Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

p27Kip1deficiency promotes prostate carcinogenesis but does not affect the efficacy of retinoids in suppressing the neoplastic process

Authors: Winna Taylor, Amanda Mathias, Arshia Ali, Hengning Ke, Nikolay Stoynev, Anne Shilkaitis, Albert Green, Hiroaki Kiyokawa, Konstantin Christov

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

p27 is a cell cycle suppressor gene, whose protein is a negative regulator of cyclin/cdk complexes. p27 is also a potential target of retinoids in cancer prevention studies. In benign prostate hyperplasia (BPH), and in most carcinomas, p27Kip1 is down-regulated, suggesting its potential resistance to retinoids. To test this hypothesis, we examined the efficacy of 9-cis retinoic acid (9cRA) to suppress prostate cell proliferation (PECP) and carcinogenesis in p27Kip1 deficient mice.

Methods

p27Kip1 deficient (-/-), heterozygous (+/-) and homozygous (+/+) mice were treated for 7 days with testosterone, 9cRA, or with both, and cell proliferation in dorsolateral prostate (DLP) was determined by BrdU labeling. Prostate carcinogenesis was induced by N-Methyl-N-Nitrosourea (MNU) and hormone stimulation.

Results

PECP in DLP of two-month-old mice of all genotypes was similar but significantly increased in old p27-/- mice only. Testosterone treatment increased PECP in all three p27 genotypes with the highest values in p27-/- mice. p27Kip1 deficiency did not affect the response of PEC to 9cRA and to 9cRA+testosterone. The decrease of p27Kip1 in p27+/- and p27-/- mice progressively increased the incidence and frequency of PIN and tumors. 9cRA suppressed PIN in all three p27 genotypes and this was associated with decreased PECP and increased cellular senescence.

Conclusions

This data indicates that p27Kip1 deficiency promotes prostate cell proliferation and carcinogenesis but does not affect 9cRA's potential to suppress prostate carcinogenesis, suggesting that patients with PIN and carcinomas lacking or having a low level of p27Kip1 expression may also benefit from clinical trials with retinoids.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gill JK, Wilkens LR, Pollak MN, Stanczyk FZ, Kolonel LN: Androgens, growth factors, and risk of prostate cancer: the Multiethnic Cohort. Prostate. 2010, 70 (8): 906-915.PubMedPubMedCentral Gill JK, Wilkens LR, Pollak MN, Stanczyk FZ, Kolonel LN: Androgens, growth factors, and risk of prostate cancer: the Multiethnic Cohort. Prostate. 2010, 70 (8): 906-915.PubMedPubMedCentral
2.
go back to reference Alberti C: Hereditary/familial versus sporadic prostate cancer: few indisputable genetic differences and many similar clinicopathological features. Eur Rev Med Pharmacol Sci. 2010, 14 (1): 31-41.PubMed Alberti C: Hereditary/familial versus sporadic prostate cancer: few indisputable genetic differences and many similar clinicopathological features. Eur Rev Med Pharmacol Sci. 2010, 14 (1): 31-41.PubMed
3.
go back to reference Marlow NM, Halpern MT, Pavluck AL, Ward EM, Chen AY: Disparities associated with advanced prostate cancer stage at diagnosis. J Health Care Poor Underserved. 2010, 21 (1): 112-131. 10.1353/hpu.0.0253.CrossRefPubMed Marlow NM, Halpern MT, Pavluck AL, Ward EM, Chen AY: Disparities associated with advanced prostate cancer stage at diagnosis. J Health Care Poor Underserved. 2010, 21 (1): 112-131. 10.1353/hpu.0.0253.CrossRefPubMed
4.
go back to reference Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, Loda M, Reiter RE: Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol. 1998, 159 (3): 941-945. 10.1016/S0022-5347(01)63776-5.CrossRefPubMed Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, Loda M, Reiter RE: Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol. 1998, 159 (3): 941-945. 10.1016/S0022-5347(01)63776-5.CrossRefPubMed
5.
go back to reference Roy S, Gu M, Ramasamy K, Singh RP, Agarwal C, Siriwardana S, Sclafani RA, Agarwal R: p21/Cip1 and p27/Kip1 Are essential molecular targets of inositol hexaphosphate for its antitumor efficacy against prostate cancer. Cancer Res. 2009, 69 (3): 1166-1173. 10.1158/0008-5472.CAN-08-3115.CrossRefPubMedPubMedCentral Roy S, Gu M, Ramasamy K, Singh RP, Agarwal C, Siriwardana S, Sclafani RA, Agarwal R: p21/Cip1 and p27/Kip1 Are essential molecular targets of inositol hexaphosphate for its antitumor efficacy against prostate cancer. Cancer Res. 2009, 69 (3): 1166-1173. 10.1158/0008-5472.CAN-08-3115.CrossRefPubMedPubMedCentral
6.
go back to reference Macri E, Loda M: Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev. 1998, 17 (4): 337-344. 10.1023/A:1006133620914.CrossRefPubMed Macri E, Loda M: Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev. 1998, 17 (4): 337-344. 10.1023/A:1006133620914.CrossRefPubMed
7.
go back to reference Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, Gaudin PB, Fazzari M, Zhang ZF, Massague J, et al: Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst. 1998, 90 (17): 1284-1291. 10.1093/jnci/90.17.1284.CrossRefPubMed Cordon-Cardo C, Koff A, Drobnjak M, Capodieci P, Osman I, Millard SS, Gaudin PB, Fazzari M, Zhang ZF, Massague J, et al: Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst. 1998, 90 (17): 1284-1291. 10.1093/jnci/90.17.1284.CrossRefPubMed
8.
go back to reference Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994, 78 (1): 67-74. 10.1016/0092-8674(94)90573-8.CrossRefPubMed Toyoshima H, Hunter T: p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell. 1994, 78 (1): 67-74. 10.1016/0092-8674(94)90573-8.CrossRefPubMed
9.
go back to reference Sgambato A, Cittadini A, Faraglia B, Weinstein IB: Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol. 2000, 183 (1): 18-27. 10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-S.CrossRefPubMed Sgambato A, Cittadini A, Faraglia B, Weinstein IB: Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol. 2000, 183 (1): 18-27. 10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-S.CrossRefPubMed
10.
go back to reference Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q, Guney I, Berger R, Herman P, Bikoff R, et al: A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008, 14 (2): 146-155. 10.1016/j.ccr.2008.06.002.CrossRefPubMedPubMedCentral Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q, Guney I, Berger R, Herman P, Bikoff R, et al: A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008, 14 (2): 146-155. 10.1016/j.ccr.2008.06.002.CrossRefPubMedPubMedCentral
11.
go back to reference Roy S, Kaur M, Agarwal C, Tecklenburg M, Sclafani RA, Agarwal R: p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther. 2007, 6 (10): 2696-2707. 10.1158/1535-7163.MCT-07-0104.CrossRefPubMed Roy S, Kaur M, Agarwal C, Tecklenburg M, Sclafani RA, Agarwal R: p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther. 2007, 6 (10): 2696-2707. 10.1158/1535-7163.MCT-07-0104.CrossRefPubMed
12.
go back to reference Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O: p27Kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage. Cancer Res. 2009, 69 (22): 8726-8732. 10.1158/0008-5472.CAN-09-0729.CrossRefPubMedPubMedCentral Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O: p27Kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage. Cancer Res. 2009, 69 (22): 8726-8732. 10.1158/0008-5472.CAN-09-0729.CrossRefPubMedPubMedCentral
13.
go back to reference Shaffer DR, Viale A, Ishiwata R, Leversha M, Olgac S, Manova K, Satagopan J, Scher H, Koff A: Evidence for a p27 tumor suppressive function independent of its role regulating cell proliferation in the prostate. Proc Natl Acad Sci USA. 2005, 102 (1): 210-215. 10.1073/pnas.0407362102.CrossRefPubMed Shaffer DR, Viale A, Ishiwata R, Leversha M, Olgac S, Manova K, Satagopan J, Scher H, Koff A: Evidence for a p27 tumor suppressive function independent of its role regulating cell proliferation in the prostate. Proc Natl Acad Sci USA. 2005, 102 (1): 210-215. 10.1073/pnas.0407362102.CrossRefPubMed
14.
go back to reference Hu L, Ibrahim S, Liu C, Skaar J, Pagano M, Karpatkin S: Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res. 2009, 69 (8): 3374-3381. 10.1158/0008-5472.CAN-08-4290.CrossRefPubMedPubMedCentral Hu L, Ibrahim S, Liu C, Skaar J, Pagano M, Karpatkin S: Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res. 2009, 69 (8): 3374-3381. 10.1158/0008-5472.CAN-08-4290.CrossRefPubMedPubMedCentral
15.
go back to reference Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP: Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001, 27 (2): 222-224. 10.1038/84879.CrossRefPubMed Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP: Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001, 27 (2): 222-224. 10.1038/84879.CrossRefPubMed
16.
go back to reference Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, Ittmann M: Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA. 2001, 98 (20): 11563-11568. 10.1073/pnas.201167798.CrossRefPubMedPubMedCentral Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, Ittmann M: Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA. 2001, 98 (20): 11563-11568. 10.1073/pnas.201167798.CrossRefPubMedPubMedCentral
17.
go back to reference Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Van Dyke T, et al: Pten dose dictates cancer progression in the prostate. PLoS Biol. 2003, 1 (3): E59.-10.1371/journal.pbio.0000059.CrossRefPubMedPubMedCentral Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Van Dyke T, et al: Pten dose dictates cancer progression in the prostate. PLoS Biol. 2003, 1 (3): E59.-10.1371/journal.pbio.0000059.CrossRefPubMedPubMedCentral
18.
go back to reference Besson A: [p27Kip1: tumor suppressor and oncogene?]. Med Sci (Paris). 2007, 23 (12): 1089-1091.CrossRef Besson A: [p27Kip1: tumor suppressor and oncogene?]. Med Sci (Paris). 2007, 23 (12): 1089-1091.CrossRef
19.
go back to reference Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ: The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature. 1998, 396 (6707): 177-180. 10.1038/24179.CrossRefPubMed Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ: The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature. 1998, 396 (6707): 177-180. 10.1038/24179.CrossRefPubMed
20.
go back to reference Philipp-Staheli J, Payne SR, Kemp CJ: p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res. 2001, 264 (1): 148-168. 10.1006/excr.2000.5143.CrossRefPubMed Philipp-Staheli J, Payne SR, Kemp CJ: p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res. 2001, 264 (1): 148-168. 10.1006/excr.2000.5143.CrossRefPubMed
21.
go back to reference Vis AN, Noordzij MA, Fitoz K, Wildhagen MF, Schroder FH, van der Kwast TH: Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44 s in surgically treated patients with prostate cancer. J Urol. 2000, 164 (6): 2156-2161. 10.1016/S0022-5347(05)66989-3.CrossRefPubMed Vis AN, Noordzij MA, Fitoz K, Wildhagen MF, Schroder FH, van der Kwast TH: Prognostic value of cell cycle proteins p27(kip1) and MIB-1, and the cell adhesion protein CD44 s in surgically treated patients with prostate cancer. J Urol. 2000, 164 (6): 2156-2161. 10.1016/S0022-5347(05)66989-3.CrossRefPubMed
22.
go back to reference Lotan R: Retinoids in cancer chemoprevention. Faseb J. 1996, 10 (9): 1031-1039.PubMed Lotan R: Retinoids in cancer chemoprevention. Faseb J. 1996, 10 (9): 1031-1039.PubMed
23.
go back to reference McCormick DL, Rao KV, Steele VE, Lubet RA, Kelloff GJ, Bosland MC: Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer Res. 1999, 59 (3): 521-524.PubMed McCormick DL, Rao KV, Steele VE, Lubet RA, Kelloff GJ, Bosland MC: Chemoprevention of rat prostate carcinogenesis by 9-cis-retinoic acid. Cancer Res. 1999, 59 (3): 521-524.PubMed
24.
go back to reference Christov KT, Moon RC, Lantvit DD, Boone CW, Steele VE, Lubet RA, Kelloff GJ, Pezzuto JM: 9-cis-retinoic acid but not 4-(hydroxyphenyl)retinamide inhibits prostate intraepithelial neoplasia in Noble rats. Cancer Res. 2002, 62 (18): 5178-5182.PubMed Christov KT, Moon RC, Lantvit DD, Boone CW, Steele VE, Lubet RA, Kelloff GJ, Pezzuto JM: 9-cis-retinoic acid but not 4-(hydroxyphenyl)retinamide inhibits prostate intraepithelial neoplasia in Noble rats. Cancer Res. 2002, 62 (18): 5178-5182.PubMed
25.
go back to reference Touma SE, Perner S, Rubin MA, Nanus DM, Gudas LJ: Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol. 2009, 78 (9): 1127-1138. 10.1016/j.bcp.2009.06.022.CrossRefPubMedPubMedCentral Touma SE, Perner S, Rubin MA, Nanus DM, Gudas LJ: Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol. 2009, 78 (9): 1127-1138. 10.1016/j.bcp.2009.06.022.CrossRefPubMedPubMedCentral
26.
go back to reference Gudas LJ, Sporn MB, Roberts AB: Cellular biology and biochemistry of retinoids. The Retinoids: Biology, Chemistry, and Medicine. Edited by: Sporn M, Roberts A, Goodman D. 1994, New York: Raven Press Gudas LJ, Sporn MB, Roberts AB: Cellular biology and biochemistry of retinoids. The Retinoids: Biology, Chemistry, and Medicine. Edited by: Sporn M, Roberts A, Goodman D. 1994, New York: Raven Press
27.
go back to reference Hail N, Chen P, Kepa JJ: Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells. Apoptosis. 2009, 14 (7): 849-863. 10.1007/s10495-009-0356-4.CrossRefPubMedPubMedCentral Hail N, Chen P, Kepa JJ: Selective apoptosis induction by the cancer chemopreventive agent N-(4-hydroxyphenyl)retinamide is achieved by modulating mitochondrial bioenergetics in premalignant and malignant human prostate epithelial cells. Apoptosis. 2009, 14 (7): 849-863. 10.1007/s10495-009-0356-4.CrossRefPubMedPubMedCentral
28.
go back to reference Teixeira LT, Kiyokawa H, Peng XD, Christov KT, Frohman LA, Kineman RD: p27Kip1-deficient mice exhibit accelerated growth hormone-releasing hormone (GHRH)-induced somatotrope proliferation and adenoma formation. Oncogene. 2000, 19 (15): 1875-1884. 10.1038/sj.onc.1203490.CrossRefPubMed Teixeira LT, Kiyokawa H, Peng XD, Christov KT, Frohman LA, Kineman RD: p27Kip1-deficient mice exhibit accelerated growth hormone-releasing hormone (GHRH)-induced somatotrope proliferation and adenoma formation. Oncogene. 2000, 19 (15): 1875-1884. 10.1038/sj.onc.1203490.CrossRefPubMed
29.
go back to reference Christov KT, Moon RC, Lantvit DD, Boone CW, Kelloff GJ, Steele VE, Lubet RA, Pezzuto JM: Prostate intraepithelial neoplasia in Noble rats, a potential intermediate endpoint for chemoprevention studies. Eur J Cancer. 2004, 40 (9): 1404-1411. 10.1016/j.ejca.2003.11.037.CrossRefPubMed Christov KT, Moon RC, Lantvit DD, Boone CW, Kelloff GJ, Steele VE, Lubet RA, Pezzuto JM: Prostate intraepithelial neoplasia in Noble rats, a potential intermediate endpoint for chemoprevention studies. Eur J Cancer. 2004, 40 (9): 1404-1411. 10.1016/j.ejca.2003.11.037.CrossRefPubMed
30.
go back to reference Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995, 92 (20): 9363-9367. 10.1073/pnas.92.20.9363.CrossRefPubMedPubMedCentral Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995, 92 (20): 9363-9367. 10.1073/pnas.92.20.9363.CrossRefPubMedPubMedCentral
31.
go back to reference Shilkaitis A, Green A, Punj V, Steele V, Lubet R, Christov K: Dehydroepiandrosterone inhibits the progression phase of mammary carcinogenesis by inducing cellular senescence via a p16-dependent but p53-independent mechanism. Breast Cancer Res. 2005, 7 (6): R1132-1140. 10.1186/bcr1350.CrossRefPubMedPubMedCentral Shilkaitis A, Green A, Punj V, Steele V, Lubet R, Christov K: Dehydroepiandrosterone inhibits the progression phase of mammary carcinogenesis by inducing cellular senescence via a p16-dependent but p53-independent mechanism. Breast Cancer Res. 2005, 7 (6): R1132-1140. 10.1186/bcr1350.CrossRefPubMedPubMedCentral
32.
go back to reference Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, et al: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996, 85 (5): 733-744. 10.1016/S0092-8674(00)81239-8.CrossRefPubMed Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, et al: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell. 1996, 85 (5): 733-744. 10.1016/S0092-8674(00)81239-8.CrossRefPubMed
33.
go back to reference Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell. 1996, 85 (5): 721-732. 10.1016/S0092-8674(00)81238-6.CrossRefPubMed Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell. 1996, 85 (5): 721-732. 10.1016/S0092-8674(00)81238-6.CrossRefPubMed
34.
go back to reference Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY: Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996, 85 (5): 707-720. 10.1016/S0092-8674(00)81237-4.CrossRefPubMed Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY: Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996, 85 (5): 707-720. 10.1016/S0092-8674(00)81237-4.CrossRefPubMed
35.
go back to reference Leav I, Merk FB, Kwan PW, Ho SM: Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate. 1989, 15 (1): 23-40. 10.1002/pros.2990150104.CrossRefPubMed Leav I, Merk FB, Kwan PW, Ho SM: Androgen-supported estrogen-enhanced epithelial proliferation in the prostates of intact Noble rats. Prostate. 1989, 15 (1): 23-40. 10.1002/pros.2990150104.CrossRefPubMed
36.
go back to reference Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King IB, Thornquist M, Goodman GG: Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev. 2009, 18 (8): 2202-2206. 10.1158/1055-9965.EPI-09-0013.CrossRefPubMedPubMedCentral Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King IB, Thornquist M, Goodman GG: Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev. 2009, 18 (8): 2202-2206. 10.1158/1055-9965.EPI-09-0013.CrossRefPubMedPubMedCentral
37.
go back to reference Watters JL, Gail MH, Weinstein SJ, Virtamo J, Albanes D: Associations between alpha-tocopherol, beta-carotene, and retinol and prostate cancer survival. Cancer Res. 2009, 69 (9): 3833-3841. 10.1158/0008-5472.CAN-08-4640.CrossRefPubMedPubMedCentral Watters JL, Gail MH, Weinstein SJ, Virtamo J, Albanes D: Associations between alpha-tocopherol, beta-carotene, and retinol and prostate cancer survival. Cancer Res. 2009, 69 (9): 3833-3841. 10.1158/0008-5472.CAN-08-4640.CrossRefPubMedPubMedCentral
38.
go back to reference Chen W, Yan C, Hou J, Pu J, Ouyang J, Wen D: ATRA enhances bystander effect of suicide gene therapy in the treatment of prostate cancer. Urol Oncol. 2008, 26 (4): 397-405.CrossRefPubMed Chen W, Yan C, Hou J, Pu J, Ouyang J, Wen D: ATRA enhances bystander effect of suicide gene therapy in the treatment of prostate cancer. Urol Oncol. 2008, 26 (4): 397-405.CrossRefPubMed
39.
go back to reference Huynh CK, Brodie AM, Njar VC: Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice. Br J Cancer. 2006, 94 (4): 513-523. 10.1038/sj.bjc.6602971.CrossRefPubMedPubMedCentral Huynh CK, Brodie AM, Njar VC: Inhibitory effects of retinoic acid metabolism blocking agents (RAMBAs) on the growth of human prostate cancer cells and LNCaP prostate tumour xenografts in SCID mice. Br J Cancer. 2006, 94 (4): 513-523. 10.1038/sj.bjc.6602971.CrossRefPubMedPubMedCentral
40.
go back to reference Tokar EJ, Ancrile BB, Ablin RJ, Webber MM: Cholecalciferol (vitamin D3) and the retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) are synergistic for chemoprevention of prostate cancer. J Exp Ther Oncol. 2006, 5 (4): 323-333.PubMed Tokar EJ, Ancrile BB, Ablin RJ, Webber MM: Cholecalciferol (vitamin D3) and the retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) are synergistic for chemoprevention of prostate cancer. J Exp Ther Oncol. 2006, 5 (4): 323-333.PubMed
41.
go back to reference Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, Cheng K, Varmeh S, Kozma SC, Thomas G, et al: A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest. 2010, 120 (3): 681-693. 10.1172/JCI40535.CrossRefPubMedPubMedCentral Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, Cheng K, Varmeh S, Kozma SC, Thomas G, et al: A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest. 2010, 120 (3): 681-693. 10.1172/JCI40535.CrossRefPubMedPubMedCentral
Metadata
Title
p27Kip1deficiency promotes prostate carcinogenesis but does not affect the efficacy of retinoids in suppressing the neoplastic process
Authors
Winna Taylor
Amanda Mathias
Arshia Ali
Hengning Ke
Nikolay Stoynev
Anne Shilkaitis
Albert Green
Hiroaki Kiyokawa
Konstantin Christov
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-541

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine