Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Overweight | Research article

Feeding patterns and BMI trajectories during infancy: a multi-ethnic, prospective birth cohort

Authors: Outi Sirkka, Michel H. Hof, Tanja Vrijkotte, Marieke Abrahamse-Berkeveld, Jutka Halberstadt, Jacob C. Seidell, Margreet R. Olthof

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Milk feeding type (exclusive breastfeeding [EBF], formula feeding or mixed feeding) and timing of complementary feeding (CF) have been associated with infant growth. However, studies evaluating their combined role, and the role of ethnicity, are scarce. We examined associations of feeding patterns (milk feeding type combined with timing of CF) with infant body mass index (BMI) trajectories and potential ethnic-specific associations.

Methods

Infant feeding and BMI data during the 1st year of life from 3524 children (Dutch n = 2880, Moroccan n = 404 and Turkish n = 240) from the Amsterdam Born Children and their Development (ABCD) cohort were used. Six feeding patterns were defined: EBF/earlyCF, EBF/lateCF (reference), formula/earlyCF, formula/lateCF, mixed/earlyCF and mixed/lateCF. A covariate adjusted latent class mixed model was applied to simultaneously model BMI trajectories and associations with feeding patterns. Potential ethnic differences in the associations were studied in a separate model where interactions between ethnicity and feeding patterns were included.

Results

Four distinct BMI trajectories (low, mid-low, mid-high and high) were identified. Feeding pattern of formula/earlyCF was associated with lower odds for low (OR: 0.43; 95% CI: 0.25, 0.76) or mid-high (0.28; 0.16, 0.51) (ref: high) trajectory compared with EBF/lateCF pattern (ref). An ethnic-specific model revealed that among Dutch infants, formula/earlyCF pattern was associated with lower odds for low trajectory (0.46; 0.24, 0.87), whereas among Turkish/Moroccan infants almost all feeding patterns were associated with lower odds for the low trajectory (ref: high).

Conclusion

Infant feeding patterns are associated with early BMI trajectories with specific ethnic differences. Future studies should take the role of ethnicity into account in the associations between infant feeding and growth.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474–88.PubMedCrossRef Singh AS, Mulder C, Twisk JW, van Mechelen W, Chinapaw MJ. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474–88.PubMedCrossRef
3.
go back to reference Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. Bmj. 2005;331(7522):929.PubMedPubMedCentralCrossRef Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. Bmj. 2005;331(7522):929.PubMedPubMedCentralCrossRef
4.
go back to reference Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life--a systematic review. Obes Rev. 2005;6(2):143–54.PubMedCrossRef Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life--a systematic review. Obes Rev. 2005;6(2):143–54.PubMedCrossRef
5.
6.
go back to reference Patro-Golab B, Zalewski BM, Kolodziej M, et al. Nutritional interventions or exposures in infants and children aged up to 3 years and their effects on subsequent risk of overweight, obesity and body fat: a systematic review of systematic reviews. Obes Rev. 2016;17(12):1245–57.PubMedPubMedCentralCrossRef Patro-Golab B, Zalewski BM, Kolodziej M, et al. Nutritional interventions or exposures in infants and children aged up to 3 years and their effects on subsequent risk of overweight, obesity and body fat: a systematic review of systematic reviews. Obes Rev. 2016;17(12):1245–57.PubMedPubMedCentralCrossRef
7.
go back to reference Weng SF, Redsell SA, Nathan D, Swift JA, Yang M, Glazebrook C. Estimating overweight risk in childhood from predictors during infancy. Pediatrics. 2013;132(2):e414–21.PubMedCrossRef Weng SF, Redsell SA, Nathan D, Swift JA, Yang M, Glazebrook C. Estimating overweight risk in childhood from predictors during infancy. Pediatrics. 2013;132(2):e414–21.PubMedCrossRef
8.
go back to reference Birch LL, Ventura AK. Preventing childhood obesity: what works? Int J Obes. 2009;33(Suppl 1):S74–81.CrossRef Birch LL, Ventura AK. Preventing childhood obesity: what works? Int J Obes. 2009;33(Suppl 1):S74–81.CrossRef
9.
go back to reference Bell KA, Wagner CL, Feldman HA, Shypailo RJ, Belfort MB. Associations of infant feeding with trajectories of body composition and growth. Am J Clin Nutr. 2017;106(2):491–8.PubMedPubMedCentralCrossRef Bell KA, Wagner CL, Feldman HA, Shypailo RJ, Belfort MB. Associations of infant feeding with trajectories of body composition and growth. Am J Clin Nutr. 2017;106(2):491–8.PubMedPubMedCentralCrossRef
10.
go back to reference Rzehak P, Oddy WH, Mearin ML, et al. Infant feeding and growth trajectory patterns in childhood and body composition in young adulthood. Am J Clin Nutr. 2017;106(2):568–80.PubMedCrossRef Rzehak P, Oddy WH, Mearin ML, et al. Infant feeding and growth trajectory patterns in childhood and body composition in young adulthood. Am J Clin Nutr. 2017;106(2):568–80.PubMedCrossRef
11.
go back to reference Zhang J, Himes JH, Guo Y, et al. Birth weight, growth and feeding pattern in early infancy predict overweight/obesity status at two years of age: a birth cohort study of Chinese infants. PLoS One. 2013;8(6):e64542.PubMedPubMedCentralCrossRef Zhang J, Himes JH, Guo Y, et al. Birth weight, growth and feeding pattern in early infancy predict overweight/obesity status at two years of age: a birth cohort study of Chinese infants. PLoS One. 2013;8(6):e64542.PubMedPubMedCentralCrossRef
12.
go back to reference Dewey KG, Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B. Growth of breast-fed and formula-fed infants from 0 to 18 months: the DARLING study. Pediatrics. 1992;89(6 Pt 1):1035–41.PubMedCrossRef Dewey KG, Heinig MJ, Nommsen LA, Peerson JM, Lonnerdal B. Growth of breast-fed and formula-fed infants from 0 to 18 months: the DARLING study. Pediatrics. 1992;89(6 Pt 1):1035–41.PubMedCrossRef
13.
14.
go back to reference Kramer MS, Guo T, Platt RW, et al. Breastfeeding and infant growth: biology or bias? Pediatrics. 2002;110(2 Pt 1):343–7.PubMedCrossRef Kramer MS, Guo T, Platt RW, et al. Breastfeeding and infant growth: biology or bias? Pediatrics. 2002;110(2 Pt 1):343–7.PubMedCrossRef
15.
go back to reference Burdette HL, Whitaker RC, Hall WC, Daniels SR. Breastfeeding, introduction of complementary foods, and adiposity at 5 y of age. Am J Clin Nutr. 2006;83(3):550–8.PubMedCrossRef Burdette HL, Whitaker RC, Hall WC, Daniels SR. Breastfeeding, introduction of complementary foods, and adiposity at 5 y of age. Am J Clin Nutr. 2006;83(3):550–8.PubMedCrossRef
16.
go back to reference Morgen CS, Angquist L, Baker JL, Andersen AN, Sorensen TIA, Michaelsen KF. Breastfeeding and complementary feeding in relation to body mass index and overweight at ages 7 and 11 y: a path analysis within the Danish National Birth Cohort. Am J Clin Nutr. 2018;107(3):313–22.PubMedCrossRef Morgen CS, Angquist L, Baker JL, Andersen AN, Sorensen TIA, Michaelsen KF. Breastfeeding and complementary feeding in relation to body mass index and overweight at ages 7 and 11 y: a path analysis within the Danish National Birth Cohort. Am J Clin Nutr. 2018;107(3):313–22.PubMedCrossRef
17.
go back to reference Schack-Nielsen L, Sorensen T, Mortensen EL, Michaelsen KF. Late introduction of complementary feeding, rather than duration of breastfeeding, may protect against adult overweight. Am J Clin Nutr. 2010;91(3):619–27.PubMedCrossRef Schack-Nielsen L, Sorensen T, Mortensen EL, Michaelsen KF. Late introduction of complementary feeding, rather than duration of breastfeeding, may protect against adult overweight. Am J Clin Nutr. 2010;91(3):619–27.PubMedCrossRef
18.
go back to reference Michels KB, Willett WC, Graubard BI, et al. A longitudinal study of infant feeding and obesity throughout life course. Int J Obes. 2007;31(7):1078–85.CrossRef Michels KB, Willett WC, Graubard BI, et al. A longitudinal study of infant feeding and obesity throughout life course. Int J Obes. 2007;31(7):1078–85.CrossRef
19.
go back to reference Eny KM, Chen S, Anderson LN, et al. Breastfeeding duration, maternal body mass index, and birth weight are associated with differences in body mass index growth trajectories in early childhood. Am J Clin Nutr. 2018;107(4):584–92.PubMedCrossRef Eny KM, Chen S, Anderson LN, et al. Breastfeeding duration, maternal body mass index, and birth weight are associated with differences in body mass index growth trajectories in early childhood. Am J Clin Nutr. 2018;107(4):584–92.PubMedCrossRef
20.
21.
go back to reference Rzehak P, Sausenthaler S, Koletzko S, et al. Period-specific growth, overweight and modification by breastfeeding in the GINI and LISA birth cohorts up to age 6 years. Eur J Epidemiol. 2009;24(8):449–67.PubMedCrossRef Rzehak P, Sausenthaler S, Koletzko S, et al. Period-specific growth, overweight and modification by breastfeeding in the GINI and LISA birth cohorts up to age 6 years. Eur J Epidemiol. 2009;24(8):449–67.PubMedCrossRef
22.
go back to reference Pearce J, Taylor MA, Langley-Evans SC. Timing of the introduction of complementary feeding and risk of childhood obesity: a systematic review. Int J Obes. 2013;37(10):1295–306.CrossRef Pearce J, Taylor MA, Langley-Evans SC. Timing of the introduction of complementary feeding and risk of childhood obesity: a systematic review. Int J Obes. 2013;37(10):1295–306.CrossRef
23.
go back to reference Vail B, Prentice P, Dunger DB, Hughes IA, Acerini CL, Ong KK. Age at weaning and infant growth: primary analysis and systematic review. J Pediatr. 2015;167(2):317–24 e311.PubMedPubMedCentralCrossRef Vail B, Prentice P, Dunger DB, Hughes IA, Acerini CL, Ong KK. Age at weaning and infant growth: primary analysis and systematic review. J Pediatr. 2015;167(2):317–24 e311.PubMedPubMedCentralCrossRef
24.
go back to reference van Rossem L, Kiefte-de Jong JC, Looman CW, et al. Weight change before and after the introduction of solids: results from a longitudinal birth cohort. Br J Nutr. 2013;109(2):370–5.PubMedCrossRef van Rossem L, Kiefte-de Jong JC, Looman CW, et al. Weight change before and after the introduction of solids: results from a longitudinal birth cohort. Br J Nutr. 2013;109(2):370–5.PubMedCrossRef
25.
go back to reference Lin SL, Leung GM, Lam TH, Schooling CM. Timing of solid food introduction and obesity: Hong Kong's "children of 1997" birth cohort. Pediatrics. 2013;131(5):e1459–67.PubMedCrossRef Lin SL, Leung GM, Lam TH, Schooling CM. Timing of solid food introduction and obesity: Hong Kong's "children of 1997" birth cohort. Pediatrics. 2013;131(5):e1459–67.PubMedCrossRef
26.
go back to reference Griffiths LJ, Smeeth L, Hawkins SS, Cole TJ, Dezateux C. Effects of infant feeding practice on weight gain from birth to 3 years. Arch Dis Child. 2009;94(8):577–82.PubMedCrossRef Griffiths LJ, Smeeth L, Hawkins SS, Cole TJ, Dezateux C. Effects of infant feeding practice on weight gain from birth to 3 years. Arch Dis Child. 2009;94(8):577–82.PubMedCrossRef
27.
go back to reference Baker JL, Michaelsen KF, Rasmussen KM, Sorensen TI. Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction are associated with infant weight gain. Am J Clin Nutr. 2004;80(6):1579–88.PubMedCrossRef Baker JL, Michaelsen KF, Rasmussen KM, Sorensen TI. Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction are associated with infant weight gain. Am J Clin Nutr. 2004;80(6):1579–88.PubMedCrossRef
28.
go back to reference Pluymen LPM, Wijga AH, Gehring U, Koppelman GH, Smit HA, van Rossem L. Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands: the PIAMA birth cohort study. Eur J Nutr. 2018;57(5):1985–93.PubMedPubMedCentralCrossRef Pluymen LPM, Wijga AH, Gehring U, Koppelman GH, Smit HA, van Rossem L. Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands: the PIAMA birth cohort study. Eur J Nutr. 2018;57(5):1985–93.PubMedPubMedCentralCrossRef
29.
go back to reference Papoutsou S, Savva SC, Hunsberger M, et al. Timing of solid food introduction and association with later childhood overweight and obesity: The IDEFICS study. Matern Child Nutr. 2018;14:1.CrossRef Papoutsou S, Savva SC, Hunsberger M, et al. Timing of solid food introduction and association with later childhood overweight and obesity: The IDEFICS study. Matern Child Nutr. 2018;14:1.CrossRef
30.
go back to reference Besharat Pour M, Bergstrom A, Bottai M, Magnusson J, Kull I, Moradi T. Age at adiposity rebound and body mass index trajectory from early childhood to adolescence; differences by breastfeeding and maternal immigration background. Pediatr Obesity. 2017;12(1):75–84.CrossRef Besharat Pour M, Bergstrom A, Bottai M, Magnusson J, Kull I, Moradi T. Age at adiposity rebound and body mass index trajectory from early childhood to adolescence; differences by breastfeeding and maternal immigration background. Pediatr Obesity. 2017;12(1):75–84.CrossRef
31.
go back to reference van Eijsden M, Meijers CM, Jansen JE, de Kroon ML, Vrijkotte TG. Cultural variation in early feeding pattern and maternal perceptions of infant growth. Br J Nutr. 2015;114(3):481–8.PubMedCrossRef van Eijsden M, Meijers CM, Jansen JE, de Kroon ML, Vrijkotte TG. Cultural variation in early feeding pattern and maternal perceptions of infant growth. Br J Nutr. 2015;114(3):481–8.PubMedCrossRef
32.
go back to reference Hof MH, van Dijk AE, van Eijsden M, Vrijkotte TG, Zwinderman AH. Comparison of growth between native and immigrant infants between 0-3 years from the Dutch ABCD cohort. Ann Hum Biol. 2011;38(5):544–55.PubMedCrossRef Hof MH, van Dijk AE, van Eijsden M, Vrijkotte TG, Zwinderman AH. Comparison of growth between native and immigrant infants between 0-3 years from the Dutch ABCD cohort. Ann Hum Biol. 2011;38(5):544–55.PubMedCrossRef
33.
go back to reference de Hoog ML, van Eijsden M, Stronks K, Gemke RJ, Vrijkotte TG. The role of infant feeding practices in the explanation for ethnic differences in infant growth: the Amsterdam born children and their development study. Br J Nutr. 2011;106(10):1592–601.PubMedCrossRef de Hoog ML, van Eijsden M, Stronks K, Gemke RJ, Vrijkotte TG. The role of infant feeding practices in the explanation for ethnic differences in infant growth: the Amsterdam born children and their development study. Br J Nutr. 2011;106(10):1592–601.PubMedCrossRef
34.
go back to reference Bulk-Bunschoten AM, Pasker-de Jong PC, van Wouwe JP, de Groot CJ. Ethnic variation in infant-feeding practices in the Netherlands and weight gain at 4 months. J Human Lactation. 2008;24(1):42–9.CrossRef Bulk-Bunschoten AM, Pasker-de Jong PC, van Wouwe JP, de Groot CJ. Ethnic variation in infant-feeding practices in the Netherlands and weight gain at 4 months. J Human Lactation. 2008;24(1):42–9.CrossRef
35.
go back to reference de Wilde JA, Meeuwsen RC, Middelkoop BJ. Growing ethnic disparities in prevalence of overweight and obesity in children 2-15 years in the Netherlands. Eur J Pub Health. 2018;28(6):1023–8.CrossRef de Wilde JA, Meeuwsen RC, Middelkoop BJ. Growing ethnic disparities in prevalence of overweight and obesity in children 2-15 years in the Netherlands. Eur J Pub Health. 2018;28(6):1023–8.CrossRef
36.
go back to reference van Eijsden M, Vrijkotte TG, Gemke RJ, van der Wal MF. Cohort profile: the Amsterdam born children and their development (ABCD) study. Int J Epidemiol. 2011;40(5):1176–86.PubMedCrossRef van Eijsden M, Vrijkotte TG, Gemke RJ, van der Wal MF. Cohort profile: the Amsterdam born children and their development (ABCD) study. Int J Epidemiol. 2011;40(5):1176–86.PubMedCrossRef
37.
go back to reference Stronks K, Kulu-Glasgow I, Agyemang C. The utility of 'country of birth' for the classification of ethnic groups in health research: the Dutch experience. Ethnicity & Health. 2009;14(3):255–69.CrossRef Stronks K, Kulu-Glasgow I, Agyemang C. The utility of 'country of birth' for the classification of ethnic groups in health research: the Dutch experience. Ethnicity & Health. 2009;14(3):255–69.CrossRef
38.
go back to reference Organization/UNICEF WH. Global strategy for infant and young child feeding. 2003. Organization/UNICEF WH. Global strategy for infant and young child feeding. 2003.
39.
go back to reference Peeters DLC, van Wouwe JP. Peiling melkvoeding van zuigelingen 2015. Leiden: TNO; 2015. Peeters DLC, van Wouwe JP. Peiling melkvoeding van zuigelingen 2015. Leiden: TNO; 2015.
40.
go back to reference Lanting CI vWJ. Peiling Melkvoeding van Zuigelingen 2005: Borstvoeding in Nederland en relatie met certificering door stichting Zorg voor Borstvoeding. Leiden: TNO;2006. Lanting CI vWJ. Peiling Melkvoeding van Zuigelingen 2005: Borstvoeding in Nederland en relatie met certificering door stichting Zorg voor Borstvoeding. Leiden: TNO;2006.
41.
go back to reference Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119–32.PubMedCrossRef Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: a position paper by the European Society for Paediatric Gastroenterology, Hepatology, and nutrition (ESPGHAN) committee on nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119–32.PubMedCrossRef
42.
go back to reference de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–7.PubMedPubMedCentralCrossRef de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–7.PubMedPubMedCentralCrossRef
45.
go back to reference de Onis M, Garza C, Onyango AW, Rolland-Cachera MF. WHO growth standards for infants and young children. Archives de pediatrie. 2009;16(1):47–53.PubMed de Onis M, Garza C, Onyango AW, Rolland-Cachera MF. WHO growth standards for infants and young children. Archives de pediatrie. 2009;16(1):47–53.PubMed
46.
go back to reference Imai CM, Gunnarsdottir I, Thorisdottir B, Halldorsson TI, Thorsdottir I. Associations between infant feeding practice prior to six months and body mass index at six years of age. Nutrients. 2014;6(4):1608–17.PubMedPubMedCentralCrossRef Imai CM, Gunnarsdottir I, Thorisdottir B, Halldorsson TI, Thorsdottir I. Associations between infant feeding practice prior to six months and body mass index at six years of age. Nutrients. 2014;6(4):1608–17.PubMedPubMedCentralCrossRef
47.
go back to reference Sun C, Foskey RJ, Allen KJ, et al. The Impact of Timing of Introduction of Solids on Infant Body Mass Index. J Pediatr. 2016;179:104–10 e101.PubMedCrossRef Sun C, Foskey RJ, Allen KJ, et al. The Impact of Timing of Introduction of Solids on Infant Body Mass Index. J Pediatr. 2016;179:104–10 e101.PubMedCrossRef
48.
go back to reference Huh SY, Rifas-Shiman SL, Taveras EM, Oken E, Gillman MW. Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics. 2011;127(3):e544–51.PubMedPubMedCentralCrossRef Huh SY, Rifas-Shiman SL, Taveras EM, Oken E, Gillman MW. Timing of solid food introduction and risk of obesity in preschool-aged children. Pediatrics. 2011;127(3):e544–51.PubMedPubMedCentralCrossRef
49.
go back to reference Moss BG, Yeaton WH. Early childhood healthy and obese weight status: potentially protective benefits of breastfeeding and delaying solid foods. Matern Child Health J. 2014;18(5):1224–32.PubMedCrossRef Moss BG, Yeaton WH. Early childhood healthy and obese weight status: potentially protective benefits of breastfeeding and delaying solid foods. Matern Child Health J. 2014;18(5):1224–32.PubMedCrossRef
50.
go back to reference Toschke AM, Martin RM, von Kries R, Wells J, Smith GD, Ness AR. Infant feeding method and obesity: body mass index and dual-energy X-ray absorptiometry measurements at 9-10 y of age from the Avon longitudinal study of parents and children (ALSPAC). Am J Clin Nutr. 2007;85(6):1578–85.PubMedCrossRef Toschke AM, Martin RM, von Kries R, Wells J, Smith GD, Ness AR. Infant feeding method and obesity: body mass index and dual-energy X-ray absorptiometry measurements at 9-10 y of age from the Avon longitudinal study of parents and children (ALSPAC). Am J Clin Nutr. 2007;85(6):1578–85.PubMedCrossRef
51.
go back to reference Durmus B, Heppe DH, Gishti O, et al. General and abdominal fat outcomes in school-age children associated with infant breastfeeding patterns. Am J Clin Nutr. 2014;99(6):1351–8.PubMedCrossRef Durmus B, Heppe DH, Gishti O, et al. General and abdominal fat outcomes in school-age children associated with infant breastfeeding patterns. Am J Clin Nutr. 2014;99(6):1351–8.PubMedCrossRef
52.
go back to reference Kramer MS, Guo T, Platt RW, et al. Feeding effects on growth during infancy. J Pediatr. 2004;145(5):600–5.PubMedCrossRef Kramer MS, Guo T, Platt RW, et al. Feeding effects on growth during infancy. J Pediatr. 2004;145(5):600–5.PubMedCrossRef
53.
go back to reference Mihrshahi S, Battistutta D, Magarey A, Daniels LA. Determinants of rapid weight gain during infancy: baseline results from the NOURISH randomised controlled trial. BMC Pediatr. 2011;11:99.PubMedPubMedCentralCrossRef Mihrshahi S, Battistutta D, Magarey A, Daniels LA. Determinants of rapid weight gain during infancy: baseline results from the NOURISH randomised controlled trial. BMC Pediatr. 2011;11:99.PubMedPubMedCentralCrossRef
54.
go back to reference Grote V, Schiess SA, Closa-Monasterolo R, et al. The introduction of solid food and growth in the first 2 y of life in formula-fed children: analysis of data from a European cohort study. Am J Clin Nutr. 2011;94(6 Suppl):1785s–93s.PubMed Grote V, Schiess SA, Closa-Monasterolo R, et al. The introduction of solid food and growth in the first 2 y of life in formula-fed children: analysis of data from a European cohort study. Am J Clin Nutr. 2011;94(6 Suppl):1785s–93s.PubMed
55.
go back to reference Escribano J, Luque V, Ferre N, et al. Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU childhood obesity Programme. Int J Obes. 2012;36(4):548–53.CrossRef Escribano J, Luque V, Ferre N, et al. Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU childhood obesity Programme. Int J Obes. 2012;36(4):548–53.CrossRef
56.
go back to reference Gunther AL, Buyken AE, Kroke A. Protein intake during the period of complementary feeding and early childhood and the association with body mass index and percentage body fat at 7 y of age. Am J Clin Nutr. 2007;85(6):1626–33.PubMedCrossRef Gunther AL, Buyken AE, Kroke A. Protein intake during the period of complementary feeding and early childhood and the association with body mass index and percentage body fat at 7 y of age. Am J Clin Nutr. 2007;85(6):1626–33.PubMedCrossRef
57.
go back to reference Hopkins D, Steer CD, Northstone K, Emmett PM. Effects on childhood body habitus of feeding large volumes of cow or formula milk compared with breastfeeding in the latter part of infancy. Am J Clin Nutr. 2015;102(5):1096–103.PubMedPubMedCentralCrossRef Hopkins D, Steer CD, Northstone K, Emmett PM. Effects on childhood body habitus of feeding large volumes of cow or formula milk compared with breastfeeding in the latter part of infancy. Am J Clin Nutr. 2015;102(5):1096–103.PubMedPubMedCentralCrossRef
58.
go back to reference Sahota P, Gatenby LA, Greenwood DC, Bryant M, Robinson S, Wright J. Ethnic differences in dietary intake at age 12 and 18 months: the born in Bradford 1000 study. Public Health Nutr. 2016;19(1):114–22.PubMedCrossRef Sahota P, Gatenby LA, Greenwood DC, Bryant M, Robinson S, Wright J. Ethnic differences in dietary intake at age 12 and 18 months: the born in Bradford 1000 study. Public Health Nutr. 2016;19(1):114–22.PubMedCrossRef
59.
go back to reference Perrin EM, Rothman RL, Sanders LM, et al. Racial and ethnic differences associated with feeding- and activity-related behaviors in infants. Pediatrics. 2014;133(4):e857–67.PubMedPubMedCentralCrossRef Perrin EM, Rothman RL, Sanders LM, et al. Racial and ethnic differences associated with feeding- and activity-related behaviors in infants. Pediatrics. 2014;133(4):e857–67.PubMedPubMedCentralCrossRef
60.
go back to reference Peneau S, Hercberg S, Rolland-Cachera MF. Breastfeeding, early nutrition, and adult body fat. J Pediatr. 2014;164(6):1363–8.PubMedCrossRef Peneau S, Hercberg S, Rolland-Cachera MF. Breastfeeding, early nutrition, and adult body fat. J Pediatr. 2014;164(6):1363–8.PubMedCrossRef
61.
go back to reference Stryjecki C, Alyass A, Meyre D. Ethnic and population differences in the genetic predisposition to human obesity. Obes Rev. 2018;19(1):62–80.PubMedCrossRef Stryjecki C, Alyass A, Meyre D. Ethnic and population differences in the genetic predisposition to human obesity. Obes Rev. 2018;19(1):62–80.PubMedCrossRef
62.
go back to reference Gishti O, Kruithof CJ, Felix JF, et al. Ethnic disparities in general and abdominal adiposity at school age: a multiethnic population-based cohort study in the Netherlands. Ann Nutr Metab. 2014;64(3–4):208–17.PubMedCrossRef Gishti O, Kruithof CJ, Felix JF, et al. Ethnic disparities in general and abdominal adiposity at school age: a multiethnic population-based cohort study in the Netherlands. Ann Nutr Metab. 2014;64(3–4):208–17.PubMedCrossRef
63.
go back to reference Cole TJ, Faith MS, Pietrobelli A, Heo M. What is the best measure of adiposity change in growing children: BMI, BMI %, BMI z-score or BMI centile? Eur J Clin Nutr. 2005;59(3):419–25.PubMedCrossRef Cole TJ, Faith MS, Pietrobelli A, Heo M. What is the best measure of adiposity change in growing children: BMI, BMI %, BMI z-score or BMI centile? Eur J Clin Nutr. 2005;59(3):419–25.PubMedCrossRef
Metadata
Title
Feeding patterns and BMI trajectories during infancy: a multi-ethnic, prospective birth cohort
Authors
Outi Sirkka
Michel H. Hof
Tanja Vrijkotte
Marieke Abrahamse-Berkeveld
Jutka Halberstadt
Jacob C. Seidell
Margreet R. Olthof
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Overweight
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-020-02456-4

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue