Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

SERPINB5 and AKAP12-- Expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma

Authors: Wolf A Mardin, Kostadin O Petrov, Andreas Enns, Norbert Senninger, Joerg Haier, Soeren T Mees

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

Early metastasis and infiltration are survival limiting characteristics of pancreatic ductal adenocarcinoma (PDAC). Thus, PDAC is likely to harbor alterations in metastasis suppressor genes that may provide novel diagnostic and therapeutic opportunities. This study investigates a panel of metastasis suppressor genes in correlation to PDAC phenotype and examines promoter methylation for regulatory influence on metastasis suppressor gene expression and for its potential as a diagnostic tool.

Methods

Metastatic and invasive potential of 16 PDAC cell lines were quantified in an orthotopic mouse model and mRNA expression of 11 metastasis suppressor genes determined by quantitative RT-PCR. Analysis for promoter methylation was performed using methylation specific PCR and bisulfite sequencing PCR. Protein expression was determined by Western blot.

Results

In general, higher metastasis suppressor gene mRNA expression was not consistent with less aggressive phenotypes of PDAC. Instead, mRNA overexpression of several metastasis suppressor genes was found in PDAC cell lines vs. normal pancreatic RNA. Of the investigated metastasis suppressor genes, only higher AKAP12 mRNA expression was correlated with decreased metastasis (P < 0.05) and invasion scores (P < 0.01) while higher SERPINB5 mRNA expression was correlated with increased metastasis scores (P < 0.05). Both genes' promoters showed methylation, but only increased SERPINB5 methylation was associated with loss of mRNA and protein expression (P < 0.05). SERPINB5 methylation was also directly correlated to decreased metastasis scores (P < 0.05).

Conclusions

AKAP12 mRNA expression was correlated to attenuated invasive and metastatic potential and may be associated with less aggressive phenotypes of PDAC while no such evidence was obtained for the remaining metastasis suppressor genes. Increased SERPINB5 mRNA expression was correlated to increased metastasis and mRNA expression was regulated by methylation. Thus, SERPINB5 methylation was directly correlated to metastasis scores and may provide a diagnostic tool for PDAC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics, 2005. CA Cancer J Clin. 2005, 55: 10-30. 10.3322/canjclin.55.1.10.CrossRefPubMed Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ: Cancer statistics, 2005. CA Cancer J Clin. 2005, 55: 10-30. 10.3322/canjclin.55.1.10.CrossRefPubMed
2.
go back to reference Fu B, Guo M, Wang S, Campagna D, Luo M, Herman JG, Iacobuzio-Donahue CA: Evaluation of GATA-4 and GATA-5 methylation profiles in human pancreatic cancers indicate promoter methylation patterns distinct from other human tumor types. Cancer Biol Ther. 2007, 6: 1546-1552. 10.1158/1535-7163.MCT-06-0526.CrossRefPubMed Fu B, Guo M, Wang S, Campagna D, Luo M, Herman JG, Iacobuzio-Donahue CA: Evaluation of GATA-4 and GATA-5 methylation profiles in human pancreatic cancers indicate promoter methylation patterns distinct from other human tumor types. Cancer Biol Ther. 2007, 6: 1546-1552. 10.1158/1535-7163.MCT-06-0526.CrossRefPubMed
3.
go back to reference Stafford LJ, Vaidya KS, Welch DR: Metastasis suppressors genes in cancer. Int J Biochem Cell Biol. 2008, 40: 874-891. 10.1016/j.biocel.2007.12.016.CrossRefPubMed Stafford LJ, Vaidya KS, Welch DR: Metastasis suppressors genes in cancer. Int J Biochem Cell Biol. 2008, 40: 874-891. 10.1016/j.biocel.2007.12.016.CrossRefPubMed
4.
go back to reference Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA: Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20: 1218-1249. 10.1101/gad.1415606.CrossRefPubMed Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA: Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20: 1218-1249. 10.1101/gad.1415606.CrossRefPubMed
5.
go back to reference Sato N, Goggins M: Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. J Hepatobiliary Pancreat Surg. 2006, 13: 280-285. 10.1007/s00534-005-1056-2.CrossRefPubMed Sato N, Goggins M: Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. J Hepatobiliary Pancreat Surg. 2006, 13: 280-285. 10.1007/s00534-005-1056-2.CrossRefPubMed
6.
go back to reference Martin ST, Sato N, Dhara S, Chang R, Hustinx SR, Abe T, Maitra A, Goggins M: Aberrant methylation of the Human Hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol Ther. 2005, 4: 728-733. 10.4161/cbt.4.7.1802.CrossRefPubMed Martin ST, Sato N, Dhara S, Chang R, Hustinx SR, Abe T, Maitra A, Goggins M: Aberrant methylation of the Human Hedgehog interacting protein (HHIP) gene in pancreatic neoplasms. Cancer Biol Ther. 2005, 4: 728-733. 10.4161/cbt.4.7.1802.CrossRefPubMed
7.
go back to reference Jansen M, Fukushima N, Rosty C, Walter K, Altink R, Heek TV, Hruban R, Offerhaus JG, Goggins M: Aberrant methylation of the 5' CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther. 2002, 1: 293-296.CrossRefPubMed Jansen M, Fukushima N, Rosty C, Walter K, Altink R, Heek TV, Hruban R, Offerhaus JG, Goggins M: Aberrant methylation of the 5' CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther. 2002, 1: 293-296.CrossRefPubMed
8.
go back to reference Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Goggins M: Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003, 63: 4158-4166.PubMed Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Goggins M: Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003, 63: 4158-4166.PubMed
9.
go back to reference Jiao L, Zhu J, Hassan MM, Evans DB, Abbruzzese JL, Li D: K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas. 2007, 34: 55-62. 10.1097/01.mpa.0000246665.68869.d4.CrossRefPubMed Jiao L, Zhu J, Hassan MM, Evans DB, Abbruzzese JL, Li D: K-ras mutation and p16 and preproenkephalin promoter hypermethylation in plasma DNA of pancreatic cancer patients: in relation to cigarette smoking. Pancreas. 2007, 34: 55-62. 10.1097/01.mpa.0000246665.68869.d4.CrossRefPubMed
10.
go back to reference Shevde LA, Welch DR: Metastasis suppressor pathways--an evolving paradigm. Cancer Lett. 2003, 198: 1-20. 10.1016/S0304-3835(03)00304-5.CrossRefPubMed Shevde LA, Welch DR: Metastasis suppressor pathways--an evolving paradigm. Cancer Lett. 2003, 198: 1-20. 10.1016/S0304-3835(03)00304-5.CrossRefPubMed
11.
go back to reference Mees ST, Mardin WA, Wendel C, Baeumer N, Willscher E, Senninger N, Schleicher C, Colombo-Benkmann M, Haier J: EP300--a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer. 2010, 126: 114-124. 10.1002/ijc.24695.CrossRefPubMed Mees ST, Mardin WA, Wendel C, Baeumer N, Willscher E, Senninger N, Schleicher C, Colombo-Benkmann M, Haier J: EP300--a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer. 2010, 126: 114-124. 10.1002/ijc.24695.CrossRefPubMed
12.
go back to reference Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.CrossRefPubMedPubMedCentral Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.CrossRefPubMedPubMedCentral
13.
go back to reference Mitchell DC, Stafford LJ, Li D, Bar-Eli M, Liu M: Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene. 2007, 26: 1739-1747. 10.1038/sj.onc.1209963.CrossRefPubMed Mitchell DC, Stafford LJ, Li D, Bar-Eli M, Liu M: Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene. 2007, 26: 1739-1747. 10.1038/sj.onc.1209963.CrossRefPubMed
14.
go back to reference Cao D, Hustinx SR, Sui G, Bala P, Sato N, Martin S, Maitra A, Murphy KM, Cameron JL, Yeo CJ, Kern SE, Goggins M, Pandey A, Hruban RH: Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther. 2004, 3: 1081-1089. 10.4161/cbt.3.11.1175. discussion 1090-1081CrossRefPubMed Cao D, Hustinx SR, Sui G, Bala P, Sato N, Martin S, Maitra A, Murphy KM, Cameron JL, Yeo CJ, Kern SE, Goggins M, Pandey A, Hruban RH: Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther. 2004, 3: 1081-1089. 10.4161/cbt.3.11.1175. discussion 1090-1081CrossRefPubMed
15.
go back to reference Choi MC, Jong HS, Kim TY, Song SH, Lee DS, Lee JW, Kim NK, Bang YJ: AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene. 2004, 23: 7095-7103. 10.1038/sj.onc.1207932.CrossRefPubMed Choi MC, Jong HS, Kim TY, Song SH, Lee DS, Lee JW, Kim NK, Bang YJ: AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene. 2004, 23: 7095-7103. 10.1038/sj.onc.1207932.CrossRefPubMed
16.
go back to reference Sheng S, Carey J, Seftor EA, Dias L, Hendrix MJ, Sager R: Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proc Natl Acad Sci USA. 1996, 93: 11669-11674. 10.1073/pnas.93.21.11669.CrossRefPubMedPubMedCentral Sheng S, Carey J, Seftor EA, Dias L, Hendrix MJ, Sager R: Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proc Natl Acad Sci USA. 1996, 93: 11669-11674. 10.1073/pnas.93.21.11669.CrossRefPubMedPubMedCentral
17.
go back to reference Luppi M, Morselli M, Bandieri E, Federico M, Marasca R, Barozzi P, Ferrari MG, Savarino M, Frassoldati A, Torelli G: Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene. Ann Oncol. 1996, 7: 619-624.CrossRefPubMed Luppi M, Morselli M, Bandieri E, Federico M, Marasca R, Barozzi P, Ferrari MG, Savarino M, Frassoldati A, Torelli G: Sensitive detection of circulating breast cancer cells by reverse-transcriptase polymerase chain reaction of maspin gene. Ann Oncol. 1996, 7: 619-624.CrossRefPubMed
18.
go back to reference Umekita Y, Souda M, Yoshida H: Expression of maspin in colorectal cancer. In Vivo. 2006, 20: 797-800.PubMed Umekita Y, Souda M, Yoshida H: Expression of maspin in colorectal cancer. In Vivo. 2006, 20: 797-800.PubMed
19.
go back to reference Bettstetter M, Woenckhaus M, Wild PJ, Rummele P, Blaszyk H, Hartmann A, Hofstadter F, Dietmaier W: Elevated nuclear maspin expression is associated with microsatellite instability and high tumour grade in colorectal cancer. J Pathol. 2005, 205: 606-614. 10.1002/path.1732.CrossRefPubMed Bettstetter M, Woenckhaus M, Wild PJ, Rummele P, Blaszyk H, Hartmann A, Hofstadter F, Dietmaier W: Elevated nuclear maspin expression is associated with microsatellite instability and high tumour grade in colorectal cancer. J Pathol. 2005, 205: 606-614. 10.1002/path.1732.CrossRefPubMed
20.
go back to reference Hong SN, Lee JK, Choe WH, Ha HY, Park K, Sung IK, Lee KT, Kim JJ, Rhee JC: The effect of aberrant maspin expression on the invasive ability of pancreatic ductal adenocarcinoma cells. Oncol Rep. 2009, 21: 425-430.PubMed Hong SN, Lee JK, Choe WH, Ha HY, Park K, Sung IK, Lee KT, Kim JJ, Rhee JC: The effect of aberrant maspin expression on the invasive ability of pancreatic ductal adenocarcinoma cells. Oncol Rep. 2009, 21: 425-430.PubMed
21.
go back to reference Kashima K, Ohike N, Mukai S, Sato M, Takahashi M, Morohoshi T: Expression of the tumor suppressor gene maspin and its significance in intraductal papillary mucinous neoplasms of the pancreas. Hepatobiliary Pancreat Dis Int. 2008, 7: 86-90.PubMed Kashima K, Ohike N, Mukai S, Sato M, Takahashi M, Morohoshi T: Expression of the tumor suppressor gene maspin and its significance in intraductal papillary mucinous neoplasms of the pancreas. Hepatobiliary Pancreat Dis Int. 2008, 7: 86-90.PubMed
22.
go back to reference Ohike N, Maass N, Mundhenke C, Biallek M, Zhang M, Jonat W, Luttges J, Morohoshi T, Kloppel G, Nagasaki K: Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Lett. 2003, 199: 193-200. 10.1016/S0304-3835(03)00390-2.CrossRefPubMed Ohike N, Maass N, Mundhenke C, Biallek M, Zhang M, Jonat W, Luttges J, Morohoshi T, Kloppel G, Nagasaki K: Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Lett. 2003, 199: 193-200. 10.1016/S0304-3835(03)00390-2.CrossRefPubMed
23.
go back to reference Nash JW, Bhardwaj A, Wen P, Frankel WL: Maspin is useful in the distinction of pancreatic adenocarcinoma from chronic pancreatitis: a tissue microarray based study. Appl Immunohistochem Mol Morphol. 2007, 15: 59-63. 10.1097/01.pai.0000203037.25791.21.CrossRefPubMed Nash JW, Bhardwaj A, Wen P, Frankel WL: Maspin is useful in the distinction of pancreatic adenocarcinoma from chronic pancreatitis: a tissue microarray based study. Appl Immunohistochem Mol Morphol. 2007, 15: 59-63. 10.1097/01.pai.0000203037.25791.21.CrossRefPubMed
24.
go back to reference Cao D, Zhang Q, Wu LS, Salaria SN, Winter JW, Hruban RH, Goggins MS, Abbruzzese JL, Maitra A, Ho L: Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol. 2007, 20: 570-578. 10.1038/modpathol.3800772.CrossRefPubMed Cao D, Zhang Q, Wu LS, Salaria SN, Winter JW, Hruban RH, Goggins MS, Abbruzzese JL, Maitra A, Ho L: Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol. 2007, 20: 570-578. 10.1038/modpathol.3800772.CrossRefPubMed
25.
go back to reference Sato N, Fukushima N, Matsubayashi H, Goggins M: Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene. 2004, 23: 1531-1538. 10.1038/sj.onc.1207269.CrossRefPubMed Sato N, Fukushima N, Matsubayashi H, Goggins M: Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene. 2004, 23: 1531-1538. 10.1038/sj.onc.1207269.CrossRefPubMed
26.
go back to reference Fitzgerald M, Oshiro M, Holtan N, Krager K, Cullen JJ, Futscher BW, Domann FE: Human pancreatic carcinoma cells activate maspin expression through loss of epigenetic control. Neoplasia. 2003, 5: 427-436.CrossRefPubMedPubMedCentral Fitzgerald M, Oshiro M, Holtan N, Krager K, Cullen JJ, Futscher BW, Domann FE: Human pancreatic carcinoma cells activate maspin expression through loss of epigenetic control. Neoplasia. 2003, 5: 427-436.CrossRefPubMedPubMedCentral
Metadata
Title
SERPINB5 and AKAP12-- Expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma
Authors
Wolf A Mardin
Kostadin O Petrov
Andreas Enns
Norbert Senninger
Joerg Haier
Soeren T Mees
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-549

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine