Skip to main content
Top
Published in: Lasers in Medical Science 7/2022

08-04-2022 | osteosarcoma | Original Article

Photobiomodulation Therapy Affects the Elastic Modulus, Cytoskeletal Rearrangement and Migration Capability of Human Osteosarcoma Cells

Authors: Amin Barati Shoorche, Alireza Mohammadkarim, Majid Jadidi, Marjan Bahraminasab

Published in: Lasers in Medical Science | Issue 7/2022

Login to get access

Abstract

Photobiomodulation (PBM) therapy utilizes low-power lasers to modulate the viability of living human cells and leads to changes in proliferation, differentiation, adhesion and gene expression, even though the rearrangement of cytoskeleton was not previously studied. The present study aims to evaluate the photobiological effects on the elastic behavior of human osteosarcoma cells (MG-63) and their morphological changes. Fluorescence staining, confocal imaging and atomic force microscopy (AFM) topography were performed to study the effects of PBM therapy with the exposure of 532 nm-25mW, 650 nm-3mW, 650 nm-150mW and 780 nm-70mW beams following the 5-min continuous irradiation. The area of each beam was 3.14cm2 with a source–surface distance of 20 cm. Besides the cell proliferation assessment, the migratory potential of MG-63 was determined with the wound healing technique. The results indicated an increase in stiffness and shape index of radiation-induced cells 24 h after exposure along with the obvious F-actins changes. But, cell stiffening was not observed 72 h after 532 nm laser irradiation. Also, a decrease in the migration rate was seen in all of the groups after 72 h of irradiation except cells treated with 532 nm wavelength. However, 532 nm laser beams increase the migratory potential 24 h after exposure. Within 72 h after irradiation, the cell proliferation was only affected by applying 532 nm and 650 nm-150mW laser beams. It was concluded that applying photobiomodulation with wavelengths of 650 nm (at both utilized powers) and 780 nm alters the migration capability and provides a quantitative description of cytoskeletal changes. Moreover, membrane stiffening can be considered as the biological marker of PBM treatments.
Literature
1.
go back to reference Anders JJ, Arany PR, Baxter GD, Lanzafame RJ (2019) Low-emitting therapy and low-level light therapy are Photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37(2):63–65PubMedCrossRef Anders JJ, Arany PR, Baxter GD, Lanzafame RJ (2019) Low-emitting therapy and low-level light therapy are Photobiomodulation therapy. Photobiomodul Photomed Laser Surg 37(2):63–65PubMedCrossRef
2.
go back to reference Amaroli A, Colombo E, Zekiy A, Aicardi S, Benedicenti S, Angelis ND (2020) Interaction between laser light and osteoblasts: Photobiomodulation as a trend in the management of socket bone preservation- A Review. Biology 9(1):1–15 Amaroli A, Colombo E, Zekiy A, Aicardi S, Benedicenti S, Angelis ND (2020) Interaction between laser light and osteoblasts: Photobiomodulation as a trend in the management of socket bone preservation- A Review. Biology 9(1):1–15
3.
go back to reference Chellini F, Tani A, Zecchi-Orlandini S, Giannelli M, Sassoli C (2020) In vitro evidences of different fibroblast morpho-functional responses to red, near-infrared and violet-blue Photobiomodulation: Clues for addressing wound healing. Appl Sci 10(1):1–21 Chellini F, Tani A, Zecchi-Orlandini S, Giannelli M, Sassoli C (2020) In vitro evidences of different fibroblast morpho-functional responses to red, near-infrared and violet-blue Photobiomodulation: Clues for addressing wound healing. Appl Sci 10(1):1–21
4.
go back to reference Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C (2018) Red (635 nm), Near Infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stormal cells: A morphologic and molecular In vitro study. Int J Mol Sci 19(1):1–23 Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C (2018) Red (635 nm), Near Infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stormal cells: A morphologic and molecular In vitro study. Int J Mol Sci 19(1):1–23
5.
go back to reference Amid R, Kadkhodazadeh M, Ghazizadeh Ahsaie M, Hakakzadeh A (2014) Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci 5(4):163–170PubMedPubMedCentral Amid R, Kadkhodazadeh M, Ghazizadeh Ahsaie M, Hakakzadeh A (2014) Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci 5(4):163–170PubMedPubMedCentral
6.
go back to reference Amaroli A, Benedicenti A, Ferrando S, Parker S, Selting W, Gallus L, Benedicenti S (2016) Photobiomodulation by infrared diode laser: Effects on intracellular calcium concentration and nitric oxide production of paramecium. Photochem Photobiol 92(6):854–862PubMedCrossRef Amaroli A, Benedicenti A, Ferrando S, Parker S, Selting W, Gallus L, Benedicenti S (2016) Photobiomodulation by infrared diode laser: Effects on intracellular calcium concentration and nitric oxide production of paramecium. Photochem Photobiol 92(6):854–862PubMedCrossRef
7.
go back to reference Amaroli A, Ravera S, Baldini F, Benedicenti S, Panfoli I, Vergani L (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34:495–504PubMedCrossRef Amaroli A, Ravera S, Baldini F, Benedicenti S, Panfoli I, Vergani L (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34:495–504PubMedCrossRef
8.
go back to reference Gutierrez-Men´endez AG, Marcos-Nistal M, M´endez M, Arias JL (2020) Photobiomodulation as a promising new tool in the management of psychological disorders: a systematic review. Neurosci Biobehav Rev 119:242–254CrossRef Gutierrez-Men´endez AG, Marcos-Nistal M, M´endez M, Arias JL (2020) Photobiomodulation as a promising new tool in the management of psychological disorders: a systematic review. Neurosci Biobehav Rev 119:242–254CrossRef
9.
go back to reference Saghaei Bagheri H, Rasta SH, Mohammadi SM, Rahim Rahimi AA, Movassaghpour AA, Nozad Charoudeh H (2020) Low-level laser irradiation modulated viability of normal and tumor human lymphocytes In Vitro. J Lasers Med Sci 11(2):174–180PubMedPubMedCentralCrossRef Saghaei Bagheri H, Rasta SH, Mohammadi SM, Rahim Rahimi AA, Movassaghpour AA, Nozad Charoudeh H (2020) Low-level laser irradiation modulated viability of normal and tumor human lymphocytes In Vitro. J Lasers Med Sci 11(2):174–180PubMedPubMedCentralCrossRef
10.
go back to reference Silva JL, Silva-de-Oliviera AFS, Andraus RAC, Maia LP (2020) Effects of low level laser therapy in cancer cells- a systematic review of the literature. Lasers Med Sci 35(5):523–529PubMedCrossRef Silva JL, Silva-de-Oliviera AFS, Andraus RAC, Maia LP (2020) Effects of low level laser therapy in cancer cells- a systematic review of the literature. Lasers Med Sci 35(5):523–529PubMedCrossRef
11.
go back to reference Ravera S, Bertola N, Pasquale C, Bruno S, Benedicenti S, Ferrando S, Zekiy A, Arany P, Amaroli A (2021) 808-nm Photobiomodulation Affects the Viability of a Head and Neck Squamous Carcinoma Cellular Model, Acting on Energy Metabolism and Oxidative Stress Production. Biomedicines 9:1717PubMedPubMedCentralCrossRef Ravera S, Bertola N, Pasquale C, Bruno S, Benedicenti S, Ferrando S, Zekiy A, Arany P, Amaroli A (2021) 808-nm Photobiomodulation Affects the Viability of a Head and Neck Squamous Carcinoma Cellular Model, Acting on Energy Metabolism and Oxidative Stress Production. Biomedicines 9:1717PubMedPubMedCentralCrossRef
12.
go back to reference Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, Garcia-Martinez O (2014) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 16(2):191–196PubMedCrossRef Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, Garcia-Martinez O (2014) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 16(2):191–196PubMedCrossRef
13.
go back to reference Amaroli A, Pasquale C, Zekiy A, Utyuzh A, Benedicenti S, Signore A, Ravera S 2021 Photobiomodulation and oxidative stress: 980 nm diode laser light regulates mitochondrial activity and reactive oxygen species production. Oxidat Med Cell Longev: 6626286. Amaroli A, Pasquale C, Zekiy A, Utyuzh A, Benedicenti S, Signore A, Ravera S 2021 Photobiomodulation and oxidative stress: 980 nm diode laser light regulates mitochondrial activity and reactive oxygen species production. Oxidat Med Cell Longev: 6626286.
14.
go back to reference Bourbone V, Otz J, Bensadoun BJ, Dissaux G, Lucia F, Leclere JC, Pradier O, Schick U (2019) Radiotherapy mucositis in head and neck cancer: prevention by low-energy surface laser. BMJ Support Palliat Care 001851:1–8 Bourbone V, Otz J, Bensadoun BJ, Dissaux G, Lucia F, Leclere JC, Pradier O, Schick U (2019) Radiotherapy mucositis in head and neck cancer: prevention by low-energy surface laser. BMJ Support Palliat Care 001851:1–8
15.
go back to reference Cronshaw M, Parker S, Anagnostaki E, Mylona V, Lynch E, Grootveld M (2020) Photobiomodulation and oral mucositis: A systematic review. Dent J 8(1):1–19 Cronshaw M, Parker S, Anagnostaki E, Mylona V, Lynch E, Grootveld M (2020) Photobiomodulation and oral mucositis: A systematic review. Dent J 8(1):1–19
16.
go back to reference Hanna R, Dalvi S, Benedicenti S, Amaroli A, Salagean T, Pop ID, Todea D, Bordea IR (2020) Photobiomodulation therapy in oral mucositis and potentially malignant oral lesions: A therapy towards the future. Cancers 12(1):1–14 Hanna R, Dalvi S, Benedicenti S, Amaroli A, Salagean T, Pop ID, Todea D, Bordea IR (2020) Photobiomodulation therapy in oral mucositis and potentially malignant oral lesions: A therapy towards the future. Cancers 12(1):1–14
17.
go back to reference Zadik Y, Arany PR, Fregnani ER, Bossi P, Antunes HS, Bensadoun RJ, Gueiros LA, Majorana A, Nair RG, Ranna V, Tissing WJE, Vaddi A, Lubart R, Migliorati CA, Lalla RV, Cheng KKF, Elad S (2019) Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer 27(10):3969–3983PubMedCrossRef Zadik Y, Arany PR, Fregnani ER, Bossi P, Antunes HS, Bensadoun RJ, Gueiros LA, Majorana A, Nair RG, Ranna V, Tissing WJE, Vaddi A, Lubart R, Migliorati CA, Lalla RV, Cheng KKF, Elad S (2019) Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer 27(10):3969–3983PubMedCrossRef
18.
go back to reference Bensadoun RJ, Epstein JB, Nair RG, Barasch A, Raber-Durlacher JE, Migliorati C, Genot-Klastersky MT, Treister N, Arany P, Lodewijckx J et al (2020) Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Med 9:8279–8300PubMedPubMedCentralCrossRef Bensadoun RJ, Epstein JB, Nair RG, Barasch A, Raber-Durlacher JE, Migliorati C, Genot-Klastersky MT, Treister N, Arany P, Lodewijckx J et al (2020) Safety and efficacy of photobiomodulation therapy in oncology: A systematic review. Cancer Med 9:8279–8300PubMedPubMedCentralCrossRef
19.
go back to reference Malthiery E, Choueib B, Hernandez-Lopez AM, Martin M, Gergely C, Torres JH, Cuisinier FJ, Collart-Dutilleul PY (2021) Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci 36(2):437–445PubMedCrossRef Malthiery E, Choueib B, Hernandez-Lopez AM, Martin M, Gergely C, Torres JH, Cuisinier FJ, Collart-Dutilleul PY (2021) Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci 36(2):437–445PubMedCrossRef
20.
go back to reference Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280PubMedCrossRef Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280PubMedCrossRef
21.
go back to reference Merigo E, Bouvet-Gerbettaz S, Boukhechba F, Rocca J-P, Fornaini C, Rochet NJJoP, Biology PB (2016) Green laser light irradiation enhances differentiation and matrix mineralization of osteogenic cells. Lasers Med Sci 155:130–136 Merigo E, Bouvet-Gerbettaz S, Boukhechba F, Rocca J-P, Fornaini C, Rochet NJJoP, Biology PB (2016) Green laser light irradiation enhances differentiation and matrix mineralization of osteogenic cells. Lasers Med Sci 155:130–136
22.
go back to reference Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L (2010) Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg 28(1):131–133PubMedCrossRef Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L (2010) Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg 28(1):131–133PubMedCrossRef
23.
go back to reference Parenti SI, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Optics 19(10):108002CrossRef Parenti SI, Checchi L, Fini M, Tschon M (2014) Different doses of low-level laser irradiation modulate the in vitro response of osteoblast-like cells. J Biomed Optics 19(10):108002CrossRef
24.
go back to reference Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E, Ramos-Torrecillas J, Garcia-Martinez O, Ruiz C (2014) The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci 29(4):1479–1484PubMed Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E, Ramos-Torrecillas J, Garcia-Martinez O, Ruiz C (2014) The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med Sci 29(4):1479–1484PubMed
25.
go back to reference Chang B, Qiu H, Zhao H, Xi Y, Wang Y, Ji T, Zhang Y, Quan Q, Li Y, Zeng J, Meng H, Gu Y (2019) The effects of photobiomodulation on MC3T3-E1 cells via 630 nm and 810 nm light emitting diode. Med Sci Monit 25:8744–8752PubMedPubMedCentralCrossRef Chang B, Qiu H, Zhao H, Xi Y, Wang Y, Ji T, Zhang Y, Quan Q, Li Y, Zeng J, Meng H, Gu Y (2019) The effects of photobiomodulation on MC3T3-E1 cells via 630 nm and 810 nm light emitting diode. Med Sci Monit 25:8744–8752PubMedPubMedCentralCrossRef
26.
go back to reference Lim HJ, Bang MS, Jung HM, Sim JI, Chun GS, Oh C (2014) A 635-nm light-emitting diode (LED) therapy inhibits bone resorptive osteoclast formation by regulating the actin cytoskeleton. Lasers Med Sci 29(1):659–670PubMedCrossRef Lim HJ, Bang MS, Jung HM, Sim JI, Chun GS, Oh C (2014) A 635-nm light-emitting diode (LED) therapy inhibits bone resorptive osteoclast formation by regulating the actin cytoskeleton. Lasers Med Sci 29(1):659–670PubMedCrossRef
27.
go back to reference Kelly GM, Kilpatrick JI, Van Es MH, Weafer PP, Prendergast PJ, Jarvis SP (2011) Bone cell elasticity and morphology changes during the cell cycle. J Biomech 44(8):1484–1490PubMedCrossRef Kelly GM, Kilpatrick JI, Van Es MH, Weafer PP, Prendergast PJ, Jarvis SP (2011) Bone cell elasticity and morphology changes during the cell cycle. J Biomech 44(8):1484–1490PubMedCrossRef
28.
go back to reference Guo Q, Xia Y, Sandig M, Yang JB (2012) Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 45(2):304–309PubMedCrossRef Guo Q, Xia Y, Sandig M, Yang JB (2012) Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 45(2):304–309PubMedCrossRef
29.
go back to reference Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orth Res 16(1):23–28CrossRef Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orth Res 16(1):23–28CrossRef
30.
go back to reference Gross T, Pahr DH, Zysset PK (2013) Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech Model Mechanobiology 12(4):793–800CrossRef Gross T, Pahr DH, Zysset PK (2013) Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations. Biomech Model Mechanobiology 12(4):793–800CrossRef
31.
go back to reference Mohammadkarim A, Mokhtari-Dizaji M, Kazemian A, Saberi H, Khani MM, Bakhshandeh M (2019) Dose-dependent 60Co γ-radiation Effects on Human Endothelial Cell Mechanical Properties. Cell Biochem Biophys 77(2):179–186 Mohammadkarim A, Mokhtari-Dizaji M, Kazemian A, Saberi H, Khani MM, Bakhshandeh M (2019) Dose-dependent 60Co γ-radiation Effects on Human Endothelial Cell Mechanical Properties. Cell Biochem Biophys 77(2):179–186
32.
go back to reference Mergoni G, Vescovi P, Belletti S, Uggeri J, Nammour S, Gatti RJ (2018) Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study. Lasers Med Sci 33(6):1189–1195PubMedCrossRef Mergoni G, Vescovi P, Belletti S, Uggeri J, Nammour S, Gatti RJ (2018) Effects of 915 nm laser irradiation on human osteoblasts: a preliminary in vitro study. Lasers Med Sci 33(6):1189–1195PubMedCrossRef
33.
go back to reference Liang C-C, Y Park A, Guan JL (2007) In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333PubMedCrossRef Liang C-C, Y Park A, Guan JL (2007) In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333PubMedCrossRef
34.
go back to reference Cory G (2011) Scratch-Wound Assay. In: Wells CM, Parsons M (eds) Cell Migration: Developmental Methods and Protocols. Humana Press, Totowa, NJ, pp 25–30CrossRef Cory G (2011) Scratch-Wound Assay. In: Wells CM, Parsons M (eds) Cell Migration: Developmental Methods and Protocols. Humana Press, Totowa, NJ, pp 25–30CrossRef
35.
go back to reference Ruan W-D, Wang P, Feng S, Xue Y, Zhang BJO (2016) MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Onco Targets Ther 9:303–313 PubMedPubMedCentralCrossRef Ruan W-D, Wang P, Feng S, Xue Y, Zhang BJO (2016) MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Onco Targets Ther 9:303–313 PubMedPubMedCentralCrossRef
36.
go back to reference Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga VJ (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Investigat Dermat 137(2):11–16CrossRef Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga VJ (2017) Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Investigat Dermat 137(2):11–16CrossRef
37.
go back to reference Ziebarth NM, Arrieta E, Feuer WJ, Moy VT, Manns F, Parel JM (2011) Primate lens capsule elasticity assessed using Atomic Force Microscopy. Exp Eye Res 92(6):490–494PubMedPubMedCentralCrossRef Ziebarth NM, Arrieta E, Feuer WJ, Moy VT, Manns F, Parel JM (2011) Primate lens capsule elasticity assessed using Atomic Force Microscopy. Exp Eye Res 92(6):490–494PubMedPubMedCentralCrossRef
38.
go back to reference Rebelo LM, de Sousa JS, Mendes Filho J, Radmacher M (2013) Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Nanotechnology 245:055102CrossRef Rebelo LM, de Sousa JS, Mendes Filho J, Radmacher M (2013) Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Nanotechnology 245:055102CrossRef
39.
go back to reference Thakar RG, Ho F, Huang NF, Liepmann D, Li S (2003) Regulation of vascular smooth muscle cells by micropatterning. Biochem Biophys Res Commun 307:883–890PubMedCrossRef Thakar RG, Ho F, Huang NF, Liepmann D, Li S (2003) Regulation of vascular smooth muscle cells by micropatterning. Biochem Biophys Res Commun 307:883–890PubMedCrossRef
40.
go back to reference Mohammadkarim A, Mokhtari-Dizaji M, Kazemian A, Saberi H, Khani MM, Bakhshandeh M (2019) The mechanical characteristics of human endothelial cells in response to single ionizing radiation doses by using micropipette aspiration technique. MCB Mol Cell Biomech 16(4):275–287CrossRef Mohammadkarim A, Mokhtari-Dizaji M, Kazemian A, Saberi H, Khani MM, Bakhshandeh M (2019) The mechanical characteristics of human endothelial cells in response to single ionizing radiation doses by using micropipette aspiration technique. MCB Mol Cell Biomech 16(4):275–287CrossRef
41.
go back to reference Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi TJU (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82(1–4):253–258PubMedCrossRef Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi TJU (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82(1–4):253–258PubMedCrossRef
42.
go back to reference Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefèbvre J-L, Greiner RH, Giralt J, Maingon P, Rolland F, Bolla MJ (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. New England J Medicine 350(19):1945–1952CrossRef Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefèbvre J-L, Greiner RH, Giralt J, Maingon P, Rolland F, Bolla MJ (2004) Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. New England J Medicine 350(19):1945–1952CrossRef
43.
go back to reference Stroka KM, Aranda-Espinoza HJC (2011) Effects of morphology vs. cell–cell interactions on endothelial cell stiffness. Cell Mol Bioeng 4(1):9–27PubMedCrossRef Stroka KM, Aranda-Espinoza HJC (2011) Effects of morphology vs. cell–cell interactions on endothelial cell stiffness. Cell Mol Bioeng 4(1):9–27PubMedCrossRef
44.
go back to reference Györgyey Á, Ungvári K, Kecskeméti G, Kopniczky J, Hopp B, Oszkó A, Pelsöczi I, Rakonczay Z, Nagy K, Turzó KJMS (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mat Sci Eng: C 33(7):4251–4259CrossRef Györgyey Á, Ungvári K, Kecskeméti G, Kopniczky J, Hopp B, Oszkó A, Pelsöczi I, Rakonczay Z, Nagy K, Turzó KJMS (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mat Sci Eng: C 33(7):4251–4259CrossRef
45.
go back to reference Ateş GB, Ak A, Garipcan B, Yüksel Ş, Gülsoy M (2015) Controversial effects of low level laser irradiation on the proliferation of human osteoblasts. Mechanisms for Low-Light Therapy X; International Society for Optics and Photonics. Proc of SPIE 9309:930907–930914CrossRef Ateş GB, Ak A, Garipcan B, Yüksel Ş, Gülsoy M (2015) Controversial effects of low level laser irradiation on the proliferation of human osteoblasts. Mechanisms for Low-Light Therapy X; International Society for Optics and Photonics. Proc of SPIE 9309:930907–930914CrossRef
Metadata
Title
Photobiomodulation Therapy Affects the Elastic Modulus, Cytoskeletal Rearrangement and Migration Capability of Human Osteosarcoma Cells
Authors
Amin Barati Shoorche
Alireza Mohammadkarim
Majid Jadidi
Marjan Bahraminasab
Publication date
08-04-2022
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 7/2022
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03554-8

Other articles of this Issue 7/2022

Lasers in Medical Science 7/2022 Go to the issue