Skip to main content
Top
Published in: Discover Oncology 1/2023

Open Access 01-12-2023 | Pancreatic Cancer | Research

ABHD17C, a metabolic and immune-related gene signature, predicts prognosis and anti-PD1 therapy response in pancreatic cancer

Authors: Weihao Zhang, Yongjie Xie, Xin Yu, Changfu Liu, Wei Gao, Wenge Xing, Tongguo Si

Published in: Discover Oncology | Issue 1/2023

Login to get access

Abstract

Background

PDAC is a highly malignant and immune-suppressive tumor, posing great challenges to therapy.

Methods

In this study, we utilized multi-center RNA sequencing and non-negative matrix factorization clustering (NMF) to identify a group of metabolism-related genes that could effectively predict the immune status and survival (both disease-free survival and overall survival) of pancreatic ductal adenocarcinoma (PDAC) patients. Subsequently, through the integration of single cell sequencing and our center's prospective and retrospective cohort studies, we identified ABHD17C, which possesses metabolic and immune-related characteristics, as a potential biomarker for predicting the prognosis and response to anti-PD1 therapy in PDAC. We then demonstrated how ABHD17C participates in the regulation of the immune microenvironment through in vitro glycolytic function experiments and in vivo animal experiments.

Results

Through screening for pancreatic cancer metabolic markers and immune status, we identified a critical molecule that inhibits pancreatic cancer survival and prognosis. Further flow cytometry analysis confirmed that ABHD17C is involved in the inhibition of the formation of the immune environment in PDAC. Our research found that ABHD17C participates in the metabolic process of tumor cells in in vitro and in vivo experiments, reshaping the immunosuppressive microenvironment by downregulating the pH value. Furthermore, through LDHA inhibition experiments, we demonstrated that ABHD17C significantly enhances glycolysis and inhibits the formation of the immune suppressive environment. In in vivo experiments, we also validated that ABHD17C overexpression significantly mediates resistance to anti-PD1 therapy and promotes the progression of pancreatic cancer.

Conclusion

Therefore, ABHD17C may be a novel and effective biomarker for predicting the metabolic status and immune condition of PDAC patients, and provide a potential predictive strategy for anti-PD1 therapy in PDAC.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Collisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20.CrossRefPubMed Collisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2019;16(4):207–20.CrossRefPubMed
4.
go back to reference Boland AJ, O’Kane AA, Buick R, Longley DB, Scott CJ. Antibody therapy in pancreatic cancer: mAb-ye we’re onto something? Biochim Biophys Acta Rev Cancer. 2021;1876(1): 188557.CrossRefPubMed Boland AJ, O’Kane AA, Buick R, Longley DB, Scott CJ. Antibody therapy in pancreatic cancer: mAb-ye we’re onto something? Biochim Biophys Acta Rev Cancer. 2021;1876(1): 188557.CrossRefPubMed
5.
go back to reference Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15(6):333–48.CrossRefPubMed Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15(6):333–48.CrossRefPubMed
7.
go back to reference Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502.CrossRefPubMedPubMedCentral Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502.CrossRefPubMedPubMedCentral
8.
go back to reference De Dosso S, Siebenhuner AR, Winder T, Meisel A, Fritsch R, Astaras C, et al. Treatment landscape of metastatic pancreatic cancer. Cancer Treat Rev. 2021;96: 102180.CrossRefPubMed De Dosso S, Siebenhuner AR, Winder T, Meisel A, Fritsch R, Astaras C, et al. Treatment landscape of metastatic pancreatic cancer. Cancer Treat Rev. 2021;96: 102180.CrossRefPubMed
9.
go back to reference Meacham CE, DeVilbiss AW, Morrison SJ. Metabolic regulation of somatic stem cells in vivo. Nat Rev Mol Cell Biol. 2022;23(6):428–43.CrossRefPubMed Meacham CE, DeVilbiss AW, Morrison SJ. Metabolic regulation of somatic stem cells in vivo. Nat Rev Mol Cell Biol. 2022;23(6):428–43.CrossRefPubMed
10.
go back to reference Wegner A, Meiser J, Weindl D, Hiller K. How metabolites modulate metabolic flux. Curr Opin Biotechnol. 2015;34:16–22.CrossRefPubMed Wegner A, Meiser J, Weindl D, Hiller K. How metabolites modulate metabolic flux. Curr Opin Biotechnol. 2015;34:16–22.CrossRefPubMed
11.
go back to reference Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.CrossRefPubMed Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.CrossRefPubMed
12.
go back to reference Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022;86(Pt 3):1216–30.CrossRefPubMed Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022;86(Pt 3):1216–30.CrossRefPubMed
13.
go back to reference Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.CrossRefPubMed Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.CrossRefPubMed
17.
go back to reference Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov. 2019;18(9):669–88.CrossRefPubMed Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov. 2019;18(9):669–88.CrossRefPubMed
20.
go back to reference Halbrook CJ, Lyssiotis CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell. 2017;31(1):5–19.CrossRefPubMed Halbrook CJ, Lyssiotis CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell. 2017;31(1):5–19.CrossRefPubMed
21.
go back to reference Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer. 2020;19(1):50.CrossRefPubMedPubMedCentral Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer. 2020;19(1):50.CrossRefPubMedPubMedCentral
22.
24.
go back to reference Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.CrossRefPubMed Martinez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.CrossRefPubMed
25.
go back to reference Lin DT, Conibear E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. Elife. 2015;4: e11306.CrossRefPubMedPubMedCentral Lin DT, Conibear E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. Elife. 2015;4: e11306.CrossRefPubMedPubMedCentral
26.
go back to reference Del Rivero Morfin PJ, Ben-Johny M. Cutting out the fat: site-specific deacylation of an ion channel. J Biol Chem. 2020;295(49):16497–8.CrossRefPubMed Del Rivero Morfin PJ, Ben-Johny M. Cutting out the fat: site-specific deacylation of an ion channel. J Biol Chem. 2020;295(49):16497–8.CrossRefPubMed
27.
go back to reference Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 2022;87:184–95.CrossRefPubMed Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 2022;87:184–95.CrossRefPubMed
28.
go back to reference Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371(6527):405–10.CrossRefPubMedPubMedCentral Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371(6527):405–10.CrossRefPubMedPubMedCentral
29.
go back to reference Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, et al. PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett. 2017;407:57–65.CrossRefPubMed Feng M, Xiong G, Cao Z, Yang G, Zheng S, Song X, et al. PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett. 2017;407:57–65.CrossRefPubMed
30.
go back to reference Kabacaoglu D, Ciecielski KJ, Ruess DA, Algul H. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: current limitations and future options. Front Immunol. 2018;9:1878.CrossRefPubMedPubMedCentral Kabacaoglu D, Ciecielski KJ, Ruess DA, Algul H. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: current limitations and future options. Front Immunol. 2018;9:1878.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Goncalves AC, Richiardone E, Jorge J, Polonia B, Xavier CPR, Salaroglio IC, et al. Impact of cancer metabolism on therapy resistance—clinical implications. Drug Resist Updat. 2021;59: 100797.CrossRefPubMed Goncalves AC, Richiardone E, Jorge J, Polonia B, Xavier CPR, Salaroglio IC, et al. Impact of cancer metabolism on therapy resistance—clinical implications. Drug Resist Updat. 2021;59: 100797.CrossRefPubMed
33.
go back to reference Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2020;13(1):130.CrossRefPubMedPubMedCentral Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2020;13(1):130.CrossRefPubMedPubMedCentral
Metadata
Title
ABHD17C, a metabolic and immune-related gene signature, predicts prognosis and anti-PD1 therapy response in pancreatic cancer
Authors
Weihao Zhang
Yongjie Xie
Xin Yu
Changfu Liu
Wei Gao
Wenge Xing
Tongguo Si
Publication date
01-12-2023
Publisher
Springer US
Published in
Discover Oncology / Issue 1/2023
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-023-00690-7

Other articles of this Issue 1/2023

Discover Oncology 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine