Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Pancreatic Cancer | Primary Research

IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma

Authors: Rong Wei, Guoye Qi, Zixin Zeng, Ningning Shen, Ziyue Wang, Honghong Shen, Lifang Gao, Chen Song, Wenxia Ma, Chen Wang

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Pancreatic cancer has been a threateningly lethal malignant tumor worldwide. Despite the promising survival improvement in other cancer types attributing to the fast development of molecular precise medicine, the current treatment situation of pancreatic cancer is still woefully challenging since its limited response to neither traditional radiotherapy and chemotherapy nor emerging immunotherapy. The study is to explore potential responsible genes during the development of pancreatic cancer, thus identifying promising gene indicators and probable drug targets.

Methods

Different bioinformatic analysis were used to interpret the genetic events in pancreatic cancer development. Firstly, based on multiple cDNA microarray profiles from Gene Expression Omnibus (GEO) database, the genes with differently mRNA expression in cancer comparing to normal pancreatic tissues were identified, followed by being grouped based on the difference level. Then, GO and KEGG were performed to separately interpret the multiple groups of genes, and further Kaplan–Meier survival and Cox Regression analysis assisted us to scale down the candidate genes and select the potential key genes. Further, the basic physicochemical properties, the association with immune cells infiltration, mutation or other types variations besides expression gap in pancreatic cancer comparing to normal tissues of the selected key genes were analyzed. Moreover, the aberrant changed expression of key genes was validated by immunohistochemistry (IHC) experiment using local hospital tissue microarray samples and the clinical significance was explored based on TCGA clinical data.

Results

Firstly, a total of 22,491 genes were identified to express differently in cancer comparing to normal pancreatic tissues based on 5 cDNA expression profiles, and the difference of 487/22491 genes was over eightfold, and 55/487 genes were shared in multi profiles. Moreover, after genes interpretation which showed the > eightfold genes were mainly related to extracellular matrix structural constituent regulation, Kaplan–Meier survival and Cox-regression analysis were performed continually, and the result indicated that of the 55 extracellular locating genes, GPRC5A and IMUP were the only two independent prognostic indicators of pancreatic cancer. Further, detailed information of IMUP and GPRC5A were analyzed including their physicochemical properties, their expression and variation ratio and their association with immune cells infiltration in cancer, as well as the probable signaling pathways of genes regulation on pancreatic cancer development. Lastly, local IHC experiment performed on PAAD tissue array which was produced with 62 local hospital patients samples confirmed that GPRC5A and IMUP were abnormally up-regulated in pancreatic cancer, which directly associated with worse patients both overall (OS) and recurrence free survival (RFS).

Conclusions

Using multiple bioinformatic analysis as well as local hospital samples validation, we revealed that GPRC5A and IMUP expression were abnormally up-regulated in pancreatic cancer which associated statistical significantly with patients survival, and the genes’ biological features and clinical significance were also explored. However, more detailed experiments and clinical trials are obligatory to support their further potential drug-target role in clinical medical treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Atay S. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ. 2020;8:e10141.CrossRef Atay S. Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ. 2020;8:e10141.CrossRef
2.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRef
3.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRef
4.
go back to reference Jiang H, Hegde S, DeNardo DG. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother. 2017;66(8):1037–48.CrossRef Jiang H, Hegde S, DeNardo DG. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother. 2017;66(8):1037–48.CrossRef
5.
go back to reference Qian X, Jiang C, Shen S, Zou X. GPRC5A: An emerging prognostic biomarker for predicting malignancy of Pancreatic Cancer based on bioinformatics analysis. J Cancer. 2021;12(7):2010–22.CrossRef Qian X, Jiang C, Shen S, Zou X. GPRC5A: An emerging prognostic biomarker for predicting malignancy of Pancreatic Cancer based on bioinformatics analysis. J Cancer. 2021;12(7):2010–22.CrossRef
6.
go back to reference Tang K, Lu W, Qin W, Wu Y. Neoadjuvant therapy for patients with borderline resectable pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. Pancreatology. 2016;16(1):28–37.CrossRef Tang K, Lu W, Qin W, Wu Y. Neoadjuvant therapy for patients with borderline resectable pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. Pancreatology. 2016;16(1):28–37.CrossRef
7.
go back to reference La Torre M, Nigri G, Cavallini M, Mercantini P, Ziparo V, Ramacciato G. The glasgow prognostic score as a predictor of survival in patients with potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol. 2012;19(9):2917–23.CrossRef La Torre M, Nigri G, Cavallini M, Mercantini P, Ziparo V, Ramacciato G. The glasgow prognostic score as a predictor of survival in patients with potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol. 2012;19(9):2917–23.CrossRef
8.
go back to reference Wood LD, Hruban RH. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 2012;18(6):492–501.CrossRef Wood LD, Hruban RH. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 2012;18(6):492–501.CrossRef
9.
10.
go back to reference Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.CrossRef Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.CrossRef
11.
go back to reference Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer Genome Atlas Research N: Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017;32(2):185-203 e113.CrossRef Cancer Genome Atlas Research Network. Electronic address aadhe, Cancer Genome Atlas Research N: Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017;32(2):185-203 e113.CrossRef
12.
go back to reference Abt TD, Souffriau B, Foulquie-Moreno MR, Duitama J, Thevelein JM. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait. Microb Cell. 2016;3(4):159–75.CrossRef Abt TD, Souffriau B, Foulquie-Moreno MR, Duitama J, Thevelein JM. Genomic saturation mutagenesis and polygenic analysis identify novel yeast genes affecting ethyl acetate production, a non-selectable polygenic trait. Microb Cell. 2016;3(4):159–75.CrossRef
13.
go back to reference Francki MG, Hayton S, Gummer JP, Rawlinson C, Trengove RD. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain. Plant Biotechnol J. 2016;14(2):649–60.CrossRef Francki MG, Hayton S, Gummer JP, Rawlinson C, Trengove RD. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain. Plant Biotechnol J. 2016;14(2):649–60.CrossRef
14.
go back to reference McCormick F. Sticking it to KRAS: covalent inhibitors enter the clinic. Cancer Cell. 2020;37(1):3–4.CrossRef McCormick F. Sticking it to KRAS: covalent inhibitors enter the clinic. Cancer Cell. 2020;37(1):3–4.CrossRef
15.
go back to reference Lanman BA, Allen JR, Allen JG, Amegadzie AK, Ashton KS, Booker SK, Chen JJ, Chen N, Frohn MJ, Goodman G, et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63(1):52–65.CrossRef Lanman BA, Allen JR, Allen JG, Amegadzie AK, Ashton KS, Booker SK, Chen JJ, Chen N, Frohn MJ, Goodman G, et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63(1):52–65.CrossRef
16.
go back to reference Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–23.CrossRef Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–23.CrossRef
17.
go back to reference Crowley F, Park W, O’Reilly EM. Targeting DNA damage repair pathways in pancreas cancer. Cancer Metastasis Rev. 2021;40(3):891–908.CrossRef Crowley F, Park W, O’Reilly EM. Targeting DNA damage repair pathways in pancreas cancer. Cancer Metastasis Rev. 2021;40(3):891–908.CrossRef
18.
go back to reference Javle M, Shacham-Shmueli E, Xiao L, Varadhachary G, Halpern N, Fogelman D, Boursi B, Uruba S, Margalit O, Wolff RA, et al. Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: findings from 2 phase 2 nonrandomized clinical trials. JAMA Oncol. 2021;7(5):693–9.CrossRef Javle M, Shacham-Shmueli E, Xiao L, Varadhachary G, Halpern N, Fogelman D, Boursi B, Uruba S, Margalit O, Wolff RA, et al. Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: findings from 2 phase 2 nonrandomized clinical trials. JAMA Oncol. 2021;7(5):693–9.CrossRef
19.
go back to reference Parsels LA, Engelke CG, Parsels J, Flanagan SA, Zhang Q, Tanska D, Wahl DR, Canman CE, Lawrence TS, Morgan MA. Combinatorial efficacy of olaparib with radiation and ATR inhibitor requires PARP1 protein in homologous recombination-proficient pancreatic cancer. Mol Cancer Ther. 2021;20(2):263–73.CrossRef Parsels LA, Engelke CG, Parsels J, Flanagan SA, Zhang Q, Tanska D, Wahl DR, Canman CE, Lawrence TS, Morgan MA. Combinatorial efficacy of olaparib with radiation and ATR inhibitor requires PARP1 protein in homologous recombination-proficient pancreatic cancer. Mol Cancer Ther. 2021;20(2):263–73.CrossRef
20.
go back to reference Hilmi M, Neuzillet C. New drug approval: Olaparib - pancreatic cancer with BRCA germline mutation. Bull Cancer. 2020;107(10):961–2.CrossRef Hilmi M, Neuzillet C. New drug approval: Olaparib - pancreatic cancer with BRCA germline mutation. Bull Cancer. 2020;107(10):961–2.CrossRef
38.
go back to reference Liu B, Yang H, Pilarsky C, Weber GF. The effect of GPRC5a on the proliferation, migration ability, chemotherapy resistance, and phosphorylation of GSK-3beta in pancreatic cancer. Int J Mol Sci. 2018;19(7):1870.CrossRef Liu B, Yang H, Pilarsky C, Weber GF. The effect of GPRC5a on the proliferation, migration ability, chemotherapy resistance, and phosphorylation of GSK-3beta in pancreatic cancer. Int J Mol Sci. 2018;19(7):1870.CrossRef
39.
go back to reference Kim JK, An HJ, Kim NK, Ahn JY, Kim KS, Kang YJ, Ko JJ, Oh D, Lee C, Kim SJ, et al. IMUP-1 and IMUP-2 genes are up-regulated in human ovarian epithelial tumors. Anticancer Res. 2003;23(6C):4709–13.PubMed Kim JK, An HJ, Kim NK, Ahn JY, Kim KS, Kang YJ, Ko JJ, Oh D, Lee C, Kim SJ, et al. IMUP-1 and IMUP-2 genes are up-regulated in human ovarian epithelial tumors. Anticancer Res. 2003;23(6C):4709–13.PubMed
40.
go back to reference Kim SJ, An HJ, Kim HJ, Jungs HM, Lee S, Ko JJ, Kim IH, Sakuragi N, Kim JK. Imup-1 and imup-2 overexpression in endometrial carcinoma in Korean and Japanese populations. Anticancer Res. 2008;28(2A):865–71.PubMed Kim SJ, An HJ, Kim HJ, Jungs HM, Lee S, Ko JJ, Kim IH, Sakuragi N, Kim JK. Imup-1 and imup-2 overexpression in endometrial carcinoma in Korean and Japanese populations. Anticancer Res. 2008;28(2A):865–71.PubMed
41.
go back to reference Jeon SY, Lee HJ, Park JM, Jung HM, Yoo JK, Lee HJ, Lee JS, Cha DH, Kim JK, Kim GJ. Increased immortalization-upregulated protein 2 (IMUP-2) by hypoxia induces apoptosis of the trophoblast and pre-eclampsia. J Cell Biochem. 2010;110(2):522–30.PubMed Jeon SY, Lee HJ, Park JM, Jung HM, Yoo JK, Lee HJ, Lee JS, Cha DH, Kim JK, Kim GJ. Increased immortalization-upregulated protein 2 (IMUP-2) by hypoxia induces apoptosis of the trophoblast and pre-eclampsia. J Cell Biochem. 2010;110(2):522–30.PubMed
42.
go back to reference Zhang L, Li L, Gao G, Wei G, Zheng Y, Wang C, Gao N, Zhao Y, Deng J, Chen H, et al. Elevation of GPRC5A expression in colorectal cancer promotes tumor progression through VNN-1 induced oxidative stress. Int J Cancer. 2017;140(12):2734–47.CrossRef Zhang L, Li L, Gao G, Wei G, Zheng Y, Wang C, Gao N, Zhao Y, Deng J, Chen H, et al. Elevation of GPRC5A expression in colorectal cancer promotes tumor progression through VNN-1 induced oxidative stress. Int J Cancer. 2017;140(12):2734–47.CrossRef
43.
go back to reference Liao Y, Song H, Xu D, Jiao H, Yao F, Liu J, Wu Y, Zhong S, Yin H, Liu S, et al. Gprc5a-deficiency confers susceptibility to endotoxin-induced acute lung injury via NF-kappaB pathway. Cell Cycle. 2015;14(9):1403–12.CrossRef Liao Y, Song H, Xu D, Jiao H, Yao F, Liu J, Wu Y, Zhong S, Yin H, Liu S, et al. Gprc5a-deficiency confers susceptibility to endotoxin-induced acute lung injury via NF-kappaB pathway. Cell Cycle. 2015;14(9):1403–12.CrossRef
44.
go back to reference Deng J, Fujimoto J, Ye XF, Men TY, Van Pelt CS, Chen YL, Lin XF, Kadara H, Tao Q, Lotan D, et al. Knockout of the tumor suppressor gene Gprc5a in mice leads to NF-kappaB activation in airway epithelium and promotes lung inflammation and tumorigenesis. Cancer Prev Res (Phila). 2010;3(4):424–37.CrossRef Deng J, Fujimoto J, Ye XF, Men TY, Van Pelt CS, Chen YL, Lin XF, Kadara H, Tao Q, Lotan D, et al. Knockout of the tumor suppressor gene Gprc5a in mice leads to NF-kappaB activation in airway epithelium and promotes lung inflammation and tumorigenesis. Cancer Prev Res (Phila). 2010;3(4):424–37.CrossRef
45.
go back to reference Jing B, Wang T, Sun B, Xu J, Xu D, Liao Y, Song H, Guo W, Li K, Hu M, et al. IL6/STAT3 signaling orchestrates premetastatic niche formation and immunosuppressive traits in lung. Cancer Res. 2020;80(4):784–97.CrossRef Jing B, Wang T, Sun B, Xu J, Xu D, Liao Y, Song H, Guo W, Li K, Hu M, et al. IL6/STAT3 signaling orchestrates premetastatic niche formation and immunosuppressive traits in lung. Cancer Res. 2020;80(4):784–97.CrossRef
46.
go back to reference Liu S, Ye D, Wang T, Guo W, Song H, Liao Y, Xu D, Zhu H, Zhang Z, Deng J. Repression of GPRC5A is associated with activated STAT3, which contributes to tumor progression of head and neck squamous cell carcinoma. Cancer Cell Int. 2017;17:34.CrossRef Liu S, Ye D, Wang T, Guo W, Song H, Liao Y, Xu D, Zhu H, Zhang Z, Deng J. Repression of GPRC5A is associated with activated STAT3, which contributes to tumor progression of head and neck squamous cell carcinoma. Cancer Cell Int. 2017;17:34.CrossRef
47.
go back to reference Thakur R, Singh PK. Molecular subtypes of pancreatic cancer: a proteomics approach. Clin Cancer Res. 2021;27(12):3272–4.CrossRef Thakur R, Singh PK. Molecular subtypes of pancreatic cancer: a proteomics approach. Clin Cancer Res. 2021;27(12):3272–4.CrossRef
48.
go back to reference Collisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20.CrossRef Collisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20.CrossRef
49.
go back to reference Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.CrossRef Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.CrossRef
50.
go back to reference Jiang X, Xu X, Wu M, Guan Z, Su X, Chen S, Wang H, Teng L. GPRC5A: an emerging biomarker in human cancer. Biomed Res Int. 2018;2018:1823726.PubMedPubMedCentral Jiang X, Xu X, Wu M, Guan Z, Su X, Chen S, Wang H, Teng L. GPRC5A: an emerging biomarker in human cancer. Biomed Res Int. 2018;2018:1823726.PubMedPubMedCentral
51.
go back to reference Bulanova DR, Akimov YA, Rokka A, Laajala TD, Aittokallio T, Kouvonen P, Pellinen T, Kuznetsov SG. Orphan G protein-coupled receptor GPRC5A modulates integrin beta1-mediated epithelial cell adhesion. Cell Adh Migr. 2017;11(5–6):434–46.CrossRef Bulanova DR, Akimov YA, Rokka A, Laajala TD, Aittokallio T, Kouvonen P, Pellinen T, Kuznetsov SG. Orphan G protein-coupled receptor GPRC5A modulates integrin beta1-mediated epithelial cell adhesion. Cell Adh Migr. 2017;11(5–6):434–46.CrossRef
Metadata
Title
IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma
Authors
Rong Wei
Guoye Qi
Zixin Zeng
Ningning Shen
Ziyue Wang
Honghong Shen
Lifang Gao
Chen Song
Wenxia Ma
Chen Wang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02324-w

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine