyond the neuropsychology of dreaming: insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Med Rev 35:8–20PubMedCrossRef Cipolli C, Ferrara M, De Gennaro L, Plazzi G (2017) Beyond the neuropsychology of dreaming: insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Med Rev 35:8–20PubMedCrossRef
11.
go back to reference Dafsari HS, Petry-Schmelzer JN, Ray-Chaudhuri K, Ashkan K, Weis L, Dembek TA et al (2018) Non-motor outcomes of subthalamic stimulation in Parkinson’s disease depend on location of active contacts. Brain Stimul 11(4):904–912PubMedCrossRef Dafsari HS, Petry-Schmelzer JN, Ray-Chaudhuri K, Ashkan K, Weis L, Dembek TA et al (2018) Non-motor outcomes of subthalamic stimulation in Parkinson’s disease depend on location of active contacts. Brain Stimul 11(4):904–912PubMedCrossRef
12.
go back to reference Dafsari HS, Silverdale M, Strack M, Rizos A, Ashkan K, Mahlstedt P et al (2018) Nonmotor symptoms evolution during 24 months of bilateral subthalamic stimulation in Parkinson’s disease. Mov Disord 33(3):421–430PubMedCrossRef Dafsari HS, Silverdale M, Strack M, Rizos A, Ashkan K, Mahlstedt P et al (2018) Nonmotor symptoms evolution during 24 months of bilateral subthalamic stimulation in Parkinson’s disease. Mov Disord 33(3):421–430PubMedCrossRef
13.
go back to reference Dembek TA, Baldermann JC, Petry-Schmelzer JN, Jergas H, Treuer H, Visser-Vandewalle V et al (2022) Sweetspot mapping in deep brain stimulation: strengths and limitations of current approaches. Neuromodulation 25(6):877–887PubMedCrossRef Dembek TA, Baldermann JC, Petry-Schmelzer JN, Jergas H, Treuer H, Visser-Vandewalle V et al (2022) Sweetspot mapping in deep brain stimulation: strengths and limitations of current approaches. Neuromodulation 25(6):877–887PubMedCrossRef
14.
go back to reference Dembek TA, Barbe MT, Åström M, Hoevels M, Visser-Vandewalle V et al (2016) Probabilistic mapping of deep brain stimulation effects in essential tremor. Neuroimage Clin 13:164–173PubMedPubMedCentralCrossRef Dembek TA, Barbe MT, Åström M, Hoevels M, Visser-Vandewalle V et al (2016) Probabilistic mapping of deep brain stimulation effects in essential tremor. Neuroimage Clin 13:164–173PubMedPubMedCentralCrossRef
15.
go back to reference Devnani P, Fernandes R (2015) Management of REM sleep behavior disorder: an evidence based review. Ann Indian Acad Neurol 18(1):1–5PubMedPubMedCentral Devnani P, Fernandes R (2015) Management of REM sleep behavior disorder: an evidence based review. Ann Indian Acad Neurol 18(1):1–5PubMedPubMedCentral
16.
go back to reference Dulski J, Schinwelski M, Konkel A, Grabowski K, Libionka W, Wąż P et al (2019) The impact of subthalamic deep brain stimulation on sleep and other non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 64:138–144PubMedCrossRef Dulski J, Schinwelski M, Konkel A, Grabowski K, Libionka W, Wąż P et al (2019) The impact of subthalamic deep brain stimulation on sleep and other non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 64:138–144PubMedCrossRef
17.
go back to reference Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–1366PubMedPubMedCentralCrossRef Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–1366PubMedPubMedCentralCrossRef
18.
go back to reference Eisenstein SA, Koller JM, Black KD, Campbell MC, Lugar HM, Ushe M et al (2014) Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Ann Neurol 76(2):279–295PubMedPubMedCentralCrossRef Eisenstein SA, Koller JM, Black KD, Campbell MC, Lugar HM, Ushe M et al (2014) Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Ann Neurol 76(2):279–295PubMedPubMedCentralCrossRef
19.
go back to reference Fifel K, Vezoli J, Dzahini K, Claustrat B, Leviel V, Kennedy H et al (2014) Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PLoS One 9(1):e86240PubMedPubMedCentralCrossRef Fifel K, Vezoli J, Dzahini K, Claustrat B, Leviel V, Kennedy H et al (2014) Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human primates. PLoS One 9(1):e86240PubMedPubMedCentralCrossRef
20.
go back to reference Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1):313–327PubMedCrossRef Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1):313–327PubMedCrossRef
21.
go back to reference Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Peralta CM, Müller J et al (2007) Video analysis of motor events in REM sleep behavior disorder. Mov Disord 22(10):1464–1470PubMedCrossRef Frauscher B, Gschliesser V, Brandauer E, Ulmer H, Peralta CM, Müller J et al (2007) Video analysis of motor events in REM sleep behavior disorder. Mov Disord 22(10):1464–1470PubMedCrossRef
22.
go back to reference Gagnon JF, Postuma RB, Mazza S, Doyon J, Montplaisir J (2006) Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurol 5(5):424–432PubMedCrossRef Gagnon JF, Postuma RB, Mazza S, Doyon J, Montplaisir J (2006) Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurol 5(5):424–432PubMedCrossRef
23.
go back to reference Georgiev D, Mencinger M, Rajnar R, Mušič P, Benedičič M, Flisar D et al (2021) Long-term effect of bilateral STN-DBS on non-motor symptoms in Parkinson’s disease: a four-year observational, prospective study. Parkinsonism Relat Disord 89:13–16PubMedCrossRef Georgiev D, Mencinger M, Rajnar R, Mušič P, Benedičič M, Flisar D et al (2021) Long-term effect of bilateral STN-DBS on non-motor symptoms in Parkinson’s disease: a four-year observational, prospective study. Parkinsonism Relat Disord 89:13–16PubMedCrossRef
24.
go back to reference Horn A, Kühn AA (2015) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135PubMedCrossRef Horn A, Kühn AA (2015) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135PubMedCrossRef
25.
go back to reference Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S et al (2019) Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184:293–316PubMedCrossRef Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S et al (2019) Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184:293–316PubMedCrossRef
26.
go back to reference Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q et al (2017) Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 82(1):67–78PubMedPubMedCentralCrossRef Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q et al (2017) Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 82(1):67–78PubMedPubMedCentralCrossRef
27.
go back to reference Horn A, Wenzel G, Irmen F, Huebl J, Li N, Neumann WJ et al (2019) Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142(10):3129–3143PubMedCrossRef Horn A, Wenzel G, Irmen F, Huebl J, Li N, Neumann WJ et al (2019) Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142(10):3129–3143PubMedCrossRef
28.
go back to reference Horsager J, Andersen KB, Knudsen K, Skjaerbaek C, Fedorova TD, Okkels, et al (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143(10):3077–3088PubMedCrossRef Horsager J, Andersen KB, Knudsen K, Skjaerbaek C, Fedorova TD, Okkels, et al (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143(10):3077–3088PubMedCrossRef
29.
go back to reference Husch A, Petersen MV, Gemmar P, Goncalves J, Hertel F (2017) PaCER - a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. Neuroimage Clin 17:80–89PubMedPubMedCentralCrossRef Husch A, Petersen MV, Gemmar P, Goncalves J, Hertel F (2017) PaCER - a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. Neuroimage Clin 17:80–89PubMedPubMedCentralCrossRef
30.
go back to reference Jost ST, Ray Chaudhuri K, Ashkan K, Loehrer PA, Silverdale M, Rizos A (2021) Subthalamic stimulation improves quality of sleep in Parkinson disease: a 36-month controlled study. J Parkinsons Dis 11(1):323–335PubMedCrossRef Jost ST, Ray Chaudhuri K, Ashkan K, Loehrer PA, Silverdale M, Rizos A (2021) Subthalamic stimulation improves quality of sleep in Parkinson disease: a 36-month controlled study. J Parkinsons Dis 11(1):323–335PubMedCrossRef
31.
go back to reference Kalaitzakis ME, Gentleman SM, Pearce RK (2013) Disturbed sleep in Parkinson’s disease: anatomical and pathological correlates. Neuropathol Appl Neurobiol 39(6):644–653PubMedCrossRef Kalaitzakis ME, Gentleman SM, Pearce RK (2013) Disturbed sleep in Parkinson’s disease: anatomical and pathological correlates. Neuropathol Appl Neurobiol 39(6):644–653PubMedCrossRef
32.
go back to reference Kim YE, Jeon BS, Paek SH, Yun JY, Yang HJ, Kim HJ et al (2015) Rapid eye movement sleep behavior disorder after bilateral subthalamic stimulation in Parkinson’s disease. J Clin Neurosci 22(2):315–319PubMedCrossRef Kim YE, Jeon BS, Paek SH, Yun JY, Yang HJ, Kim HJ et al (2015) Rapid eye movement sleep behavior disorder after bilateral subthalamic stimulation in Parkinson’s disease. J Clin Neurosci 22(2):315–319PubMedCrossRef
33.
go back to reference Kurtis MM, Rajah T, Delgado LF, Dafsari HS (2017) The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence. NPJ Parkinsons Dis 3:16024PubMedPubMedCentralCrossRef Kurtis MM, Rajah T, Delgado LF, Dafsari HS (2017) The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence. NPJ Parkinsons Dis 3:16024PubMedPubMedCentralCrossRef
34.
go back to reference Lai Y, Song Y, Huang P, Wang T, Wang L, Pan Y et al (2021) Subthalamic stimulation for camptocormia in Parkinson’s disease: association of volume of tissue activated and structural connectivity with clinical effectiveness. J Parkinsons Dis 11(1):199–210PubMedPubMedCentralCrossRef Lai Y, Song Y, Huang P, Wang T, Wang L, Pan Y et al (2021) Subthalamic stimulation for camptocormia in Parkinson’s disease: association of volume of tissue activated and structural connectivity with clinical effectiveness. J Parkinsons Dis 11(1):199–210PubMedPubMedCentralCrossRef
35.
go back to reference Mahowald MW, Schenck CH (2018) The “when” and “where” of α-synucleinopathies: insights from REM sleep behavior disorder. Neurology 91(10):435–436PubMedCrossRef Mahowald MW, Schenck CH (2018) The “when” and “where” of α-synucleinopathies: insights from REM sleep behavior disorder. Neurology 91(10):435–436PubMedCrossRef
36.
go back to reference Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C et al (2018) The Parkinson’s progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann Clin Transl Neurol 5(12):1460–1477PubMedPubMedCentralCrossRef Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C et al (2018) The Parkinson’s progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann Clin Transl Neurol 5(12):1460–1477PubMedPubMedCentralCrossRef
37.
go back to reference Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L et al (2021) New frontiers for deep brain stimulation: directionality, sensing technologies, remote programming, robotic stereotactic assistance, asleep procedures, and connectomics. Front Neurol 12:694747PubMedPubMedCentralCrossRef Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L et al (2021) New frontiers for deep brain stimulation: directionality, sensing technologies, remote programming, robotic stereotactic assistance, asleep procedures, and connectomics. Front Neurol 12:694747PubMedPubMedCentralCrossRef
38.
go back to reference Neudorfer C, Butenko K, Oxenford S, Rajamani N, Achtzehn J, Goede L (2023) Lead-DBS v3.0: mapping deep brain stimulation effects to local anatomy and global networks. NeuroImage 268:119862PubMedCrossRef Neudorfer C, Butenko K, Oxenford S, Rajamani N, Achtzehn J, Goede L (2023) Lead-DBS v3.0: mapping deep brain stimulation effects to local anatomy and global networks. NeuroImage 268:119862PubMedCrossRef
39.
go back to reference Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3(8):591–605PubMedCrossRef Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3(8):591–605PubMedCrossRef
40.
go back to reference Peto V, Jenkinson C, Fitzpatrick R, Greenhall R (1995) The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual Life Res 4(3):241–248PubMedCrossRef Peto V, Jenkinson C, Fitzpatrick R, Greenhall R (1995) The development and validation of a short measure of functioning and well being for individuals with Parkinson’s disease. Qual Life Res 4(3):241–248PubMedCrossRef
41.
go back to reference Petry-Schmelzer JN, Krause M, Dembek TA, Horn A, Evans J, Ashkan K et al (2019) Non-motor outcomes depend on location of neurostimulation in Parkinson’s disease. Brain 142(11):3592–3604PubMedCrossRef Petry-Schmelzer JN, Krause M, Dembek TA, Horn A, Evans J, Ashkan K et al (2019) Non-motor outcomes depend on location of neurostimulation in Parkinson’s disease. Brain 142(11):3592–3604PubMedCrossRef
42.
go back to reference Sasikumar S, Cohn M, Harmsen IE, Loh A, Cho SS, Sáenz-Farret M et al (2022) Single-trajectory multiple-target deep brain stimulation for parkinsonian mobility and cognition. Mov Disord 37(3):635–640PubMedCrossRef Sasikumar S, Cohn M, Harmsen IE, Loh A, Cho SS, Sáenz-Farret M et al (2022) Single-trajectory multiple-target deep brain stimulation for parkinsonian mobility and cognition. Mov Disord 37(3):635–640PubMedCrossRef
43.
go back to reference Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146(5):1387–1394PubMedCrossRef Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146(5):1387–1394PubMedCrossRef
44.
go back to reference Schönecker T, Kupsch A, Kühn AA, Schneider GH, Hoffmann KT (2009) Automated optimization of subcortical cerebral MR imaging-atlas coregistration for improved postoperative electrode localization in deep brain stimulation. AJNR Am J Neuroradiol 30(10):1914–1921PubMedPubMedCentralCrossRef Schönecker T, Kupsch A, Kühn AA, Schneider GH, Hoffmann KT (2009) Automated optimization of subcortical cerebral MR imaging-atlas coregistration for improved postoperative electrode localization in deep brain stimulation. AJNR Am J Neuroradiol 30(10):1914–1921PubMedPubMedCentralCrossRef
45.
go back to reference Schwartz S, Maquet P (2002) Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn Sci 6(1):23–30PubMedCrossRef Schwartz S, Maquet P (2002) Sleep imaging and the neuro-psychological assessment of dreams. Trends Cogn Sci 6(1):23–30PubMedCrossRef
46.
go back to reference Sharma VD, Sengupta S, Chitnis S, Amara AW (2018) Deep brain stimulation and sleep-wake disturbances in parkinson disease: a review. Front Neurol 9:697PubMedPubMedCentralCrossRef Sharma VD, Sengupta S, Chitnis S, Amara AW (2018) Deep brain stimulation and sleep-wake disturbances in parkinson disease: a review. Front Neurol 9:697PubMedPubMedCentralCrossRef
47.
go back to reference Shen SS, Shen Y, Xiong KP, Chen J, Mao CJ, Huang JY et al (2014) Validation study of REM sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK) in east China. Sleep Med 15(8):952–958PubMedCrossRef Shen SS, Shen Y, Xiong KP, Chen J, Mao CJ, Huang JY et al (2014) Validation study of REM sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK) in east China. Sleep Med 15(8):952–958PubMedCrossRef
48.
go back to reference Shen C, Wang J, Ma G, Zhu Q, He H, Ding Q et al (2016) Waking-hour cerebral activations in nightmare disorder: a resting-state functional magnetic resonance imaging study. Psychiatry Clin Neurosci 70(12):573–581PubMedCrossRef Shen C, Wang J, Ma G, Zhu Q, He H, Ding Q et al (2016) Waking-hour cerebral activations in nightmare disorder: a resting-state functional magnetic resonance imaging study. Psychiatry Clin Neurosci 70(12):573–581PubMedCrossRef
49.
go back to reference Simuni T, Sethi K (2008) Nonmotor manifestations of Parkinson’s disease. Ann Neurol 64(Suppl 2):S65–S80PubMed Simuni T, Sethi K (2008) Nonmotor manifestations of Parkinson’s disease. Ann Neurol 64(Suppl 2):S65–S80PubMed
50.
go back to reference Strelow JN, Baldermann JC, Dembek TA, Jergas H, Petry-Schmelzer JN, Schott F et al (2022) Structural connectivity of subthalamic nucleus stimulation for improving freezing of gait. J Parkinsons Dis 12(4):1251–1267PubMedCrossRef Strelow JN, Baldermann JC, Dembek TA, Jergas H, Petry-Schmelzer JN, Schott F et al (2022) Structural connectivity of subthalamic nucleus stimulation for improving freezing of gait. J Parkinsons Dis 12(4):1251–1267PubMedCrossRef
51.
go back to reference Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline JB (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35(1):105–120PubMedCrossRef Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline JB (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35(1):105–120PubMedCrossRef
52.
go back to reference Thompson JA, Tekriwal A, Felsen G, Ozturk M, Telkes I, Wu J et al (2018) Sleep patterns in Parkinson’s disease: direct recordings from the subthalamic nucleus. J Neurol Neurosurg Psychiatry 89(1):95–104PubMedCrossRef Thompson JA, Tekriwal A, Felsen G, Ozturk M, Telkes I, Wu J et al (2018) Sleep patterns in Parkinson’s disease: direct recordings from the subthalamic nucleus. J Neurol Neurosurg Psychiatry 89(1):95–104PubMedCrossRef
53.
go back to reference Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653PubMedCrossRef Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653PubMedCrossRef
54.
go back to reference Torun NA, Senel GB, Gunduz A, Karadeniz D, Kiziltan G, Ertan S et al (2020) Sleep parameters associated with long-term outcome following subthalamic deep brain stimulation in Parkinson’s disease. Rev Neurol (Paris) 176(4):277–284PubMedCrossRef Torun NA, Senel GB, Gunduz A, Karadeniz D, Kiziltan G, Ertan S et al (2020) Sleep parameters associated with long-term outcome following subthalamic deep brain stimulation in Parkinson’s disease. Rev Neurol (Paris) 176(4):277–284PubMedCrossRef
55.
go back to reference Wang Q, Akram H, Muthuraman M, Gonzalez-Escamilla G, Sheth SA et al (2021) Normative vs. patient-specific brain connectivity in deep brain stimulation. Neuroimage 224:117307PubMedCrossRef Wang Q, Akram H, Muthuraman M, Gonzalez-Escamilla G, Sheth SA et al (2021) Normative vs. patient-specific brain connectivity in deep brain stimulation. Neuroimage 224:117307PubMedCrossRef
56.
go back to reference Yin Z, Bai Y, Guan B, Jiang Y, Wang Z, Meng F (2021) A quantitative analysis of the effect of bilateral subthalamic nucleus-deep brain stimulation on subjective and objective sleep parameters in Parkinson’s disease. Sleep Med 79:195–204PubMedCrossRef Yin Z, Bai Y, Guan B, Jiang Y, Wang Z, Meng F (2021) A quantitative analysis of the effect of bilateral subthalamic nucleus-deep brain stimulation on subjective and objective sleep parameters in Parkinson’s disease. Sleep Med 79:195–204PubMedCrossRef
57.
go back to reference Zhang X, Xie A (2019) Improvement of subthalamic nucleus deep brain stimulation in sleeping symptoms in Parkinson’s disease: a meta-analysis. Parkinsons Dis 2019:6280896PubMedPubMedCentral Zhang X, Xie A (2019) Improvement of subthalamic nucleus deep brain stimulation in sleeping symptoms in Parkinson’s disease: a meta-analysis. Parkinsons Dis 2019:6280896PubMedPubMedCentral
58.
go back to reference Zhao GR, Cheng YF, Feng KK, Wang M, Wang YG, Wu YZ et al (2022) Clinical study of intraoperative microelectrode recordings during awake and asleep subthalamic nucleus deep brain stimulation for Parkinson’s Disease: a retrospective cohort study. Brain Sci 12(11):1469PubMedPubMedCentralCrossRef Zhao GR, Cheng YF, Feng KK, Wang M, Wang YG, Wu YZ et al (2022) Clinical study of intraoperative microelectrode recordings during awake and asleep subthalamic nucleus deep brain stimulation for Parkinson’s Disease: a retrospective cohort study. Brain Sci 12(11):1469PubMedPubMedCentralCrossRef
Metadata
Title
Exploring the network effects of deep brain stimulation for rapid eye movement sleep behavior disorder in Parkinson’s disease
Authors
Guangrui Zhao
Yifeng Cheng
Min Wang
Yuzhang Wu
Jingtao Yan
Keke Feng
Shaoya Yin
Publication date
28-09-2023
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 11/2023
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-023-05806-0

Other articles of this Issue 11/2023

Acta Neurochirurgica 11/2023 Go to the issue