Skip to main content
Top
Published in: Clinical and Translational Oncology 8/2020

Open Access 01-08-2020 | Ovarian Cancer | Review Article

Organoid of ovarian cancer: genomic analysis and drug screening

Authors: H.-D. Liu, B.-R. Xia, M.-Z. Jin, G. Lou

Published in: Clinical and Translational Oncology | Issue 8/2020

Login to get access

Abstract

Ovarian cancer is the most common malignant tumors of the female reproductive system, and its standard treatments are cytoreductive surgery and platinum-based adjuvant chemotherapy. Great advances have been achieved in novel treatment strategies, including targeted therapy and immunotherapy. However, ovarian cancer has the highest mortality rate among gynecological tumors due to therapeutic resistance and the gap between preclinical data and actual clinical efficacy. Organoids are a 3D culture model that markedly affects gene analysis, drug screening, and drug sensitivity determination of tumors, especially when used in targeted therapy and immunotherapy. In addition, organoid can lead to advances in the preclinical research of ovarian cancer due to its convenient cultivation, good genetic stability, and high homology with primary tumors.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.PubMed Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.PubMed
2.
go back to reference Torre LA, Islami F, Siegel RL, et al. Global cancer in women: burden and trends. Cancer Epidemiol Biomark Prev. 2017;26(4):444–57. Torre LA, Islami F, Siegel RL, et al. Global cancer in women: burden and trends. Cancer Epidemiol Biomark Prev. 2017;26(4):444–57.
3.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.PubMed Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.PubMed
4.
go back to reference Es HA, Montazeri L, Aref AR, et al. Personalized cancer medicine: an organoid approach. Trends Biotechnol. 2018;36(4):358–71. Es HA, Montazeri L, Aref AR, et al. Personalized cancer medicine: an organoid approach. Trends Biotechnol. 2018;36(4):358–71.
5.
go back to reference Jin MZ, Han RR, Qiu GZ, et al. Organoids: an intermediate modeling platform in precision oncology. Cancer Lett. 2018;414:174–80.PubMed Jin MZ, Han RR, Qiu GZ, et al. Organoids: an intermediate modeling platform in precision oncology. Cancer Lett. 2018;414:174–80.PubMed
6.
go back to reference Domcke S, Sinha R, Levine DA, et al. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:21–6. Domcke S, Sinha R, Levine DA, et al. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:21–6.
7.
go back to reference Maru Y, Hippo Y. Current status of patient-derived ovarian cancer models. Cells. 2019;8(5):505.PubMedCentral Maru Y, Hippo Y. Current status of patient-derived ovarian cancer models. Cells. 2019;8(5):505.PubMedCentral
8.
go back to reference Sawyers C. Targeted cancer therapy. Nature. 2004;4329(7015):294–7. Sawyers C. Targeted cancer therapy. Nature. 2004;4329(7015):294–7.
9.
go back to reference Roschke AV, Tonon G, Gehlhaus KS, et al. Karyotypic complexity of the NCI-60 drug-screening panel. CancerRes. 2003;63(24):8634–47. Roschke AV, Tonon G, Gehlhaus KS, et al. Karyotypic complexity of the NCI-60 drug-screening panel. CancerRes. 2003;63(24):8634–47.
10.
go back to reference Chijiwa T, Kavai K, Noguchi A, et al. Establishment of patient-derived cancer xenografts in immunodeficient NOG mice. Int J Oncol. 2015;47(1):61–70.PubMedPubMedCentral Chijiwa T, Kavai K, Noguchi A, et al. Establishment of patient-derived cancer xenografts in immunodeficient NOG mice. Int J Oncol. 2015;47(1):61–70.PubMedPubMedCentral
11.
go back to reference Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50(1):1–10.PubMed Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50(1):1–10.PubMed
12.
go back to reference Ga H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25. Ga H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21(11):1318–25.
13.
go back to reference Kawaguchi T, Foster BA, Young J, et al. Current update of patient-derived xenograft model for translational breast cancer research. J Mammary Gland Biol Neoplasia. 2017;22(2):131–9.PubMedPubMedCentral Kawaguchi T, Foster BA, Young J, et al. Current update of patient-derived xenograft model for translational breast cancer research. J Mammary Gland Biol Neoplasia. 2017;22(2):131–9.PubMedPubMedCentral
14.
go back to reference Wu J, Liu X, Nayak SG, et al. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS ONE ONE. 2017;12(9):e0184984. Wu J, Liu X, Nayak SG, et al. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS ONE ONE. 2017;12(9):e0184984.
15.
go back to reference Lee WS, Kim HY, Seok JY, et al. Genomic profiling of patient-derived colon cancer xenograft models. Medicine(Baltimore). 2014;93(28):e298. Lee WS, Kim HY, Seok JY, et al. Genomic profiling of patient-derived colon cancer xenograft models. Medicine(Baltimore). 2014;93(28):e298.
16.
go back to reference Erriquez J, Olivero M, Mittica G, et al. Xenopatients show the need for precision medicine approach to chemotherapy in ovarian cancer. Oncotarget. 2016;24(3):26181–91. Erriquez J, Olivero M, Mittica G, et al. Xenopatients show the need for precision medicine approach to chemotherapy in ovarian cancer. Oncotarget. 2016;24(3):26181–91.
17.
go back to reference George E, Kim H, Krepler C, et al. A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers. JCI Insight. 2017;2(1):e89760.PubMedPubMedCentral George E, Kim H, Krepler C, et al. A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers. JCI Insight. 2017;2(1):e89760.PubMedPubMedCentral
18.
go back to reference Colombo PE, du Manoir S, Orsett B, et al. Ovarian carcinoma patient derived xenografts reproduce their tumor of origin and preserve an oligoclonal structure. Pierre-Emmanuel Colombo. Oncotarget. 2015;6(29):28327–40.PubMedPubMedCentral Colombo PE, du Manoir S, Orsett B, et al. Ovarian carcinoma patient derived xenografts reproduce their tumor of origin and preserve an oligoclonal structure. Pierre-Emmanuel Colombo. Oncotarget. 2015;6(29):28327–40.PubMedPubMedCentral
19.
go back to reference Ricci F, Guffanti F, Damia G, et al. Combination of paclitaxel, bevacizumab and MEK162 in second line treatment in platinum-relapsing patient derived ovarian cancer xenografts. Mol Cancer. 2017;16(1):97.PubMedPubMedCentral Ricci F, Guffanti F, Damia G, et al. Combination of paclitaxel, bevacizumab and MEK162 in second line treatment in platinum-relapsing patient derived ovarian cancer xenografts. Mol Cancer. 2017;16(1):97.PubMedPubMedCentral
20.
go back to reference Guffanti F, Fratelli M, Ganzinelli M, et al. Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts. Oncotarget. 2018;9(37):24707–17.PubMedPubMedCentral Guffanti F, Fratelli M, Ganzinelli M, et al. Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts. Oncotarget. 2018;9(37):24707–17.PubMedPubMedCentral
21.
go back to reference Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov. 2011;10(3):179–87.PubMed Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov. 2011;10(3):179–87.PubMed
22.
go back to reference Hidalgo M, Bruckheimer E, Rajeshkumar NV, et al. A pilot clinical study of treatment guided by personalized tumor grafts in patients with advanced cancer. Mol Cancer Ther. 2011;10(8):1311–6.PubMedPubMedCentral Hidalgo M, Bruckheimer E, Rajeshkumar NV, et al. A pilot clinical study of treatment guided by personalized tumor grafts in patients with advanced cancer. Mol Cancer Ther. 2011;10(8):1311–6.PubMedPubMedCentral
23.
go back to reference Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.PubMedPubMedCentral Tentler JJ, Tan AC, Weekes CD, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.PubMedPubMedCentral
24.
go back to reference Kryczek I, Liu S, Roh M, et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer. 2012;130(1):29–39.PubMed Kryczek I, Liu S, Roh M, et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer. 2012;130(1):29–39.PubMed
25.
go back to reference Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267–84.PubMed Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267–84.PubMed
26.
go back to reference Stewart JM, Shaw PA, Gedye C, et al. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci USA. 2011;108(16):6468–73.PubMedPubMedCentral Stewart JM, Shaw PA, Gedye C, et al. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc Natl Acad Sci USA. 2011;108(16):6468–73.PubMedPubMedCentral
28.
go back to reference Klymenko Y, Kim O, Loughran E, et al. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene. 2017;36(42):5840–51.PubMedPubMedCentral Klymenko Y, Kim O, Loughran E, et al. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene. 2017;36(42):5840–51.PubMedPubMedCentral
29.
go back to reference Mo L, Pospichalova V, Huang Z, et al. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells. PLoS ONE ONE. 2015;10(7):e0131579. Mo L, Pospichalova V, Huang Z, et al. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells. PLoS ONE ONE. 2015;10(7):e0131579.
30.
go back to reference Bapat SA, Mali AM, Koppikar CB, et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65(8):3025–9.PubMed Bapat SA, Mali AM, Koppikar CB, et al. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65(8):3025–9.PubMed
31.
go back to reference Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMed Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMed
32.
go back to reference Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11.PubMed Ponti D, Costa A, Zaffaroni N, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11.PubMed
33.
go back to reference Zhang Y, Xu W, Guo H, et al. NOTCH1 signaling regulates self-renewal and platinum chemoresistance of cancer stem–like cells in human non-small cell lung cancer. Cancer Res. 2017;77(11):3082–91.PubMed Zhang Y, Xu W, Guo H, et al. NOTCH1 signaling regulates self-renewal and platinum chemoresistance of cancer stem–like cells in human non-small cell lung cancer. Cancer Res. 2017;77(11):3082–91.PubMed
34.
go back to reference Ishiguro T, Sato A, Ohata H, et al. Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity. Cancer Res. 2016;76(1):150–60.PubMed Ishiguro T, Sato A, Ohata H, et al. Establishment and characterization of an in vitro model of ovarian cancer stem-like cells with an enhanced proliferative capacity. Cancer Res. 2016;76(1):150–60.PubMed
35.
go back to reference Raghavan S, Mehta P, Ward MR, et al. Personalized medicine-based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids. Clin Cancer Res. 2017;23(22):6934–45.PubMedPubMedCentral Raghavan S, Mehta P, Ward MR, et al. Personalized medicine-based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids. Clin Cancer Res. 2017;23(22):6934–45.PubMedPubMedCentral
36.
go back to reference Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.PubMedPubMedCentral Gao D, Vela I, Sboner A, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.PubMedPubMedCentral
37.
go back to reference Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, Adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.PubMed Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, Adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.PubMed
38.
go back to reference Boj SF, Hwang CL, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–38.PubMed Boj SF, Hwang CL, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1–2):324–38.PubMed
40.
go back to reference Nakamura H, Sugano M, Ishii G, et al. Organoid culture containing cancer cells and stromal cells reveals that podoplanin-positive cancer-associated fibroblasts enhance proliferation of lung cancer cells. Lung Cancer. 2019;134:100–7.PubMed Nakamura H, Sugano M, Ishii G, et al. Organoid culture containing cancer cells and stromal cells reveals that podoplanin-positive cancer-associated fibroblasts enhance proliferation of lung cancer cells. Lung Cancer. 2019;134:100–7.PubMed
42.
go back to reference Sugarman R, Patel R, Saif MW, et al. Pharmacokinetics and pharmacodynamics of new drugs for pancreatic cancer. Expert Opin Drug Metab Toxicol. 2019;15(7):541–52.PubMed Sugarman R, Patel R, Saif MW, et al. Pharmacokinetics and pharmacodynamics of new drugs for pancreatic cancer. Expert Opin Drug Metab Toxicol. 2019;15(7):541–52.PubMed
43.
go back to reference Gendoo DMA, Denroche RE, Haibe-Kains B, et al. Whole genomes define concordance of matched primary, xenograft, and organoid models of pancreas cancer. PLoS Comput Biol. 2019;15(1):e1006596.PubMedPubMedCentral Gendoo DMA, Denroche RE, Haibe-Kains B, et al. Whole genomes define concordance of matched primary, xenograft, and organoid models of pancreas cancer. PLoS Comput Biol. 2019;15(1):e1006596.PubMedPubMedCentral
44.
go back to reference Ponz-Sarvise M, Corbo V, Tuveson DA, et al. Identification of resistance pathways specific to malignancy using organoid models of pancreatic cancer. Clin Cancer Res. 2019;25(22):6742–55.PubMedPubMedCentral Ponz-Sarvise M, Corbo V, Tuveson DA, et al. Identification of resistance pathways specific to malignancy using organoid models of pancreatic cancer. Clin Cancer Res. 2019;25(22):6742–55.PubMedPubMedCentral
45.
go back to reference Yan Z, Ohuchida K, Nakamura M, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019;38(1):221.PubMedPubMedCentral Yan Z, Ohuchida K, Nakamura M, et al. Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer-stromal interaction and metastasis. J Exp Clin Cancer Res. 2019;38(1):221.PubMedPubMedCentral
46.
go back to reference Choi SI, Jeon AR, Kim YH, et al. Development of patient-derived preclinical platform for metastatic pancreatic cancer: pdox and a subsequent organoid model system using percutaneous biopsy samples. Front Oncol. 2019;9:875.PubMedPubMedCentral Choi SI, Jeon AR, Kim YH, et al. Development of patient-derived preclinical platform for metastatic pancreatic cancer: pdox and a subsequent organoid model system using percutaneous biopsy samples. Front Oncol. 2019;9:875.PubMedPubMedCentral
48.
go back to reference Hennig A, Wolf L, Welsch T, et al. CFTR expression analysis for subtyping of human pancreatic cancer organoids. Stem Cells Int. 2019;2019:1024614.PubMedPubMedCentral Hennig A, Wolf L, Welsch T, et al. CFTR expression analysis for subtyping of human pancreatic cancer organoids. Stem Cells Int. 2019;2019:1024614.PubMedPubMedCentral
49.
go back to reference Münch NS, Fang HY, Quante M, et al. High-fat diet accelerates carcinogenesis in a mouse model of barrett’s esophagus via interleukin 8 and alterations to the gut microbiome. Gastroenterology. 2019;157(2):492–506.e2.PubMed Münch NS, Fang HY, Quante M, et al. High-fat diet accelerates carcinogenesis in a mouse model of barrett’s esophagus via interleukin 8 and alterations to the gut microbiome. Gastroenterology. 2019;157(2):492–506.e2.PubMed
50.
go back to reference Li J, Xu H, Zhan X, et al. Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol. 2019;145(11):2637–47.PubMed Li J, Xu H, Zhan X, et al. Malignant ascites-derived organoid (MADO) cultures for gastric cancer in vitro modelling and drug screening. J Cancer Res Clin Oncol. 2019;145(11):2637–47.PubMed
51.
go back to reference Wang X, Liang Q, Yu J, et al. C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncrna dusp5p1 and associates with patient outcomes. Clin Cancer Res. 2019;25(10):3128–40.PubMed Wang X, Liang Q, Yu J, et al. C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncrna dusp5p1 and associates with patient outcomes. Clin Cancer Res. 2019;25(10):3128–40.PubMed
52.
go back to reference Holokai L, Chakrabarti J, Zavros Y, et al. Increased programmed death-ligand 1 is an early epithelial cell response to helicobacter pylori infection. PLoS Pathog. 2019;15(1):e1007468.PubMedPubMedCentral Holokai L, Chakrabarti J, Zavros Y, et al. Increased programmed death-ligand 1 is an early epithelial cell response to helicobacter pylori infection. PLoS Pathog. 2019;15(1):e1007468.PubMedPubMedCentral
53.
go back to reference Chatterjee S, Bhat V, Raouf A, et al. Paracrine crosstalk between fibroblasts and ER+ breast cancer cells creates an IL1β-enriched niche that promotes tumor growth. iScience. 2019;19:388–401.PubMedPubMedCentral Chatterjee S, Bhat V, Raouf A, et al. Paracrine crosstalk between fibroblasts and ER+ breast cancer cells creates an IL1β-enriched niche that promotes tumor growth. iScience. 2019;19:388–401.PubMedPubMedCentral
54.
go back to reference Mazzucchelli S, Piccotti F, Corsi F, et al. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol Proced Online. 2019;21:12.PubMedPubMedCentral Mazzucchelli S, Piccotti F, Corsi F, et al. Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol Proced Online. 2019;21:12.PubMedPubMedCentral
55.
go back to reference Sharick JT, Jeffery JJ, Skala MC, et al. Cellular metabolic heterogeneity in vivo is recapitulated in tumor organoids. Neoplasia. 2019;21(6):615–26.PubMedPubMedCentral Sharick JT, Jeffery JJ, Skala MC, et al. Cellular metabolic heterogeneity in vivo is recapitulated in tumor organoids. Neoplasia. 2019;21(6):615–26.PubMedPubMedCentral
56.
go back to reference Mollica PA, Booth-Creech EN, Bruno RD, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.PubMedPubMedCentral Mollica PA, Booth-Creech EN, Bruno RD, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201–13.PubMedPubMedCentral
58.
go back to reference Driehuis E, Spelier S, Oliveira S, et al. Patient-derived head and neck cancer organoids recapitulate egfr expression levels of respective tissues and are responsive to egfr-targeted photodynamic therapy. J Clin Med. 2019;8(11). Driehuis E, Spelier S, Oliveira S, et al. Patient-derived head and neck cancer organoids recapitulate egfr expression levels of respective tissues and are responsive to egfr-targeted photodynamic therapy. J Clin Med. 2019;8(11).
59.
go back to reference Driehuis E, Kolders S, Clevers H, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 2019;9(7):852–71.PubMed Driehuis E, Kolders S, Clevers H, et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 2019;9(7):852–71.PubMed
60.
go back to reference Linkous A, Balamatsias D, Fine HA, et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 2019;26(12):3203–3211.e5.PubMedPubMedCentral Linkous A, Balamatsias D, Fine HA, et al. Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep. 2019;26(12):3203–3211.e5.PubMedPubMedCentral
61.
go back to reference Nath D, Li X, Kotula L, et al. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Commun Signal. 2019;17(1):120.PubMedPubMedCentral Nath D, Li X, Kotula L, et al. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Commun Signal. 2019;17(1):120.PubMedPubMedCentral
62.
go back to reference Adams EJ, Karthaus WR, Sawyers CL, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019;571(7765):408–12.PubMedPubMedCentral Adams EJ, Karthaus WR, Sawyers CL, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019;571(7765):408–12.PubMedPubMedCentral
63.
go back to reference Wadosky KM, Wang Y, Goodrich DW, et al. Generation of tumor organoids from genetically engineered mouse models of prostate cancer. J Vis Exp. 2019;13(148). Wadosky KM, Wang Y, Goodrich DW, et al. Generation of tumor organoids from genetically engineered mouse models of prostate cancer. J Vis Exp. 2019;13(148).
64.
go back to reference Elbadawy M, Usui T, Sasaki K, et al. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Sci. 2019;110(9):2806–21.PubMedPubMedCentral Elbadawy M, Usui T, Sasaki K, et al. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Sci. 2019;110(9):2806–21.PubMedPubMedCentral
65.
go back to reference Mullenders J, de Jongh E, Clevers HC, et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci U S A. 2019;116(10):4567–74.PubMedPubMedCentral Mullenders J, de Jongh E, Clevers HC, et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci U S A. 2019;116(10):4567–74.PubMedPubMedCentral
66.
go back to reference Wang S, Kim J, Jung Y, et al. Tumor necrosis factor-inducible gene 6 reprograms hepatic stellate cells into stem-like cells, which ameliorates liver damage in mouse. Biomaterials. 2019;219:119375.PubMed Wang S, Kim J, Jung Y, et al. Tumor necrosis factor-inducible gene 6 reprograms hepatic stellate cells into stem-like cells, which ameliorates liver damage in mouse. Biomaterials. 2019;219:119375.PubMed
67.
go back to reference Sun L, Wang Y, Hui L, et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol. 2019;21(8):1015–26.PubMed Sun L, Wang Y, Hui L, et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol. 2019;21(8):1015–26.PubMed
68.
go back to reference Artegiani B, van Voorthuijsen L, Clevers H, et al. Probing the tumor suppressor function of bap1 in crispr-engineered human liver organoids. Cell Stem Cell. 2019;24(6):927–943.e6.PubMed Artegiani B, van Voorthuijsen L, Clevers H, et al. Probing the tumor suppressor function of bap1 in crispr-engineered human liver organoids. Cell Stem Cell. 2019;24(6):927–943.e6.PubMed
69.
go back to reference Li L, Knutsdottir H, Selaru FM, et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight. 2019;4(2). Li L, Knutsdottir H, Selaru FM, et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight. 2019;4(2).
70.
go back to reference Saborowski A, Wolff K, Saborowski M, et al. Murine liver organoids as a genetically flexible system to study liver cancer in vivo and in vitro. Hepatol Commun. 2019;3(3):423–36.PubMedPubMedCentral Saborowski A, Wolff K, Saborowski M, et al. Murine liver organoids as a genetically flexible system to study liver cancer in vivo and in vitro. Hepatol Commun. 2019;3(3):423–36.PubMedPubMedCentral
72.
go back to reference Costales-Carrera A, Fernández-Barral A, Muñoz A, et al. Plocabulin displays strong cytotoxic activity in a personalized colon cancer patient-derived 3d organoid assay. Mar Drugs. 2019;17(11). Costales-Carrera A, Fernández-Barral A, Muñoz A, et al. Plocabulin displays strong cytotoxic activity in a personalized colon cancer patient-derived 3d organoid assay. Mar Drugs. 2019;17(11).
73.
go back to reference Rudloff I, Jardé T, Nold MF, et al. Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Transl Res. 2019;216:1–22.PubMed Rudloff I, Jardé T, Nold MF, et al. Molecular signature of interleukin-22 in colon carcinoma cells and organoid models. Transl Res. 2019;216:1–22.PubMed
74.
go back to reference Fernández-Barral A, Costales-Carrera A, Barbáchano A, et al. Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids. FEBS J. 2019;287(1):53–72.PubMedPubMedCentral Fernández-Barral A, Costales-Carrera A, Barbáchano A, et al. Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids. FEBS J. 2019;287(1):53–72.PubMedPubMedCentral
75.
go back to reference Ng S, Tan WJ, Kurisawa M, et al. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 2019;219:119400.PubMed Ng S, Tan WJ, Kurisawa M, et al. Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials. 2019;219:119400.PubMed
76.
go back to reference Bolhaqueiro ACF, Ponsioen B, Kops GJPL, et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat Genet. 2019;51(5):824–34.PubMed Bolhaqueiro ACF, Ponsioen B, Kops GJPL, et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat Genet. 2019;51(5):824–34.PubMed
77.
go back to reference Szvicsek Z, Oszvald Á, Wiener Z, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76(12):2463–76.PubMedPubMedCentral Szvicsek Z, Oszvald Á, Wiener Z, et al. Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci. 2019;76(12):2463–76.PubMedPubMedCentral
78.
go back to reference Sakahara M, Okamoto T, Yao R, et al. IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci. 2019;110(4):1293–305.PubMedPubMedCentral Sakahara M, Okamoto T, Yao R, et al. IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci. 2019;110(4):1293–305.PubMedPubMedCentral
79.
go back to reference Takeda H, Kataoka S, Oshima M, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci U S A. 2019;116(31):15635–44.PubMedPubMedCentral Takeda H, Kataoka S, Oshima M, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci U S A. 2019;116(31):15635–44.PubMedPubMedCentral
80.
go back to reference Matsui S, Okabayashi K, Kitagawa Y, et al. Interleukin-13 and its signaling pathway is associated with obesity-related colorectal tumorigenesis. Cancer Sci. 2019;110(7):2156–65.PubMedPubMedCentral Matsui S, Okabayashi K, Kitagawa Y, et al. Interleukin-13 and its signaling pathway is associated with obesity-related colorectal tumorigenesis. Cancer Sci. 2019;110(7):2156–65.PubMedPubMedCentral
83.
go back to reference Blanchard TG, Czinn SJ, Banerjee A, et al. Identification of cross talk between foxm1 and rassf1a as a therapeutic target of colon cancer. Cancers (Basel). 2019;11(2). Blanchard TG, Czinn SJ, Banerjee A, et al. Identification of cross talk between foxm1 and rassf1a as a therapeutic target of colon cancer. Cancers (Basel). 2019;11(2).
85.
go back to reference Maru Y, Tanaka N, Hippo Y, et al. Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma. Cancer Sci. 2019;110(9):2992–3005.PubMedPubMedCentral Maru Y, Tanaka N, Hippo Y, et al. Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma. Cancer Sci. 2019;110(9):2992–3005.PubMedPubMedCentral
87.
go back to reference Boretto M, Maenhoudt N, Vankelecom H, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21(8):1041–51.PubMed Boretto M, Maenhoudt N, Vankelecom H, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol. 2019;21(8):1041–51.PubMed
88.
go back to reference Kopper O, de Witte CJ, Clevers H, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25(5):838–49.PubMed Kopper O, de Witte CJ, Clevers H, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat Med. 2019;25(5):838–49.PubMed
89.
go back to reference Grassi L, Alfonsi R, Bonci D, et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 2019;10(3):201.PubMedPubMedCentral Grassi L, Alfonsi R, Bonci D, et al. Organoids as a new model for improving regenerative medicine and cancer personalized therapy in renal diseases. Cell Death Dis. 2019;10(3):201.PubMedPubMedCentral
90.
go back to reference Kopper O, De Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019;25(5):838–49.PubMed Kopper O, De Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019;25(5):838–49.PubMed
91.
go back to reference Onuma K, Ochiai M, Orihashi K, et al. Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci USA. 2013;110(27):11127–332.PubMedPubMedCentral Onuma K, Ochiai M, Orihashi K, et al. Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci USA. 2013;110(27):11127–332.PubMedPubMedCentral
92.
go back to reference Maru Y, Onuma K, Ochiai M, et al. Hippo, shortcuts to intestinal carcinogenesis by genetic engineering in organoids. Cancer Sci. 2019;110(3):858–66.PubMedPubMedCentral Maru Y, Onuma K, Ochiai M, et al. Hippo, shortcuts to intestinal carcinogenesis by genetic engineering in organoids. Cancer Sci. 2019;110(3):858–66.PubMedPubMedCentral
93.
go back to reference Maru Y, Tanaka N, Itami M, et al. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol Oncol. 2019;154(1):189–98.PubMed Maru Y, Tanaka N, Itami M, et al. Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecol Oncol. 2019;154(1):189–98.PubMed
94.
go back to reference van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.PubMedPubMedCentral van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933–45.PubMedPubMedCentral
95.
go back to reference Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1–2):373–86 ).PubMed Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1–2):373–86 ).PubMed
96.
go back to reference Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.PubMedPubMedCentral Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35.PubMedPubMedCentral
97.
go back to reference Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.PubMed Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827–38.PubMed
98.
go back to reference Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1–2):373–386.e10.PubMed Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell. 2018;172(1–2):373–386.e10.PubMed
99.
go back to reference Lee HG, Shin SJ, Chung HW, et al. Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J Gynecol Oncol. 2017;28(2):e14.PubMed Lee HG, Shin SJ, Chung HW, et al. Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J Gynecol Oncol. 2017;28(2):e14.PubMed
100.
go back to reference Hirst J, Pathak HB, Hyter S, et al. Licofelone enhances the efficacy of paclitaxel in ovarian cancer by reversing drug resistance and tumor stem-like properties. Cancer Res. 2018;78(15):4370–85.PubMedPubMedCentral Hirst J, Pathak HB, Hyter S, et al. Licofelone enhances the efficacy of paclitaxel in ovarian cancer by reversing drug resistance and tumor stem-like properties. Cancer Res. 2018;78(15):4370–85.PubMedPubMedCentral
101.
go back to reference Katsuda T, Kawamata M, Hagiwara K, et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell. 2017;20(1):41–55.PubMed Katsuda T, Kawamata M, Hagiwara K, et al. Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell. 2017;20(1):41–55.PubMed
102.
go back to reference Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2010;6(6):733–46.PubMed Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2010;6(6):733–46.PubMed
103.
go back to reference Ogihara T, Arakawa H, Jomura T, et al. Utility of human hepatocyte spheroids without feeder cells for evaluation of hepatotoxicity. J Toxicol Sci. 2017;42(4):499–507.PubMed Ogihara T, Arakawa H, Jomura T, et al. Utility of human hepatocyte spheroids without feeder cells for evaluation of hepatotoxicity. J Toxicol Sci. 2017;42(4):499–507.PubMed
104.
go back to reference Yu KN, Nadanaciva S, Rana P, et al. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays. Arch Toxicol. 2018;92(3):1295–310.PubMed Yu KN, Nadanaciva S, Rana P, et al. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays. Arch Toxicol. 2018;92(3):1295–310.PubMed
105.
go back to reference Hill SJ, Decker B, Roberts EA, et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 2018;8(11):1404–21.PubMedPubMedCentral Hill SJ, Decker B, Roberts EA, et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 2018;8(11):1404–21.PubMedPubMedCentral
106.
go back to reference Soragni A, Janzen DM, Johnson LM, et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 2016;29(1):90–103.PubMed Soragni A, Janzen DM, Johnson LM, et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell. 2016;29(1):90–103.PubMed
107.
go back to reference Hardwick N, Frankel PH, Cristea M. New approaches for immune directed treatment for ovarian cancer. Curr Treat Options Oncol. 2016;17(3):14.PubMed Hardwick N, Frankel PH, Cristea M. New approaches for immune directed treatment for ovarian cancer. Curr Treat Options Oncol. 2016;17(3):14.PubMed
108.
go back to reference Nayama M, Collinet P, Salzet M, et al. Immunological aspects of ovarian cancer: therapeutic perspectives. J Gynecol Obstet Biol Reprod (Paris). 2016;45(9):1020–36. Nayama M, Collinet P, Salzet M, et al. Immunological aspects of ovarian cancer: therapeutic perspectives. J Gynecol Obstet Biol Reprod (Paris). 2016;45(9):1020–36.
110.
go back to reference Agliari E, Biselli E, De Ninno A, et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Sci Rep. 2014;4:6639.PubMedPubMedCentral Agliari E, Biselli E, De Ninno A, et al. Cancer-driven dynamics of immune cells in a microfluidic environment. Sci Rep. 2014;4:6639.PubMedPubMedCentral
111.
go back to reference Hsu T-H, Kao Y-L, Lin W-L, et al. The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integr Biol (Camb). 2012;4(2):177–82. Hsu T-H, Kao Y-L, Lin W-L, et al. The migration speed of cancer cells influenced by macrophages and myofibroblasts co-cultured in a microfluidic chip. Integr Biol (Camb). 2012;4(2):177–82.
112.
go back to reference Mattei F, Schiavoni G, De Ninno A, et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J Immunotoxicol. 2014;11(4):337–46.PubMed Mattei F, Schiavoni G, De Ninno A, et al. A multidisciplinary study using in vivo tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. J Immunotoxicol. 2014;11(4):337–46.PubMed
113.
go back to reference Nozaki K, Mochizuki W, Matsumoto Y, et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol. 2016;51(3):206–13.PubMedPubMedCentral Nozaki K, Mochizuki W, Matsumoto Y, et al. Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol. 2016;51(3):206–13.PubMedPubMedCentral
114.
go back to reference Zumwalde NA, Haag JD, Sharma D, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev Res (Phila). 2016;9(4):305–16. Zumwalde NA, Haag JD, Sharma D, et al. Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev Res (Phila). 2016;9(4):305–16.
115.
go back to reference Chakrabarti J, Holokai L, Syu L, et al. Mouse-derived gastric organoid and immune cell co-culture for the study of the tumor microenvironment. Methods Mol Biol. 2018;1817:157–68.PubMed Chakrabarti J, Holokai L, Syu L, et al. Mouse-derived gastric organoid and immune cell co-culture for the study of the tumor microenvironment. Methods Mol Biol. 2018;1817:157–68.PubMed
116.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed
117.
go back to reference Hubert CG, Rivera M, Spangler LC, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76(8):2465–77.PubMedPubMedCentral Hubert CG, Rivera M, Spangler LC, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76(8):2465–77.PubMedPubMedCentral
118.
go back to reference Schnalzger TE, de Groot MH, Zhang C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 2019;38(12):e100928.PubMedPubMedCentral Schnalzger TE, de Groot MH, Zhang C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 2019;38(12):e100928.PubMedPubMedCentral
119.
go back to reference Ando Y, Siegler EL, Ta HP, et al. Evaluating CAR-T Cell therapy in a hypoxic 3D tumor model. Adv Healthc Mater. 2019;8(5):e1900001.PubMedPubMedCentral Ando Y, Siegler EL, Ta HP, et al. Evaluating CAR-T Cell therapy in a hypoxic 3D tumor model. Adv Healthc Mater. 2019;8(5):e1900001.PubMedPubMedCentral
120.
go back to reference Salama NR, Hartung ML, Muller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol. 2013;11(6):385–99.PubMedPubMedCentral Salama NR, Hartung ML, Muller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol. 2013;11(6):385–99.PubMedPubMedCentral
121.
go back to reference Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe. 2015;17(6):763–74.PubMed Scanu T, Spaapen RM, Bakker JM, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe. 2015;17(6):763–74.PubMed
122.
go back to reference Workman MJ, Mahe MM, Trisno S, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23(1):49–59.PubMed Workman MJ, Mahe MM, Trisno S, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med. 2017;23(1):49–59.PubMed
123.
go back to reference Ohlund D, -Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579–96.PubMedPubMedCentral Ohlund D, -Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579–96.PubMedPubMedCentral
124.
go back to reference Zhang AW, McPherson A, Milne K, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. 2018;173(7):1755.e22–69.e22. Zhang AW, McPherson A, Milne K, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. 2018;173(7):1755.e22–69.e22.
Metadata
Title
Organoid of ovarian cancer: genomic analysis and drug screening
Authors
H.-D. Liu
B.-R. Xia
M.-Z. Jin
G. Lou
Publication date
01-08-2020
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 8/2020
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-019-02276-8

Other articles of this Issue 8/2020

Clinical and Translational Oncology 8/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine