Skip to main content
Top
Published in: Journal of Translational Medicine 1/2010

Open Access 01-12-2010 | Research

Oxidative stress in NSC-741909-induced apoptosis of cancer cells

Authors: Xiaoli Wei, Wei Guo, Shuhong Wu, Li Wang, Peng Huang, Jinsong Liu, Bingliang Fang

Published in: Journal of Translational Medicine | Issue 1/2010

Login to get access

Abstract

Background

NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK) activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS) may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909.

Methods

The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909.

Results

Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis.

Conclusion

Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Guo W, Wu S, Liu J, Fang B: Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res. 2008, 68: 7403-7408. 10.1158/0008-5472.CAN-08-1449.PubMedPubMedCentralCrossRef Guo W, Wu S, Liu J, Fang B: Identification of a small molecule with synthetic lethality for K-ras and protein kinase C iota. Cancer Res. 2008, 68: 7403-7408. 10.1158/0008-5472.CAN-08-1449.PubMedPubMedCentralCrossRef
2.
go back to reference Wei X, Guo W, Wu S, Wang L, Lu Y, Xu B, Liu J, Fang B: Inhibiting JNK dephosphorylation and induction of apoptosis by a novel anticancer agent NSC-741909 in cancer cells. J Biol Chem. 2009, 284: 16948-16955. 10.1074/jbc.M109.010256.PubMedPubMedCentralCrossRef Wei X, Guo W, Wu S, Wang L, Lu Y, Xu B, Liu J, Fang B: Inhibiting JNK dephosphorylation and induction of apoptosis by a novel anticancer agent NSC-741909 in cancer cells. J Biol Chem. 2009, 284: 16948-16955. 10.1074/jbc.M109.010256.PubMedPubMedCentralCrossRef
3.
go back to reference Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell. 2000, 103: 239-252. 10.1016/S0092-8674(00)00116-1.PubMedCrossRef Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell. 2000, 103: 239-252. 10.1016/S0092-8674(00)00116-1.PubMedCrossRef
4.
go back to reference Jeffrey KL, Camps M, Rommel C, Mackay CR: Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007, 6: 391-403. 10.1038/nrd2289.PubMedCrossRef Jeffrey KL, Camps M, Rommel C, Mackay CR: Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov. 2007, 6: 391-403. 10.1038/nrd2289.PubMedCrossRef
5.
go back to reference Rhee SG, Bae YS, Lee SR, Kwon J: Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Science's STKE [Electronic Resource]: Signal Transduction Knowledge Environment. 2000, E1- Rhee SG, Bae YS, Lee SR, Kwon J: Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Science's STKE [Electronic Resource]: Signal Transduction Knowledge Environment. 2000, E1-
6.
go back to reference Meng TC, Fukada T, Tonks NK: Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell. 2002, 9: 387-399. 10.1016/S1097-2765(02)00445-8.PubMedCrossRef Meng TC, Fukada T, Tonks NK: Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell. 2002, 9: 387-399. 10.1016/S1097-2765(02)00445-8.PubMedCrossRef
7.
go back to reference Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M: Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005, 120: 649-661. 10.1016/j.cell.2004.12.041.PubMedCrossRef Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M: Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005, 120: 649-661. 10.1016/j.cell.2004.12.041.PubMedCrossRef
8.
go back to reference Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H: NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003, 22: 3898-3909. 10.1093/emboj/cdg379.PubMedPubMedCentralCrossRef Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, Nakano H: NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003, 22: 3898-3909. 10.1093/emboj/cdg379.PubMedPubMedCentralCrossRef
9.
go back to reference Baas AS, Berk BC: Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells. Circ Res. 1995, 77: 29-36.PubMedCrossRef Baas AS, Berk BC: Differential activation of mitogen-activated protein kinases by H2O2 and O2- in vascular smooth muscle cells. Circ Res. 1995, 77: 29-36.PubMedCrossRef
10.
go back to reference Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ: A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007, 130: 797-810. 10.1016/j.cell.2007.06.049.PubMedCrossRef Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ: A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007, 130: 797-810. 10.1016/j.cell.2007.06.049.PubMedCrossRef
11.
go back to reference Choi BM, Pae HO, Jang SI, Kim YM, Chung HT: Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol. 2002, 35: 116-126.PubMedCrossRef Choi BM, Pae HO, Jang SI, Kim YM, Chung HT: Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol. 2002, 35: 116-126.PubMedCrossRef
12.
go back to reference Shen HM, Liu ZG: JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006, 40: 928-939. 10.1016/j.freeradbiomed.2005.10.056.PubMedCrossRef Shen HM, Liu ZG: JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med. 2006, 40: 928-939. 10.1016/j.freeradbiomed.2005.10.056.PubMedCrossRef
13.
go back to reference Ozben T: Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007, 96: 2181-2196. 10.1002/jps.20874.PubMedCrossRef Ozben T: Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007, 96: 2181-2196. 10.1002/jps.20874.PubMedCrossRef
14.
go back to reference Fiers W, Beyaert R, Declercq W, Vandenabeele P: More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 1999, 18: 7719-7730. 10.1038/sj.onc.1203249.PubMedCrossRef Fiers W, Beyaert R, Declercq W, Vandenabeele P: More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 1999, 18: 7719-7730. 10.1038/sj.onc.1203249.PubMedCrossRef
15.
go back to reference Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR: Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990, 82: 1113-1118. 10.1093/jnci/82.13.1113.PubMedCrossRef Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR: Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990, 82: 1113-1118. 10.1093/jnci/82.13.1113.PubMedCrossRef
16.
go back to reference Zhang L, Gu J, Lin T, Huang X, Roth JA, Fang B: Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther. 2002, 9: 1262-1270. 10.1038/sj.gt.3301797.PubMedCrossRef Zhang L, Gu J, Lin T, Huang X, Roth JA, Fang B: Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther. 2002, 9: 1262-1270. 10.1038/sj.gt.3301797.PubMedCrossRef
17.
go back to reference Kamata H, Hirata H: Redox regulation of cellular signalling. Cell Signal. 1999, 11: 1-14. 10.1016/S0898-6568(98)00037-0.PubMedCrossRef Kamata H, Hirata H: Redox regulation of cellular signalling. Cell Signal. 1999, 11: 1-14. 10.1016/S0898-6568(98)00037-0.PubMedCrossRef
18.
go back to reference Shimizu T, Numata T, Okada Y: A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proc Natl Acad Sci USA. 2004, 101: 6770-6773. 10.1073/pnas.0401604101.PubMedPubMedCentralCrossRef Shimizu T, Numata T, Okada Y: A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel. Proc Natl Acad Sci USA. 2004, 101: 6770-6773. 10.1073/pnas.0401604101.PubMedPubMedCentralCrossRef
19.
go back to reference Ling YH, Liebes L, Zou Y, Perez-Soler R: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003, 278: 33714-33723. 10.1074/jbc.M302559200.PubMedCrossRef Ling YH, Liebes L, Zou Y, Perez-Soler R: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003, 278: 33714-33723. 10.1074/jbc.M302559200.PubMedCrossRef
20.
go back to reference Gunasekar PG, Borowitz JL, Isom GE: Cyanide-induced generation of oxidative species: involvement of nitric oxide synthase and cyclooxygenase-2. J Pharmacol Exp Ther. 1998, 285: 236-241.PubMed Gunasekar PG, Borowitz JL, Isom GE: Cyanide-induced generation of oxidative species: involvement of nitric oxide synthase and cyclooxygenase-2. J Pharmacol Exp Ther. 1998, 285: 236-241.PubMed
21.
go back to reference Morris CR, Chen SC, Zhou L, Schopfer LM, Ding X, Mirvish SS: Inhibition by allyl sulfides and phenethyl isothiocyanate of methyl-n-pentylnitrosamine depentylation by rat esophageal microsomes, human and rat CYP2E1, and Rat CYP2A3. Nutr Cancer. 2004, 48: 54-63. 10.1207/s15327914nc4801_8.PubMedCrossRef Morris CR, Chen SC, Zhou L, Schopfer LM, Ding X, Mirvish SS: Inhibition by allyl sulfides and phenethyl isothiocyanate of methyl-n-pentylnitrosamine depentylation by rat esophageal microsomes, human and rat CYP2E1, and Rat CYP2A3. Nutr Cancer. 2004, 48: 54-63. 10.1207/s15327914nc4801_8.PubMedCrossRef
22.
go back to reference Berndt G, Grosser N, Hoogstraate J, Schroder H: AZD3582 increases heme oxygenase-1 expression and antioxidant activity in vascular endothelial and gastric mucosal cells. Eur J Pharm Sci. 2005, 25: 229-235.PubMedCrossRef Berndt G, Grosser N, Hoogstraate J, Schroder H: AZD3582 increases heme oxygenase-1 expression and antioxidant activity in vascular endothelial and gastric mucosal cells. Eur J Pharm Sci. 2005, 25: 229-235.PubMedCrossRef
23.
go back to reference Bassenge E, Sommer O, Schwemmer M, Bunger R: Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol. 2000, 279: H2431-H2438.PubMed Bassenge E, Sommer O, Schwemmer M, Bunger R: Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol. 2000, 279: H2431-H2438.PubMed
24.
go back to reference Guzman-Beltran S, Espada S, Orozco-Ibarra M, Pedraza-Chaverri J, Cuadrado A: Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neurosci Lett. 2008, 447: 167-171. 10.1016/j.neulet.2008.09.079.PubMedCrossRef Guzman-Beltran S, Espada S, Orozco-Ibarra M, Pedraza-Chaverri J, Cuadrado A: Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress. Neurosci Lett. 2008, 447: 167-171. 10.1016/j.neulet.2008.09.079.PubMedCrossRef
25.
go back to reference Rillema JA: Effect of NDGA, a lipoxygenase inhibitor, on prolactin actions in mouse mammary gland explants. Prostaglandins Leukot Med. 1984, 16: 89-94. 10.1016/0262-1746(84)90089-1.PubMedCrossRef Rillema JA: Effect of NDGA, a lipoxygenase inhibitor, on prolactin actions in mouse mammary gland explants. Prostaglandins Leukot Med. 1984, 16: 89-94. 10.1016/0262-1746(84)90089-1.PubMedCrossRef
26.
go back to reference Shimizu T, Wolfe LS: Arachidonic acid cascade and signal transduction. J Neurochem. 1990, 55: 1-15. 10.1111/j.1471-4159.1990.tb08813.x.PubMedCrossRef Shimizu T, Wolfe LS: Arachidonic acid cascade and signal transduction. J Neurochem. 1990, 55: 1-15. 10.1111/j.1471-4159.1990.tb08813.x.PubMedCrossRef
28.
go back to reference Bhosle SM, Pandey BN, Huilgol NG, Mishra KP, Bhosle SM, Pandey BN, Huilgol NG, Mishra KP: Membrane oxidative damage and apoptosis in cervical carcinoma cells of patients after radiation therapy. Methods Cell Sci. 2002, 24: 65-68. 10.1023/A:1024145931652.PubMedCrossRef Bhosle SM, Pandey BN, Huilgol NG, Mishra KP, Bhosle SM, Pandey BN, Huilgol NG, Mishra KP: Membrane oxidative damage and apoptosis in cervical carcinoma cells of patients after radiation therapy. Methods Cell Sci. 2002, 24: 65-68. 10.1023/A:1024145931652.PubMedCrossRef
29.
go back to reference Huang HL, Fang LW, Lu SP, Chou CK, Luh TY, Lai MZ: DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene. 2003, 22: 8168-8177. 10.1038/sj.onc.1206979.PubMedCrossRef Huang HL, Fang LW, Lu SP, Chou CK, Luh TY, Lai MZ: DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene. 2003, 22: 8168-8177. 10.1038/sj.onc.1206979.PubMedCrossRef
30.
go back to reference Alexandre J, Hu Y, Lu W, Pelicano H, Huang P: Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res. 2007, 67: 3512-3517. 10.1158/0008-5472.CAN-06-3914.PubMedCrossRef Alexandre J, Hu Y, Lu W, Pelicano H, Huang P: Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res. 2007, 67: 3512-3517. 10.1158/0008-5472.CAN-06-3914.PubMedCrossRef
31.
go back to reference Furusawa S, Kimura E, Kisara S, Nakano S, Murata R, Tanaka Y, Sakaguchi S, Takayanagi M, Takayanagi Y, Sasaki K: Mechanism of resistance to oxidative stress in doxorubicin resistant cells. Biol Pharm Bull. 2001, 24: 474-479. 10.1248/bpb.24.474.PubMedCrossRef Furusawa S, Kimura E, Kisara S, Nakano S, Murata R, Tanaka Y, Sakaguchi S, Takayanagi M, Takayanagi Y, Sasaki K: Mechanism of resistance to oxidative stress in doxorubicin resistant cells. Biol Pharm Bull. 2001, 24: 474-479. 10.1248/bpb.24.474.PubMedCrossRef
32.
go back to reference Kotamraju S, Kalivendi SV, Konorev E, Chitambar CR, Joseph J, Kalyanaraman B: Oxidant-induced iron signaling in Doxorubicin-mediated apoptosis. Methods Enzymol. 2004, 378: 362-382. full_text.PubMedCrossRef Kotamraju S, Kalivendi SV, Konorev E, Chitambar CR, Joseph J, Kalyanaraman B: Oxidant-induced iron signaling in Doxorubicin-mediated apoptosis. Methods Enzymol. 2004, 378: 362-382. full_text.PubMedCrossRef
33.
go back to reference Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW: The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA. 2001, 98: 10833-10838. 10.1073/pnas.191208598.PubMedPubMedCentralCrossRef Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW: The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA. 2001, 98: 10833-10838. 10.1073/pnas.191208598.PubMedPubMedCentralCrossRef
34.
go back to reference Simizu S, Takada M, Umezawa K, Imoto M: Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998, 273: 26900-26907. 10.1074/jbc.273.41.26900.PubMedCrossRef Simizu S, Takada M, Umezawa K, Imoto M: Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998, 273: 26900-26907. 10.1074/jbc.273.41.26900.PubMedCrossRef
35.
go back to reference Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ: Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997, 275: 1649-1652. 10.1126/science.275.5306.1649.PubMedCrossRef Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ: Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997, 275: 1649-1652. 10.1126/science.275.5306.1649.PubMedCrossRef
36.
go back to reference Maciag A, Anderson LM: Reactive oxygen species and lung tumorigenesis by mutant K-ras: a working hypothesis. Exp Lung Res. 2005, 31: 83-104. 10.1080/01902140490495048.PubMedCrossRef Maciag A, Anderson LM: Reactive oxygen species and lung tumorigenesis by mutant K-ras: a working hypothesis. Exp Lung Res. 2005, 31: 83-104. 10.1080/01902140490495048.PubMedCrossRef
37.
go back to reference Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM: Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002, 419: 316-321. 10.1038/nature01036.PubMedCrossRef Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM: Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002, 419: 316-321. 10.1038/nature01036.PubMedCrossRef
38.
go back to reference Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N: Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008, 14: 458-470. 10.1016/j.ccr.2008.11.003.PubMedPubMedCentralCrossRef Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T, Hay N: Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008, 14: 458-470. 10.1016/j.ccr.2008.11.003.PubMedPubMedCentralCrossRef
39.
go back to reference Meng D, Shi X, Jiang BH, Fang J: Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic Biol Med. 2007, 42: 1651-1660. 10.1016/j.freeradbiomed.2007.01.037.PubMedCrossRef Meng D, Shi X, Jiang BH, Fang J: Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic Biol Med. 2007, 42: 1651-1660. 10.1016/j.freeradbiomed.2007.01.037.PubMedCrossRef
40.
go back to reference Chen CH, Cheng TH, Lin H, Shih NL, Chen YL, Chen YS, Cheng CF, Lian WS, Meng TC, Chiu WT, Chen JJ: Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol Pharmacol. 2006, 69: 1347-1355. 10.1124/mol.105.017558.PubMedCrossRef Chen CH, Cheng TH, Lin H, Shih NL, Chen YL, Chen YS, Cheng CF, Lian WS, Meng TC, Chiu WT, Chen JJ: Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol Pharmacol. 2006, 69: 1347-1355. 10.1124/mol.105.017558.PubMedCrossRef
41.
go back to reference Colavitti R, Pani G, Bedogni B, Anzevino R, Borrello S, Waltenberger J, Galeotti T: Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J Biol Chem. 2002, 277: 3101-3108. 10.1074/jbc.M107711200.PubMedCrossRef Colavitti R, Pani G, Bedogni B, Anzevino R, Borrello S, Waltenberger J, Galeotti T: Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J Biol Chem. 2002, 277: 3101-3108. 10.1074/jbc.M107711200.PubMedCrossRef
42.
go back to reference Benhar M, Dalyot I, Engelberg D, Levitzki A: Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol. 2001, 21: 6913-6926. 10.1128/MCB.21.20.6913-6926.2001.PubMedPubMedCentralCrossRef Benhar M, Dalyot I, Engelberg D, Levitzki A: Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol. 2001, 21: 6913-6926. 10.1128/MCB.21.20.6913-6926.2001.PubMedPubMedCentralCrossRef
43.
go back to reference Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001, 81: 807-869.PubMed Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001, 81: 807-869.PubMed
44.
go back to reference Lewis TS, Shapiro PS, Ahn NG: Signal transduction through MAP kinase cascades. Cancer Res. 1998, 74: 49-139. full_text.CrossRef Lewis TS, Shapiro PS, Ahn NG: Signal transduction through MAP kinase cascades. Cancer Res. 1998, 74: 49-139. full_text.CrossRef
45.
go back to reference Shen HM, Pervaiz S: TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J. 2006, 20: 1589-1598. 10.1096/fj.05-5603rev.PubMedCrossRef Shen HM, Pervaiz S: TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J. 2006, 20: 1589-1598. 10.1096/fj.05-5603rev.PubMedCrossRef
Metadata
Title
Oxidative stress in NSC-741909-induced apoptosis of cancer cells
Authors
Xiaoli Wei
Wei Guo
Shuhong Wu
Li Wang
Peng Huang
Jinsong Liu
Bingliang Fang
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2010
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-8-37

Other articles of this Issue 1/2010

Journal of Translational Medicine 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.